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Abstract

Vickrey-Clarke-Groves (VCG) mechanisms are often used to allocate tasks to selfish and ratio-
nal agents. VCG mechanisms are incentive-compatible, direct mechanisms that are efficient (i.e.
maximise social utility) and individually rational (i.e. agents prefer to join rather than opt out).
However, an important assumption of these mechanisms is that the agents willalwayssuccessfully
complete their allocated tasks. Clearly, this assumption is unrealistic in many real-world appli-
cations where agents can, and often do, fail in their endeavours. Moreover, whether an agent is
deemed to have failed may be perceived differently by different agents. Such subjective percep-
tions about an agent’s probability of succeeding at a given task are often captured and reasoned
about using the notion oftrust. Given this background, in this paper, we investigate the design of
novel mechanisms that take into account the trust between agents when allocating tasks.

Specifically, we develop a new class of mechanisms, calledtrust-based mechanisms, that can
take into account multiple subjective measures of the probability of an agent succeeding at a given
task and produce allocations that maximise social utility,whilst ensuring that no agent obtains
a negative utility. We then show that such mechanisms pose a challenging new combinatorial
optimisation problem (that is NP-complete), devise a novelrepresentation for solving the problem,
and develop an effective integer programming solution (that can solve instances with about2×105

possible allocations in 40 seconds).

1. Introduction

Task allocation is an important and challenging problem within the field of multi-agent systems.
The problem involves deciding how to assign a number of tasks to a set of agents according to some
allocation protocol. For example, a number of computational jobs may need to beallocated to agents
that run high performance computing data centres [3], a number of network maintenance tasks may
need to be performed by communications companies for a number of businessclients [14], or a
number of transportation tasks may need to be allocated to a number of delivery companies [36]. In
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the general case, the agents performing these jobs or asking for these jobs to be performed will be
trying to maximise their own gains (e.g. companies owning data centers or servers will be trying
to minimise the number of servers utilised, communications companies will try to minimise the
number of people needed to complete the tasks demanded, and truck companies will try to use the
minimum number of vehicles). Given this, Mechanism Design (MD) techniquescan be employed
to design these task allocation protocols since these techniques can produce solutions that have
provable and desirable properties when faced with autonomous and utility maximising actors [6]. In
particular, the Vickrey-Clarke-Groves (VCG) class of mechanisms has been advocated in a number
of problem domains [38, 12, 6] because they maximise social welfare (i.e. they are efficient) and
guarantee a non-negative utility to the participating agents (i.e. they are individually rational). In
such mechanisms, agents typically reveal their costs for performing the tasks or their valuation of
the requested tasks to a centre and the centre then computes the allocation of tasks to each agent
and the payments they all need to make. However, an important underpinningassumption that such
mechanisms make is that an agentalwayssuccessfully completes every task that is assigned to it by
the centre. The result of this assumption is that an allocation (i.e. an assignment of tasks that are
asked for by requester agents and executed by task performer agents) is selected by the centre based
only on the costs or valuations provided by the agents. This ensures that the centre always chooses
the performers that are the cheapest and the requesters that are ready to pay the most. However,
the agents chosen by the centre may ultimately not be successful in completing their assignment.
For example, an agent providing access to a data centre with a cost of£10, but with a success
rate of100%, might be preferable to one providing the same service with a cost of£5 but with a
10% chance of being successful. Thus, in order to make efficient allocations insuch circumstances,
we need to design mechanisms that consider both the task performers’ costsfor the serviceand
their probability of success(POS). Now, this probability may be perceived differently by different
agents because they typically have different standards or means of evaluating the performance of
their counterparts. Given this, we turn to the notion oftrust to capture such subjective perceptions
[33]. To take into account the agents’ trust in other agents, as well as their costs, when allocating
tasks requires the design of a new class of mechanism that we have previously termed trust-based
[7].

To date, however, existing work on trust-based mechanisms (TBMs) ignores a number of impor-
tant aspects of the task allocation problem which makes them less robust to uncertainty (see section
2 for more details). First, Porter et al. [32] only allow POS reports to come from the task performer,
rather than any other agent. This means the task requester can be misled by the task performer’s
opinion (even if it is truthfully revealed) since the task requester may believe, at times, that the task
performer failed while the task performer believes it has succeeded. Second, in our previous work
[7], we presented a mechanism that could result in inefficient allocations as agents had strong incen-
tives to over-report their POS. Even more importantly, however, existing trust-based mechanisms
completely ignore the computational cost associated with including the POS in computing the opti-
mal allocation and payments. Thus, while previous work highlights the economicbenefits, they do
not specify how the new problem can be effectively represented and efficiently solved. By so doing,
it is not apparent whether such mechanisms can actually be implemented, solved, and whether they
scale up to reasonable numbers of agents.

Against this background, this paper provides efficient and individually rational mechanisms
for scenarios in which there exists uncertainty about agents successfully completing their assigned
tasks. Thisexecution uncertaintycan generally be modelled as follows. First, potential task per-
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formers are assessed by a task requester that uses both its individual experience of their performance
and information gathered from its environment (such as reports by other agents about their perfor-
mance) to construct its estimation of their POS. Often these sources are calledconfidence and repu-
tation respectively [33, 5], and when combined they give the notion of trust in an agent performing a
particular task. This combined view of trust is used here because it is a more robust measure of POS
than any single estimate (especially one emanating from the task performer). This is evident from
the fact that each agent is only likely to have a partial view of the performance of a task performer
because it is derived from a finite subset of its interactions. For example,a task requester having
ten tasks performed by an agent may benefit from the experience acquired from another requester’s
fifty interactions with that same agent. However, incorporating trust in the decision mechanism of
the requester introduces two major issues. First, when agents use reportsfrom other agents to build
trust, it introduces the possibility ofinterdependent valuations. This means that the value that is
generated by one agent in the system can be affected by another agent’s report to the mechanism
[13, 22]. This, in turn, makes it much harder than standard VCG-based techniques to incentivise
agents to reveal their private information truthfully. Second, introducing trust involves a significant
computational cost and we show that solving the optimisation problem of trust-based mechanisms
is NP-complete.

To tackle the issue of interdependence, we build upon the work by Mezzetti[22, 23] to construct
a novel mechanism that incentivises agents to reveal their private information. Moreover, to help
combat the computational complexity generated by trust, we go on to develop a novel representa-
tion for the optimisation problem posed by trust-based mechanisms and providean implementation
based on Integer Programming (IP). Given this, we show that the main bottleneck of the mechanism
lies in searching through a large set of possible allocations, but demonstrate that our IP solution
can comfortably solve small and medium instances within minutes or hours (e.g. for 8 tasks and
70 agents).1 In so doing, we provide the first benchmark for algorithms that aim to solve such
optimisation problems.

In more detail, this paper advances the state of the art in the following ways:

1. We design novel TBMs that can allocate tasks when there is uncertainty about their comple-
tion. Our TBMs are non-trivial extensions to [31] because they are the first to consider the
reputation of a task performer within the system, in addition to its self-report. This allows
us to build greater robustness into the mechanism since it takes into account the subjective
perceptions of all agents (task requesters in particular) about the POS of task performers.

2. We prove that, in expectation, our TBMs are incentive compatible in Nash equilibrium, effi-
cient and individually rational.

3. We develop a novel representation for the optimisation problem posed byTBMs and, given
this, cast the problem as a special matching problem [2]. We show that solving the generalised
version of TBMs is NP-complete and provide the first Integer Programming solution for it.
This solution can solve instances of 50 agents and 6 tasks within one minute andeven larger
instances within hours.

The rest of the paper is structured as follows. We first provide an overview of the related work in
Section 2. We then provide the contributions listed above in a step-wise manner. First, a simple task

1. Though the time taken to find the optimal solution grows exponentially with the number of tasks, our mechanism sets
the baseline performance in solving the optimisation problem posed by trust-based mechanisms.
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allocation model is detailed in Section 3 where we introduce the TBM for a single requester, single
task scenario. Section 4 then develops the generalised TBM for multiple requesters and multiple
tasks and we prove its economic properties. Having dealt with the economic aspects, we then turn
to the computational problem of implementing TBMs in section 5. Specifically, we develop a new
representation for the optimisation problem posed by the generalised TBM, study the computational
costs associated with solving the problem, and provide an IP-based solutionto it. Section 6 then
discusses a number of broader issues related to the development of future trust-based mechanisms.

2. Related Work

In associating uncertainty to mechanism design, we build upon work in both areas. With regards to
capturing uncertainty in multi-agent interactions, most work has focused ondevising computational
models of trust and reputation (see [37] and [33] for reviews). Thesemodels mostly use statistical
methods to estimate the reliability of an opponent from other agents’ reports and direct interactions
with the opponent. Some of these models also try to identify false or inaccurate reports by checking
how closely each report matches an agent’s direct experience with the opponent [37, 16]. Now,
while these models can help in choosing the most successful agents, they are not shown to generate
efficient outcomes in any given mechanism. In contrast, in this paper we provide the means to use
such models in order to do just this.

In the case of MD, there has been surprisingly little work on achieving efficient, incentive com-
patible and individually rational mechanisms that take into accountuncertaintyin general. The
approaches adopted can be separated into work on reputation mechanismsand mechanisms for task
or resource allocation. The former mainly aim at eliciting honest feedback from report providers.
Examples of such mechanisms include [9, 15, 24, 16]. In particular, Miller et al. recently developed
the peer prediction model [24] which incentivises agents to report truthfully about their experience.
Their mechanism operates by rewarding reporters according to how welltheir reports coincide with
the experience of their peers. Specifically, it assigns scores to the distance between a given agent’s
report and other selectedreferencereporters’ reports on a given task performer. In a similar way,
Jurca and Faltings have also attempted to solve the same problem by placing moreimportance on
the repeated presence of agents in the system in order to induce truthful reporting [17]. However,
given that they focus on eliciting honest feedback, their mechanism is silent as to what this feedback
is actually used for. In particular, it cannot be employed in the task allocationscenario we study
in this paper because in our case the objective is to maximise the overall utility of the society that
therefore considers the valueand POS of agents. For example, feedback on the quality of service
of a mechanic is less critical than feedback on a bridge builder due to the differences in value of
these tasks. Interestingly, their mechanism is shown to have truth-telling as a (non-unique) Nash
equilibrium and is budget balanced, but not individually rational (see Section 6 on how these social
desiderata interplay).

In terms of MD for task allocation, type uncertainty is taken into account by Bayesian mecha-
nisms such as Arrow-d’Asprémont-Ǵerard-Varet [8]. This considers the case when the payoffs to
the agents are determined via a probability distribution of types which is common knowledge to all
agents. However, this mechanism cannot deal with our problem in which there is uncertainty about
task completion and each agent has information about the POS of all other agents. Porter et al. [32]
have also considered this task allocation problem and their mechanism is the one that is most closely
related to ours. However, they limit themselves to the case where agents can only report on their own
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POS. This is a serious drawback because it assumes the agents can measure their own POS accu-
rately and it does not consider the case where the agents may have different perceptions on the POS
(e.g. a performer believes that it performs better or worse than what the requester perceives). More-
over, they only consider a single requester single task setting, while the mechanisms we develop
here deal with multiple tasks and multiple requesters. Thus, our mechanisms canbe considered to
be a two-way generalisation of theirs. First, we allow multiple reports of uncertainty that need to be
fused appropriately to give a precise POS as perceived by the requester. Second, we generalise their
mechanism to the case of multiple requesters where the agents can provide combinatorial valuations
on multiple tasks. In our earlier work on this problem [7], we proposed a preliminary TBM where
the agents could have followed the risky, but potentially profitable strategy,of over-reporting their
costs or underreporting their valuations since payments are not made according to whether they suc-
ceed or fail in the allocated task (which we do in our new mechanism). In contrast, in this work, the
payment scheme ensures that such a strategy is not viable and thus this mechanism is more robust.
Moreover, our previous work assumed trust functions that were monotonically increasing in POS
reports and (similar to Porter et al.) did not develop the algorithms that are needed to actually solve
the optimisation problem posed by a TBM. In this paper, we present a mechanism that applies to
more general trust functions and also develop algorithms to solve TBMs.

Finally, our work is a case of interdependent, multidimensional allocation schemes. With in-
terdependent payoffs, [13] have shown that is impossible to achieve efficiency with a one-stage
mechanism. Mezzetti, however, has shown that it is possible to achieve efficiency with an elegant
two-stage mechanism under very reasonable assumptions [22]. Our mechanism achieves efficiency
without needing two reporting stages because in the setting we consider payments can be contingent
on successful task completion and agents do not derive a direct payoff from the allocation of a task
to another agent or the other agents’ assessments about the completion probabilities. In our set-
ting, there exists a specific function that captures the interdependence that exists among the agents
through their assessments of completion probabilities. This function is, in our case, the agents’ trust
model.

3. Single Requester, Single Task Allocation Mechanisms

In this section, we first present the basic VCG mechanism for a simple task allocation model (a
single task being requested by a single agent) where the allocated task is guaranteed to be com-
pleted (i.e. all agents’ POS are equal to 1). We then briefly describe Porter et al.’s [31] extension
which considers task performers that have a privately known objectiveprobability that they finish
the assigned task. Finally, we consider the case where the POS of a task performer is a function of
privately known variables held by each task performer in the system. This ensures that the choice
made by the task requester is better informed (drawing data from various sources) about the POS of
task performers. We show how Porter et al.’s mechanism would fail to produce the efficient alloca-
tion in such settings and then go on to provide a non-trivial extension of theirmodel to cater for this.
In so doing, we define a new trust-based mechanism for the single requester, single task scenario
(as a prelude to the generalised mechanism that we will develop in the next section). We then go on
to prove the economic properties of this simple TBM. Throughout this section,a running example
task allocation problem is employed to demonstrate the workings of the mechanismsdiscussed.
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3.1 Allocation with Guaranteed Task Completion

In this task allocation scenario, a single agent derives a value when a certain task is performed. To
this end, an agent needs to allocate the task to one of the available task performers which will charge
a certain amount to execute the task. We start by considering the following simple example:

Example 1. MoviePictures.com, a computer graphics company, has an image rendering task that
it wishes to complete for a new movie. Hence, MoviePictures.com publicly announces its intention
to all companies owning data centres that can execute the task. Given the interest shown by many
of these companies, MoviePictures.com needs to decide on the mechanismto allocate the contract
and how much to pay the chosen contractor, given that MoviePictures.comdoes not know all the
contractors’ costs to execute the job (i.e. it does not know how much it actually costs each company
to process the images and render them to the required quality).

The above example can be captured by the following model. There is a set ofagents (data
centre agents in the example),I = {1, 2, . . . , i, . . . , I}, who each have a privately-known cost
ci(τ) ∈ ℜ+ ∪ {0} of performing the rendering taskτ . Furthermore, let MoviePictures.com be
represented by a special agent0, who has a valuev0(τ) ∈ ℜ+ ∪ {0} for the rendering task and a
cost ofc0(τ) > v0(τ) to perform the task (c0(τ) = ∞ in case agent 0 cannot execute the task).
Hence, MoviePictures.com can only get the task performed by another agent in the setI who has a
costci(τ) ≤ v0(τ).

Now, MoviePictures.com needs to decide on the procedure to award the contract, and hence acts
as thecentrewhich will invite offers from the other agents to perform the task. In devising such
a mechanism for task allocation, we focus onincentive-compatible direct revelationmechanisms
(DRMs) by invoking therevelation principlewhich states that any mechanism can be transformed
into a DRM [20]. In this context, “direct revelation” means the strategy space (i.e. all possible
actions) of the agents is restricted to reporting theirtype(i.e. their private information, for example
their cost or valuation of a task) and “incentive-compatible” means the equilibrium strategy (i.e.
best strategy under a certain equilibrium concept) is truth-telling.

Thus, in a DRM the designer has control over two parts: 1) the allocation rule that determines
who wins the contract and 2) the payment rule that determines the transfer of money between
the centre (i.e. MoviePictures.com) and the agents (i.e. of the data centres).Let K denote a
particular allocation within the space of possible allocationsK and τ i←0 represent that agenti
gets allocated taskτ from agent0. Then, in this setting, the space of all possible allocations are
K = {∅, τ1←0, τ2←0, . . . , τ I←0} where∅ denotes the case where the task is not allocated. More-
over, we abuse notation to define the cost of an allocationK to agenti, as beingci(K) = ci(τ) if
K = τ i←0 andci(K) = 0 otherwise. Similarly, for the centre, the value of a non empty allocation
is simply the value it has for the task, i.e.v0(K) = v0(τ) if K 6= ∅ andv0(K) = 0 if K = ∅.
Finally, letri(K) ∈ ℜ be the payment by the centre to agenti based on its allocation inK. In case
ri(K) is negative, agenti has to payri(K) to the centre.

Within the context of task allocation, direct mechanisms take the form of sealed-bid auctions
where agents report their costs to a centre (or auctioneer). Agents may not wish to report their true
costs if reporting these falsely leads to a preferable outcome for them. We willtherefore distinguish
between the actual costs and the reported ones by superscripting the latterwith ‘ ̂ ’.

The task allocation problem then consists of choosing the allocation and payment rules such that
certain desirable system objectives (some of which are detailed below) aresatisfied. Following the
task execution and payments, an agenti derives a utility given by its utility functionui : K×ℜ → ℜ.
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As is common in this domain, we assume that an agent is rational (expected utility maximiser) and
has a quasi-linear utility function [21]:

Definition 1. A quasi-linear utility function is one that can be expressed as:

ui(K) = ri(K) − ci(K) (1)

whereK ∈ K is a given allocation.

Having modelled the problem as above, MoviePictures.com then decides to employ a Vickrey
auction (also known as a second-price sealed bid auction) since this protocol possesses the desired
properties of efficiency and individual rationality. In more detail, these desiderata can be formally
defined as follows:

Definition 2. Efficiency: the allocation mechanism is said to be efficient if the outcome it generates
maximises the total utility of all the agents in the system (without considering transfers). That is, it
calculatesK∗ such that:

K∗ = arg max
K∈K

[
v0(K) −

∑

i∈I

ci(K)

]
(2)

Definition 3. Individual Rationality: the allocation mechanism is individually rational if agents
derive higher utility when participating in the mechanism than when opting out ofit. Assuming that
the utility that an agent obtains when opting out is zero, then an individually rational allocationK
is one in which [20]:

ui(K) ≥ 0 , ∀i ∈ I (3)

In more detail, after having received the sealed bids from all the agents, the centre calculates the
allocation and the payment to the winner as follows (according to the Vickrey auction rules):

• Compute the efficient allocation as:

K∗ = arg max
K∈K

[
v0(K) −

∑

i∈I

ĉi(K)

]
(4)

Note this is the same as in equation 2 except forĉi(K) instead ofci(K).

• Transferri(K
∗) to the winneri such that:

ri(K
∗) = v0(K

∗) − max
K−i∈K


v0(K−i) −

∑

j∈I\i

ĉj(K−i)


 (5)

whereK−i = τ j←0, j 6= i.
The above auction has been shown to be dominant-strategy incentive-compatible [20]. This

implies that it is a dominant strategy for the agents to report their types truthfullyand thus the
mechanism is efficient since equations 4 and 2 match asĉ(.) = c(.) if the agents report truthfully.
Also, the mechanism has been proven to be individually rational [20].
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3.2 Allocation with Execution Uncertainty

In the mechanism presented in the previous section, it is assumed that once the allocationK∗ is
decided, its valuev0(K

∗) will be obtained by the centre (eitherv0(τ) if the task has been allocated
or 0 otherwise). Thus, there is an implicit assumption that once allocated a task an agent will always
perform it successfully. However, this is unrealistic, as illustrated by the following example:

Example 2. Many of the previous rendering tasks required by MoviePictures.com were allocated
to PoorRender Ltd because of its very competitive prices. Unfortunately, PoorRender Ltd, could
not complete the task in many cases because of lack of staff and other technical problems (which
it knew about before even bidding for the task). As a result, MoviePictures.com incurred severe
losses. Hence, MoviePictures.com decides to alter the allocation mechanismin such a way that
the agents’ POS in completing the tasks can be factored into the selection of the cheapest agent.
MoviePictures.com assumes each contractor knows its own POS and costprivately and needs the
mechanism to elicit this information truthfully in order to choose the best allocation.

The above problem was studied by Porter et al. and we briefly describe,in our own terms, their
mechanism in order to extend and generalise it later (see sections 3.3 and 4). We first introduce
the boolean indicator variableκ that will denote whether the task has been completed (κ = 1) or
not (κ = 0). Thus,κ is only observable after the task has been allocated. Moreover, we extend
our notation here to capture the centre’s valuation of the task execution such thatv0(κ) = v0(K

∗)
if κ = 1 andv0(κ) = 0 if κ = 0. In this setting, we assume thatκ is commonly observed (i.e.
if agent i believes thatκ = 1, then all agentsi ∈ I ∪ {0} believe the same). In our rendering
example,κ might denote whether the images are rendered up to the appropriate resolution which
will allow its usage or not. Furthermore, the probability thatκ = 1 once the task is allocated to
agenti is dependent upon another privately known variable,pi(τ) ∈ [0, 1], which is the POS of
agenti in executing taskτ . Note that this variable is privately known to the task performeri itself,
and so there is a single observation within the system, carried out by the task performer, about its
own POS.

As can be seen, the value that the centre (Movie Pictures.com) will derive,v0(κ), is not known
beforethe allocation is calculated. Hence the notions of efficiency and individual rationality intro-
duced in section 3.1 need to be adjusted to this new setting. Given the probabilitythat the task will
be executed by a given agent, we have to consider theexpectedvalue of an allocation,v0(K, p),
which is calculated as:

v0(K, p) = v0(K) · pi(τ) (6)

wherei is the agent chosen to perform the task in allocationK andp = 〈p1(τ), . . . , pI(τ)〉 is
the vector of POS values of all the agents (the list of assessments by each contractor of its own
probability that it will complete the rendering task as in our example). We note asp̂ the vector of
reportedPOS values〈p̂1(τ), . . . , p̂I(τ)〉.

The following modified desiderata need to be considered now:

Definition 4. Efficiency: a mechanism is said to achieve efficiency if it chooses the allocation that
maximises the sum of expected utilities (without considering the transfers):

K∗ = arg max
K∈K

[
v0(K, p) −

∑

i∈I

ci(K)

]

8
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Definition 5. Individual Rationality: a mechanism achieves individual rationality if a participating
agenti derives an expected utility,ui, which is always greater than0:

ui(K, p) = ri(K, p) − ci(K) ≥ 0

whereri(K, p) is the expected payment that agenti receives.

In order to achieve these desiderata, one could suppose that a naı̈ve extension of the standard
Vickrey mechanism presented above would be sufficient. In such a mechanism, the centre would
ask the agents to report their extended types{ĉi, p̂i} (i.e. these include the POS, in addition to the
cost). The allocation chosen would then be the one maximising the expected utility of the agents and
the payment rule would be conditioned according to equation 5 withv0(K

∗, p) replacingv0(K
∗).

However, such a mechanism would fail in these settings, as illustrated in the next section.

3.2.1 NAÏVE APPLICATION OF THEV ICKREY AUCTION

Example 3. Consider the case where MoviePictures.com derives a value ofv0(τ) = 300 when
the rendering task is completed and let there be three contractors whose costsci(τ) to render the
images are given by(c1(τ), c2(τ), c3(τ)) = (100, 150, 200). Furthermore, assume each contractor
has a POS given by(p1(τ), p2(τ), p3(τ)) = (0.5, 0.9, 1). This information is represented in table
1.

The efficient allocation in this case (shaded line in table 1) involves assigningthe task to agent
2 with an expected social utility of300 × 0.9 − 150 = 120. The payment to agent2 using the
(reverse) Vickrey auction with expected values is300 × 0.9 − (300 − 200) = 170 (from equation
(5)). However, such a mechanism is not incentive-compatible. For example, if agent1 reveals that
p̂1(τ) = 1, then the centre will implementK∗ = τ1←0 and will pay agent1, r1 = 300−120 = 180.
Thus, the agents in such a mechanism are always better off reportingp̂i(τ) = 1, no matter what
their actual POS is! Hence, the centre will not be able to implement the efficientallocation.

Agent ci(τ) pi(τ)

1 100 0.5
2 150 0.9
3 200 1

Table 1:Table showing costs of performing taskτc and each agent’s own perceived probability of successfully
completing the task.

This type extension (i.e. including the POS) is non-trivial because the POS report of an agent
affects the social value expected by the centre, but not the agent’s cost under an allocation. As
a result, reporting a higher POS will only positively affect an agent’s probability of winning the
allocation and thus will positively affect its utility. To rectify this, we need a means by which this
gain in utility is balanced by a penalty so that only on truthfully reporting its type, will an agent
maximise its utility. This is achieved in Porter et al.’s mechanism which we briefly detail in the next
section.

9
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3.2.2 PORTER ET AL.’ S MECHANISM

This mechanism is based around payments being appliedafter the completion of tasks. Specifically,
the mechanism finds the marginal contribution that an agent has made to the expected welfare of
other agents depending on whether it completes its assigned task or not. Intuitively, this works since
the payment scheme punishes an agent that is assigned a task but does not complete it (i.e.κ = 0).
As a result, the agent is not incentivised to reveal a higher POS value thanthe real value since if it is
then allocated the task, it is more likely to reap a punishment rather than the reward which it obtains
when it successfully completes the task (i.e.κ = 1).

In more detail, the allocation is determined by the centre according to the followingequation:

K∗ = arg max
K∈K

[
v0(K, p̂) −

∑

i∈I

ĉi(K)

]
(7)

Note here that botĥci(K) andp̂ are reported by the agents and are key to computing the efficient
allocation (compare this with equation (4) in the case of the Vickrey auction). The payment rule for
an agenti to which the taskτ is allocated is similar to that of the VCG in that the marginal contri-
bution of the agent to the system is extracted by comparing the efficient allocation with the second
best allocation, excluding the agent. The difference is that it is theexpectedmarginal contribution
that is extracted (i.e. taking into account the agent’s real probability of success). This is achieved as
follows: (the agent getsri(K

∗) = 0 if it is not allocated the task):

ri(K
∗, p̂) =





v0(K
∗) − max

K−i∈K

(
v0(K−i, p̂) −

∑
j∈I\i ĉj(K−i)

)
, if κ = 1

− max
K−i∈K

(
v0(K−i, p̂) −

∑
j∈I\i ĉj(K−i)

)
, if κ = 0

(8)

whereK−i = τ j←0, j 6= i.

The mechanism would work with the example provided in table 1 since if, for example, agent
1 reportsp̂1(τ) = 1, it will then be allocated the task and will be paid300 − 120 = 180 with a
probability of0.5 and−120 with a probability of0.5. Thus, on average, agent1 will be paid30
but each time it will incur a cost of100, thereby making an expected utility of−70. Clearly, then,
a rational agent will not overstate its POS. In fact, the incentive compatibility of this mechanism
arises because an agenti’s expected utility, given it is allocated the task, is:

ui(K
∗, p̂) = pi(τ)


v0(K

∗) − ci(K
∗) − max

K−i∈K

(
v0(K−i, p̂) −

∑

j∈I\i

ĉj(K−i)
)



+ (1 − pi(τ))


−ci(K

∗) − max
K−i∈K

(
v0(K−i, p̂) −

∑

j∈I\i

ĉj(K−i)
)



= v0(K
∗, p) − ci(K

∗) − max
K−i∈K

(
v0(K−i, p̂) −

∑

j∈I\i

ĉj(K−i)
)

(9)
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Note that the expected utility within this mechanism is the same as what would have been de-
rived by agents in the naı̈ve extension of the VCG if they were truthful. However, in this mechanism
agents do not have an incentive to lie. This is because, ifp̂i(τ) > pi(τ) (i.e. the agent over reports
its POS), then the agent might be allocated the task even though:

i 6= arg max
l∈I

[
v0(Kl)pl(τ) − cl(Kl)

]

whereKl = τ l←0, which means it could be that:

v0(K
∗, p) − ci(K

∗) < max
K−i∈K

(
v0(K−i, p̂) −

∑

j∈I\i

ĉj(K−i)
)

This results in the agent deriving a negative utility as per equation (9). Hence, an agent will not
report higher POS values. A more complete treatment of the proof of the incentive-compatibility
of the mechanism is given in [31]. Furthermore, the mechanism is also proven to be individually
rational and efficient.

Note that in Porter et. al.’s mechanism, truthful revelation is a dominant strategy equilibrium.
This means no matter what other agents do, an agent has no better alternative than to truthfully report
its POS and cost. Such a strong equilibrium concept is achievable since the agents’ valuations
are independent of each other (i.e. an agent’s report does not affect the cost or POS of the other
agents). Generally, when moving to more complex settings, where the agents’valuations are not
independent, it is harder to achieve such strong results. We discuss such a setting in the next section.

3.3 Allocation with Multiple Reports of Execution Uncertainty

In the previous section, we considered a mechanism in which each agent has only its privately known
estimation of its own uncertainty in task completion. This mechanism considers thatthe centre can
only receive asingleestimation of each agent’s POS. We now turn our attention to the previously
unconsidered, but more general, case whereseveralagents may have such an estimate. For example,
a number of agents may have interacted with a given data centre provisioningcompany on many
occasions in the past and therefore acquired a partial view on the POS ofthat company. Using such
estimates, the centre can obtain a more accurate picture of a given agent’s likely performance if
it combines these different estimates together. This combination results in a better estimate for a
number of reasons, including:

1. Accuracy of estimation: The accuracy of an estimation is typically affectedby noise. Thus,
combining a number of observations should lead to a more refined estimate than obtaining a
single point estimate.

2. Personal Preferences: Each agent within the system may have different opinions as to what
constitutes success when attempting a task. As a result, the centre may be willing toassign
more weight to an agent’s estimate if it believes this agent’s perspective is moresimilar to its
own.

We illustrate the above points by considering the following example:
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Example 4. MoviePictures.com is still not satisfied with the solution chosen so far. This is because
PoorRender Ltd still reports that it has a high POS, even though MoviePictures.com has noticed
that they have failed their task on a number of occasions. This is because PoorRender Ltd believes
the images it rendered were of a high enough quality to be used in a feature film while MoviePic-
tures.com believed they were not. MoviePictures.com therefore cannot rely on the agents’ own
perception of their POS to decide on the allocation. Rather, MoviePictures.com wants to ask all
agents to submit their perception about each others’ POS. In so doing, MoviePictures.com aims to
capture the knowledge that agents might have about each other either from previous sub-contracted
tasks or simple observations. To this end, MoviePictures.com needs to devise a mechanism that will
capture all the agents’ perceptions (including its own) into measures of POS for each agent and use
these fused measures in the selection process.

The above example can be modelled by introducing a new variable, the Expected Quality of
Service (EQOS), noted asηj

i (τ) which is the perception of each agenti about the POS of agentj
on taskτ . Now, the vector of the agenti’s EQOS of all agents (including itself) within the system
is noted asηi = 〈η1

i (τ), . . . , ηI
i (τ)〉. Furthermore, we shall denote asη

j the EQOS that all agents
within the system (including itself) expect of agentj. Thus, in our image rendering example,ηj

i (τ)
might denote the probability as perceived by agenti that the rendering task is completed according
to a certain level of quality of the computer graphics (which is perceived differently by the different
agents). Then, MoviePictures.com needs a function in order to combine theEQOS of all the agents
so as to give it a resultant POS that the movie is rendered up to its own graphicrequirements.

In more detail, giveni’s previous personal interaction withj, i can compute, based on the
frequency of good and bad interactions, a probability, termed itsconfidence, in j as the POS. Second,
i can also take into account other agents’ (−i) opinions aboutj, known asj’s reputation in the
society, in order to compute the POS ofj [33]. The combination of both measures is generally
captured by the concept of trust, which is defined as the aggregate expectation, derived from the
history of direct interactions and information from other sources, thatj will complete the task
assigned to it. The trust of agent0 in its counterpartj to successfully complete taskτ for agent0,
is a functiontrj

0 : [0, 1]|I| → [0, 1].
There are multiple ways in which the trust function could be computed, but it is often captured

as follows:

trj
0(η) =

∑

l∈I

wl × ηj
l (10)

wherewl ∈ [0, 1] and
∑

wl = 1. This function generates trust as a weighted sum of EQOS
reports. In some cases, theη’s are actually considered to be probability distributions and the trust
function is the expected value of the joint distribution constructed from the individually reported
distributions [37, 17]. Much work exists in the literature that deals with different ways of combining
these distributions such that biases or incompatibilities between agents’ perceptions are taken into
account. Essentially, however, they all assign weights to different reports of the agents and select
the expected value of these reports. However, to date, none of these models actually studies how to
get self-interested agents to generate such reports truthfully.

Now, a direct mechanism in this case elicits from each agenti, its cost and EQOS vector,
{ci(τ), ηi}, after which the centre decides on the allocation and payments to the agents. We next
demonstrate why Porter et al.’s would not work in this setting by extending example 1.
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3.3.1 FAILURE OF PORTER ET. AL’ S MECHANISM

Example 5. Two agents have costs for performing a taskτ requested by the centre and have formed
perceptions on the set of agentsI given in table 2. Suppose thattri

0(η) = [ηi
1(τ) + ηi

2(τ)]/2, and
v0(τ) = 1.

Agent ci(τ
i←) η1

i (τ) η2
i (τ)

1 0 0.6 1
2 0 0.8 0.6

tri
0(η) 0.7 0.8

Table 2: Costs and POS reports of agents in a single task scenario. Thetrust of the requester is calculated
assuming truthful reports.

Porter et al.’s scheme would then allocate according totri
0(η̂) instead ofp̂i(τ). In the above

example, agent 2 should be the winner since it generates a social utility of 0.8, while agent 1 would
generate a utility of 0.7. The expected utility to the agent allocated the task is then (according to
equation 9):

ui(K
∗, η̂) = v0(K

∗) · tri
0(η) − ci(K

∗) − max
K′∈K−i

[
v0(K

′) · tr0(η−i) − ĉj(K
′)
]

(11)

whereη̂−i excludes allη reports by agenti, andK−i is the set of allocations excluding agenti.
Porter et al. do not specify a procedure that deals with EQOS reports. However, a simple extension
of their technique would be to ignore all reports ofi in the computation. We implement this in
the above equation by usinĝη−i. Unfortunately, this extension breaks incentive compatibility in
the following way. Given that the efficient allocation is computed using thereportedη̂ values of
all agents (usingtr0(η̂) instead of̂p in equation (7)), the value of the best allocation obtained by
removing one agent could be arbitrarily lower. In the example above, if agent 1 reportsη2

1 = 0, the
efficient allocation becomes agent 1 with a social utility of 0.7 and agent 1 getsan expected utility
of 0.1. If agent 1 is truthful it will obtain 0 utility since agent 2 would be the winner in this case.
In effect, the removal of an agent from the system breaks the mechanismmainly because of the
interdependencebetween the valuations introduced by the trust model. We elaborate further on this
issue and show how to solve it in the next section.

We thus need to develop a mechanism that is incentive-compatible when agentsare reporting
about their perceptions of other agents’ POSs. In order to do so, however, we now need to ad-
ditionally consider the effect that reporting the EQOS vector has on an agent’s expected utility.
Specifically, we need to develop a trust-based mechanism in which the EQOS reports of an agent
do not provide it with a way of increasing its overall expected utility (as per the intuition behind
the VCG). Then, with the true value of the EQOS, the mechanism will result in theselection of the
optimal allocation of tasks.

Note that, in this context, it is difficult to obtain the properties we seek in dominantstrategies
because of the interdependence between valuations introduced by the use of all agents’ reports in
the computation of the expected value (see equation (10)). To make this clearer, we provide a simple
example to illustrate this. Consider agents 1 and 2 bidding for a single task offered by the centre for
which it has a value of 1. The properties of agents 1 and 2 are as follows:
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i 1 2
ci(τ) 0 0
ηi η1

1 = 0, η2
1 = 0.5 η1

2 = 0, η2
2 = 0.5

In the case where agents reveal their types truthfully, agent 2 gets selected with an expected
utility of 0.5. However, if agent 1 revealŝη1

1 = 1, η̂2
1 = 0.1 in order to win the allocation by

reducing the value generated by agent 2 (and so boosting its own), agent 2 can do better by reporting
η̂1
2 = 0, η̂2

2 = 1. To obtain a dominant strategy equilibrium would require that the mechanism
incentivises agent 2 to reveal its type truthfully no matter what agent 1 reveals (i.e. even if agent 1 is
not utility maximising). This is obviously not possible since agent 1 can changethe value generated
by agent 2 in the system by virtue of itsη reports. Hence, for such settings, it is more appropriate to
seek a Nash equilibrium where we will consider an agent’s standpoint given all other agents reveal
their type truthfully.2

3.3.2 THE SINGLE REQUESTERSINGLE TASK TRUST-BASED MECHANISM

Intuitively, the following mechanism works by ascertaining that an agent derives a positive utility
when it successfully completes a task and its EQOS report does not change the allocation in its
favour (thus, the mechanism we develop can be regarded as a generalisation of Porter et al.’s since
it deals with a generalisation of their reporting mechanism).

In more detail, the centre first determines the allocation according to:

K∗ = arg max
K∈K

[
∑

i∈I

(
v0(K) · tri

0(η̂) − ĉi(K)
)
]

(12)

Having computed the efficient allocation as above, we adopt a similar approach to Porter et
al.’s to compute the payments after tasks have been executed (see section 3.2.2). However, the
novelty of our mechanism lies in the use ofall agents’ EQOS reports in the computation of the
efficient allocation (as we showed above). Moreover, we have additional payments for the losers to
incentivise all agents to select the efficient allocation.

Thus, we apply different payments to the cases where the agent winning the allocation succeeds
(i.e. κ = 1) and when it fails (i.e.κ = 0). So if agenti is allocated the task (i.e.K∗ = {τ i←0}) the
payment is:

ri(K
∗) =





v0(K
∗) − B , if κ = 1

−B , if κ = 0
(13)

whereB ≥ 0 is a constant that reduces the payment that needs to be made to the agents.B is
computed independently of the concerned agent’s reports and can be even set to 0. SettingB to 0
would mean that the centre pays out a large amount and we discuss how the value ofB could be set
to reduce the payout made by the centre in section 4.4.

2. The economics literature calls such an equilibrium an ex-post equilibrium[21], because if an agent knew (ex-post)
the truthfully revealed types of his opponents, it would remain a best replyto truthfully reveal his own type. Other
equilibria could also exist where all other agents are not assumed to reveal their type truthfully. However, studying
such equilibria is beyond the scope of this paper and the approach we take(i.e. assuming truthful revelation) is very
common in the economics literature.
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In addition to paying the winner, we also reward the losersk ∈ I \ i in the following way,
depending on whetheri succeeds or not:

rk(K
∗) =





v0(K
∗) − ĉi(K

∗) − B , if κ = 1

− ĉi(K
∗) − B , if κ = 0

(14)

Intuitively, the payment scheme aims to incentivise all agents to reveal their type so that the
most efficient allocation is chosen. LetKi

0 be the allocation assigning the task to agenti. Suppose
agenti with type{ci (τ) , ηi} reveals its type as{ĉi (τ) , η̂i} and all other agents reveal truthfully.
When agenti wins the task, it will derive the following expected utility:

ui

(
Ki

0, η
)

= v0

(
Ki

0

)
· tri

0 (η) − ci

(
Ki

0

)
− B (15)

Note thattri
0 (η) reflects the actual POS that the requester, agent0, would expect of agenti if

it knewη. When agentk 6= i is assigned the task, agenti obtains the following expected utility by
participating in the mechanism:

ui

(
Kk

0 , η
)

= v0

(
Kk

0

)
· trk

0 (η) − ck

(
Kk

0

)
− B (16)

The only difference between equations (15) and (16) is the identity of the winner. Hence, by
falsely reporting agenti can only influence the identity of the winner. Agenti’s expected utility
in the mechanism is equal to the social utility in the system minus a constant. Hence ifagenti is
rational it should report its true type, so that the efficient agent (outcome) is chosen. This shows that
the single task trust-based mechanism is incentive compatible in Nash equilibriumand efficient.3

Proposition 1. The mechanism described by equations (12), (13), and (14) is incentive compatible
in Nash equilibrium.
Proposition 2. The mechanism described by equations (12), (13), and (14) is efficient.

Proof. Since agentk’s report aboutηk affects the expected utility of all other agents (see equations
(15) and (16)), we have interdependence between agents’ payoffs, or valuations. However, no
agent can influence its transfer through its report, because the computation of agenti’s payment is
independent of its report̂ηi and is only dependent on theactual executionof the task and therefore
on the trueηi value. It is this feature that permits the implementation of the efficient allocation with
a single-stage mechanism.

Proposition 3. For an appropriate choice of B, the mechanism described by equations (12), (13),
and (14) is individually rational.

Proof. By not participating in the mechanism, an agent can only obtain 0 utility. However, if an
agent decides to participate, and by virtue of the selection of the efficient allocation (which returns
no allocation if the social welfare generated is less than 0), it is guaranteed, as a winner to obtain
the utility ui described in equation (15) or, as a loser, the utilityuk in equation (16). Since in both
casesui ≥ −B when the efficient allocation is chosen, andB can be set to 0, the mechanism is
individually rational.

3. We detail the proof further for the generalised case in section 4.3.
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Obviously, since all agents’ utilities are tied to that of the winning agent, they also lose out if
the winning agent fails but, in expectation, all agents should make a profit ofat least 0 in caseB is
set to0. However, if the centre is trying to recoup some of the losses it has incurred, it could setB
to greater than zero, therefore inviting all agents to compensate for its loss.We show how to setB
to a value that still maintains individual rationality in section 4.4.

4. The Generalised Trust-Based Mechanism

The mechanisms we presented in the previous section dealt with the basic task allocation problem
in which there is one requester, one task, and several performers. Here, we aim to efficiently solve
the more general problem of trust-based interactions in which more than oneagent requests or
performs (or both) more than one task. To this end, we extend the single requester single task setting
to the more general one of multiple requesters and multiple tasks in ourGeneralised Trust-Based
Mechanism(GTBM). This extension needs to consider a number of complex features on top of those
dealt with previously. First, we need to consider multiple requesters that caneach make requests
for sets of tasks and task performers that can each perform sets of tasks as well. Thus, the centre
now acts as a clearing house, determining the allocation and payments from themultiple bids from
the task requesters and multiple asks from the task performers. This significantly complicates the
problem of incentivising agents to reveal their types since we now have to make sure that the agents
reveal their costs, valuations, and trust truthfully over more than one task. Second, the computation
of the efficient allocation and payments will have to consider a much larger space than previously.
Thus, we believe it is important to show how the problem can be modelled, implemented, and
solved to demonstrate how our mechanism scales with increasing numbers of agents and tasks (the
computability aspects are dealt with in section 5).

The following example illustrates this more general setting.

Example 6. After using the trust-based mechanism for a few months, MoviePictures.com made
significant profits and expanded into several independent business units, each performing rendering
tasks or having rendering tasks performed for certain clients. Now, MoviePictures.com would like
to find ways in which its business units can efficiently allocate tasks amongst each other. However,
some companies have uncertainties about each other’s performance of the rendering tasks. For
example, while some business units such as HighDefFilms.com believe PoorRender Ltd (now part
of MoviePictures.com) is inefficient, some others such as GoodFilms.com believe it is not so bad,
having recently had a large set of animations rendered very well for a very cheap price. To cater
for this, MoviePictures.com needs to extend the single task trust-based mechanism and implement
the generalised mechanism efficiently.

In order to deal with this more complex setting, we extend our task allocation model in the next
subsection, before describing the allocation rule and payment scheme in section 4.2 and proving the
economic properties of the mechanism in section 4.3.

4.1 The Extended Task Allocation Setting

Let T = {τ1, τ2, ..., τM} denote the set of tasks which can be requested or performed (compared
to the single task before). We use the notationτ

.←i to specify that the subset of tasksτ ⊆ T is
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performed specifically for agenti.4 Similarly, by adding the superscript to the task,τ
i←. ⊆ K

denotes a subset of tasks that agenti performs. Note that our model does not restrict an agent to be
onlya task performer or requester.

A selected allocationK in this multiple task, multiple requester model then generates a match-
ing problem that involves finding agents that will perform the tasks that arerequested by some other
agents (e.g.K = {τ1←1

1 , τ1←2
1 , . . . , τ I−1←I

1 , . . . τ I←I
M }). Let the set of all possible allocations be

denoted asK. Note that not all requested tasks need to be allocated: that is, the matching inK need
not be perfect.

In the multiple task case, agents may express valuations and costs for sets oftasks as well as
subsets of these sets of tasks. For example agenti may havevi(τ1, τ2, τ3) = 100 andvi(τ1, τ2) = 10
andvi(τ3) = 0. Then, if agenti getsτ1, τ2 andτ3 executed it gets a value of 100, while if only
τ1 andτ2 get executed andτ3 fails, agenti still obtains a value of 10. Similarly, agenti may have
task completion costsci(τ4, τ5, τ6) = 100 andci(τ4, τ5) = 40 andci(τ6) = 10. To capture such
interrelationships between valuations, letKj

i be the set of tasks within the allocationK which have
to be performed by agentj for agenti (Kj

i could be the empty set). Note that each task is specific to
a task requester. This means that if agents 1 and 2 request taskτm, then a task performer matched to
τm for agent 1, only performs it for agent 1 and not for agent 2. We will abuse notation slightly and
defineK = {Ki, K

i}i∈I whereKi = (K1
i , ..., KI

i ) andKi = (Ki
1, ..., K

i
I). An agenti has a value

(assumingall the tasks inK will be completed) and cost for an allocationK, vi(K) ∈ ℜ+ ∪ {0}
andci(K) ∈ ℜ+ ∪ {0} respectively, whereby:5

vi(K) = vi(Ki)

ci(K) = ci(K
i)

Moreover, within our model, each agenti has an EQOS vector,ηi = {ηj
i (K

j
i )}

K
j
i⊆T

j∈I that
represents its belief in how successful all agents within the system are at completing their tasks.
Thus, at the most general level, agenti’s type is now given byθi = {vi, ci, ηi}. For any given set of
tasksKj

i thatj must perform fori, for any subset of tasks̃Kj
i ⊆ Kj

i and for any EQOS vectorη, we

let trj
i

(
K̃j

i

∣∣∣ Kj
i , η

)
be the trust that exactly the set of tasksK̃j

i will be completed byj. The trust

can be computed as we have shown in 3.3 by simply replacing agent 0 with agent i and replacing
the single task by the set of tasks̃K. As in the single requester case, the trust function represents
the aggregate belief that agents have about a given task performer andhence, all task requesters
form the same probability of success (give all agents’ EQOS reports) about a given task performer.

Finally, we lettri

(
K̃i

∣∣∣ Ki, η
)

=
∏
j∈I

trj
i

(
K̃j

i

∣∣∣ Kj
i , η

)
.

We are now ready to present the generalised trust-based mechanism.

4.2 The Allocation Rule and Payment Scheme

In our generalised mechanism, the task requesters first provide the centre with a list of tasks they
require to be performed, along with their valuation vector associated with each set of tasks, whereas

4. In this paper, we will not consider agents requesting the performance of multiple units of tasks. Although our model
is easily extensible to this case, the explanation is much more intricate.

5. As a result of this setup, an agenti may not want some sets of tasks to be performed or it may be unable to perform
such tasks. In such cases, we then assign a default value of0 and cost of∞ to those sets of tasks.
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the task performers provide their costs for performing sets of tasks.6 All agents also submit their
EQOS vector to the centre. Thus, each agent provides the centre with reports θ̂i = {v̂i, ĉi, η̂i}, so
that θ̂ = (θ̂1, ..., θ̂I) is the report profile. Given this, the centre applies the rules of the mechanism
in order to find the allocationK∗ and net paymentsri to each agenti. In more detail:

1. The centre computes the allocation according to the following:

K∗
(
θ̂
)

= arg max
K={Ki,Ki}i∈I∈K

∑

i∈I




∑

K̃i⊆Ki

v̂i(K̃i) · tri

(
K̃i

∣∣∣ Ki, η̂
)
− ĉi(K)


 (17)

Thus, the centre uses the reports of the agents in order to find the allocationthat maximises
the expected utility of all agents within the system.

2. The agents carry out the tasks allocated to them in the allocation vectorK∗
(
θ̂
)

.

3. The centre computes the payments to the agents, conditional on completion ofthe tasks al-
located. Letκ(Ki) be an indicator function that takes the value1 if Ki is the set of all the
tasks (requested by agenti from all agents) that are completed, and takes the value of zero
otherwise. The payment to agenti is as follows:

ri

(
K∗

(
θ̂
)

, θ̂
)

=
∑

j∈I\i




∑

K̃j⊆K∗j (θ̂)

v̂j

(
K̃j

)
· κ

(
K̃j

)
− ĉj

(
K∗

(
θ̂
))


 − Bi (18)

whereBi ≥ 0 is a constant that can be used to reduce the payout that the centre has to
make. Bi is computed independently of agenti’s reports. It should also be noted that the
computation of the payments requires solving several optimisation problems (i.e.finding the
optimal allocation with and without several reports). As the number of agentsincreases, the
difficulty of computing payments will increase and it is important to show how such payments
can be efficiently computed. We elaborate on our solution to this in section 5. Before doing
so, however, we detail and prove the economic properties of our mechanism in what follows.

4.3 Economic Properties

Here, we provide the proofs of the incentive compatibility, efficiency and individual rationality of
the mechanism.

Proposition 1. The GTBM is incentive compatible in Nash equilibrium.

Proof. In order to prove incentive-compatibility, we will analyse agenti’s best response (i.e. its best
report ofθ̂i = {v̂i, ĉi, η̂i}) when all other agents reveal their typesθ−i truthfully. We first calculate
the expected utility that an agenti will derive given the above mechanism.

The expected utility of an agenti is given by:

ui

(
θ̂i, θ−i

)
=

∑

K̃i⊆K∗i (θ̂i,θ−i)

vi(K̃i) · tri(K̃i|K
∗
i

(
θ̂i, θ−i

)
, η)

− ci

(
K∗

(
θ̂i, θ−i

))
+ Eri

(
K∗

(
θ̂i, θ−i

)
,
(
θ̂i, θ−i

)) (19)

6. As noted before, task performers can also be task requesters at the same time (and vice versa).
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whereEri is the expectation ofri taken with respect to the likelihood of task completion. The
probability attached byi to the indicator variableκ(K̃j) being equal to one (i.e. all tasks̃Kj being
completed), given that the set of tasks requested byj is Kj and all agents different fromi report

their true types, istrj

(
K̃j

∣∣∣ Kj , η
)

. Hence, we can now use the formula for the payments to obtain:

Eri

(
K∗

(
θ̂i, θ−i

)
,
(
θ̂i, θ−i

))
=

∑

j∈I\i




∑

K̃j⊆K∗j (θ̂i,θ−i)

vj

(
K̃j

)
· trj

(
K̃j

∣∣∣ K∗j

(
θ̂i, θ−i

)
, η

)

− cj

(
K∗

(
θ̂i, θ−i

))


−Bi

If we replace the expression above into the formula forui we obtain:

ui

(
θ̂i, θ−i

)
=

∑

j∈I




∑

K̃j⊆K∗j (θ̂i,θ−i)

vj

(
K̃j

)
· trj

(
K̃j

∣∣∣ K∗j

(
θ̂i, θ−i

)
, η

)
− cj

(
K∗

(
θ̂i, θ−i

))

−Bi.

(20)
From the above we note that an agent can only affect its utility with its report by changing

K∗(θ̂). The key point to note is that the agent’s utility is also dependent on theactual executionof
the task(s) (i.e. based on trueη) rather than the predicted execution (i.e reportedη̂).

Now, equation (17) implies that for all allocationsK:

ui (θi, θ−i) ≥ ui

(
θ̂i, θ−i

)
, (21)

because the efficient allocation, computed by taking into account the true types of all agents, is
better than or equal to any other allocation.

Given the above condition and since equation (20) applies to all possible realisations ofθ, the
mechanism is incentive compatible in Nash equilibrium.7

Proposition 2. The GTBM is efficient.

Proof. Given the incentive compatibility of the mechanism, the centre will receive truthful reports
from all the agents. As a result, it will compute the allocation according to equation (17), thereby
leading to an efficient outcome.

Proposition 3. There exist values ofBi such that the GTBM is individually rational.

Proof. We again begin by making the standard assumption that the agent derivesui = 0, when not
participating in the mechanism. Then, it remains to be shown that the agent derives non-negative
utility from the mechanism. Since the efficient allocation is chosen (and is at worst a null allocation),
the expected utility of each agent is always greater than or equal to−Bi according to equation (19).
SinceBi can be set to0, the mechanism is individually rational.

The GTBM mechanism of the multiple task, multiple requester scenario is a generalization of
the GTBM mechanism with a single requester and a single task. It is also a generalization of the
mechanism of Porter et al. by simply assuming that each agent only has an EQOS about its own

7. As we already mentioned, in the economics literature such an equilibrium iscalled ex-post equilibrium.
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probability of success. It is clear from this latter scenario thatBi = 0 is not the only choice that
satisfies individual rationality. In Porter et al., for example, it is:

Bi = max
K−i∈K

(
v0(K−i) · p̂−i(τ) −

∑

j∈I\i

ĉj(K−i)
)

wherep̂−i(τ) is the reported probability of completion of the agent assigned the task in allocation
K−i.

4.4 Extracting the Minimum Marginal Contribution

Up to now, we have considered that the constantBi could be set to arbitrary values to try and
reduce the payments made by the centre to all the agents. More interestingly, itshould be possible,
as in the standard VCG mechanism, to only pay an agent its marginal contributionto the system.
However, in our case, due to the interdependence of valuations, it is notas simple as comparing the
social welfare with and without a given agent in the system as is commonly done in VCG-based
mechanisms (Porter et al.’s is an obvious example of this). This is because,in our case, when an
agent is removed from the domain used to compute the efficient allocation, the remaining EQOS
reports can arbitrarily change the allocation value. This could, in turn, be exploited by other agents
to improve their utility. The example in section 3.3.1 showing the failure of a simple extension of
Porter et al.’s mechanism illustrates this point.

Here we propose a novel approach to extracting the marginal contributionof an agent, by taking
into account EQOS reports of other agents andpossible reportsthat the agent could make. LetK−i

be the set of possible allocations when agenti is excluded from society. The constantBi can be
chosen such that it is equivalent to the social utility of the mechanism when agenti is excluded and
its EQOS reports are chosen so as to minimize social utility, that is:

Bi = min
ηi∈[0,1]|I|×|T |

max
K∈K−i

∑

j∈I\i




∑

K̃j⊆Kj

v̂j

(
K̃j

)
· trj

(
K̃j

∣∣∣ Kj , ηi, η̂−i

)
− ĉj (K)




Then, the generalised payment scheme is:

ri

(
K∗

(
θ̂
)

, θ̂
)

=
∑

j∈I\i




∑

K̃j⊆K∗j (θ̂)

v̂j

(
K̃j

)
· κ

(
K̃j

)
− ĉj

(
K∗

(
θ̂
))




− min
ηi∈[0,1]|I|×|T |

max
K∈K−i

∑

j∈I\i




∑

K̃j⊆Kj

v̂j

(
K̃j

)
· trj

(
K̃j

∣∣∣ Kj , ηi, η̂−i

)
− ĉj (K)




(22)

The point to note here is that incentive compatibility (and hence efficiency ofthe mechanism)
still holds given that the payment scheme is still independent ofi’s reports. In fact,ri rewardsi with
the maximum difference that agenti could make by setting all elements inηi to different values in
[0, 1]|I|×|T |.8

8. This minimisation takes place over the domain of trust values which could be other than[0, 1] in the general case.
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This procedure reduces the payments made by the centre, while keeping individual rationality
since the value of the efficient allocation (given incentive compatibility as proven earlier) is always
higher than or equal to the value ofBi, which means that:

ui (θ) =
∑

j∈I




∑

K̃j⊆K∗j (θ)

vj

(
K̃j

)
· trj

(
K̃j

∣∣∣ K∗j (θ) , η
)
− cj (K∗ (θ))




− min
ηi∈[0,1]|I|×|T |

max
K∈K−i

∑

j∈I\i




∑

K̃j⊆Kj

vj

(
K̃j

)
· trj

(
K̃j

∣∣∣ Kj , ηi, η−i

)
− cj (K)


 ≥ 0;

It is also to be noted that the above equation implies that there is no restriction placed on the
functional form oftr for the payment scheme to work and for the properties of the mechanism to
hold. This is an improvement on previous mechanisms (see Section 2) which had considered trust
functions that are only monotonically increasing inηi for eachi.

To summarise, in this section, we have devised a mechanism that is incentive compatible in Nash
equilibrium, individually rational and efficient for task allocation under uncertainty when multiple
distributed reports are used in order to judge this uncertainty. It is to be noted that we did not
need two-stage mechanisms as in [22], because in our settings we can condition payments on the
completion of the tasks (the indicator functionκ (·) captures this dependence of payments on task
completion). So far, we have just considered the economic properties of the mechanisms, but as we
argued earlier, this is only part of the picture. In the next section, we report on its implementation.

5. Implementing the Generalised Trust-Based Mechanism

As shown above, the addition of trust to the basic task allocation problem notonly complicates the
payment scheme, but also requires a larger number of important optimisation steps than the normal
VCG. In more detail, trust-based mechanisms require that agents specify anexpected value for a set
of tasks depending on the performer of such tasks which, in turn, means that the space of solutions to
be explored is significantly larger than in common task allocation problems. Moreover, the payment
scheme of trust-based mechanisms requires finding the efficient allocation multiple times with and
without the agents’ reports. With this added level of complexity, it is important toshow that the
mechanisms are actually implementable and that solutions can be found for usefully sized problems
in reasonable time.9

Against the above background, in this section we describe the first formulation and implemen-
tation of the GTBM. In particular, in the GTBM, we tackle the main optimisation problem posed
by equation (17) (which is then repeated several times in the payment scheme). This is commonly
referred to as the winner determination problem in combinatorial auctions. Inorder to solve it,
we take insight from solutions to combinatorial exchanges which often map theproblem to a well
studied matching problem [19, 10]. In so doing, we develop a novel representation of the optimisa-
tion problem by using hypergraphs to describe the relationships between valuations, trust, and bids
by task performers and then cast the problem as a special hypergraphmatching problem. Given

9. It is already known that computing the efficient allocation and paymentsfor VCG mechanisms is NP-hard [35].
Therefore, finding efficient solutions to VCG mechanisms is already a significant challenge in its own right.
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this representation, we are then able to solve the problem using Integer Programming techniques
through a concise formulation of the objective function and constraints.

5.1 Representing the Search Space

It is important to define the search space in such a way that relationships between valuations, bids,
trust, and tasks can be clearly and concisely captured. In particular, our representation aims to map
the GTBM optimisation problem to a matching problem that has been well studied in the literature.
To do this, the representation must allow us to define the whole space of feasible task allocations,
and, subsequently, define how to select them as valid solutions to the GTBM optimisation problem.
Now, to allow bidders (task performers) and askers (task requesters)to express their bids and valua-
tions in a consistent and implementable way, we choose the XOR bidding language. Such a bidding
language requires that an auctioneer can accept at most one bid out ofeach XOR bid and that each
XOR bid can belong to only one agent. We choose this particular bidding language because it has
been shown that any valuation can be expressed using it [26].10 An example of an XOR bid in
our context would be{ci(τ1, τ2) XOR ci(τ1, τ3) XOR ci(τ1, τ2, τ3)} which means that agenti
would only go for one of the these three bids over tasksτ1, τ2 andτ3 (ci could also be replaced
by vi for task requesters). In terms of our running example, such a bid would express PoorRender
Ltd’s cost for performing a sound editing task (i.e.τ1), a movie production task (i.e.τ2), or both in
combination (i.e.τ1, τ2).

To build the overall representation of the problem, we first focus on representing expected val-
uations and costs as well as their relationships. These are depicted depicted in figure 1. In more
detail, we specify three types of nodes: (1) valuations (along theV column); (2) bids (under theC
column); and (3) task-per-bidder nodes (under theA column). Each nodevi(τ ) in theV column
stands for a valuation submitted by agenti over a set of tasksτ ⊆ T . Each nodecj(τ ) in theC
column stands for a bid issued by agentj over tasksτ ⊆ T . Each element ofA represents the
allocationτ j←.

m of a single taskτm ∈ T to task performer (bidder)j by a task requester yet to be de-
termined (represented by a dot). In other words, the elements inA representpatternsfor single-task
allocations. We term such elements task-per-bidder nodes.

Note that it is possible that different valuations come from the same requester. If so they are
labelled by the same subscript. Moreover, since we have opted for an XORbidding language,
valuations belonging to the very same requester are mutually exclusive.

5.1.1 DEFINING RELATIONSHIPS BETWEENVALUATIONS , TASKS, AND BIDS

Given the nodes defined byA, V, andC, by relating a nodeτ j←.
m in A to a nodevi(..., τm, ...) in V

we define the assignment of taskτm by i to j through the specific valuationvi(..., τm, ...). Similarly,
by relating a nodeτ j←.

m in A to a nodecj(..., τm, ...) in C we define the assignment of the task to the
specific bidcj(..., τm, ...) by agentj. Therefore, a triple(v, τ j←.

m , c) wherev ∈ V, τ j←.
m ∈ A, c ∈ C

fully characterises an allocation for taskτm, namely asingle-task allocation. Hence, as can be
seen in figure 1, we define two types of relationships: between valuations and task-per-bidder nodes
(noted by edgese1, e2, ...), and between bids and task-per-bidder nodes (noted by edgese′1, e

′
2, ...).

11

10. Other bidding languages [26] could equally well be used in our modeland would only require minor changes to the
constraints that we need to apply.

11. Figure 1 only depicts a sample of all possible relationships for ease ofillustration.
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Figure 1: Graphical representation of the GTBM search space. Nodes ofthe same colour represent valuation
or cost nodes that belong to the same agent. Edges of the same colour either originate from the same node or
end up at the same node.

Using these relationships, a valuation can then be related to aset of task-per-bidder nodesif and
only if these fully cover the performance of the task(s) in the valuation. Forinstance, we can relate
v1(τ1, τ2) to nodesτ4←.

1 (agent 4 performs taskτ1) andτ2←.
2 (agent 2 performs taskτ2) because

they guarantee the performance of tasksτ1 andτ2. Similar to valuation relationships, each nodeC
is only related to the set of task-per-bidder nodes inA into which each bid splits. Thus, in figure 1,
bid c4(τ1) is only related toτ4←.

1 , whereas bidc2(τ2, τ3) is related to nodesτ2←.
2 andτ2←.

3 .
Thus, we can identify the task performers for each task in a given valuation. This is critical since

the GTBM, contrary to common task allocation mechanisms (such as VCG or Mth price auctions),
requires that we identify exactly who performs a task in order to determine thePOS of that task (by
virtue of the requester’s trust in the performer) and hence the expectedvalue of the task.

As can be seen, our representation allows us to capture all tasks and performers of such tasks
since each valuation node inV can be potentially related to multiple nodes inA; and, likewise, each
bid in theC column can be potentially related to multiple nodes inA. To capture these related rela-
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tionships precisely, we define special edges that can connect several nodes (e.g. the ones depicted as
e1, e2, ..., e

′
1, e
′
2, ... in figure 1). Such edges are termed hyperedges because they combine anumber

of singleton edges. Hence, figure 1 can be best described as ahypergraph[2]. In order to precisely
define the matching problem that the GTBM poses, we elaborate on the formalism of hypergraphs
since this will help in concisely expressing the problem later on. More specfically, the formal notion
of hypergraphs, as introduced in [2], is:

Definition 6. Hypergraph. Let X = {x1, x2, . . . , xn} be a finite set ofn elements, and letE =
{ej |j ∈ J} be a family of subsets of X whereJ = {1, 2, ...}. The familyE is said to be a hypergraph
on X if:

1. ej 6= ∅ (∀j ∈ J)

2. ∪j∈Jej = X.

The pairH = (X, E) is called a hypergraph. The elementsx1, x2, . . . , xn are called the vertices
and the setse1, e2, . . . , ej are called the hyperedges.

We say that a hypergraph isweightedif we associate to each hyperedgee ∈ E a real number,
w(e), called theweightof e. This is used to give more or less importance to some edges.

From the formal definition of hypergraphs, we observe that figure 1 results from the overlap-
ping of two separate hypergraphs: (i) thevaluation hypergraphthat occurs from linking valuations
to task-per-bidder nodes; and (ii) thebid hypergraphthat occurs from linking each bid to the corre-
sponding task-per-bidder nodes. In what follows, we formally define both hypergraphs from valu-
ations and bids so that later on we can structurally characterise the notions of feasible and optimal
allocations.

5.1.2 THE VALUATION HYPERGRAPH

The valuation hypergraph highlights the main difference between the GTBM and the common com-
binatorial exchanges (e.g. those based on traditional VCG or Mth-price auctions). In particular, in
the GTBM valuations need to take into account the trust of the task requesterin the task performer
while, in normal combinatorial exchanges, task requesters are indifferent to task performers. This
means the weight of each hyperedge in a valuation hypergraph is dependent on trust and a large
number of edges need to be generated (one per task performer) which isnot the case in normal
combinatorial exchanges.

To define the valuation hypergraph, we need to define hyperedges thatemanate from each node
in V to one or more nodes inA. To this end, letV = {vi(τ ) 6= 0|τ ⊆ T , i ∈ I} andC = {cj(τ ) 6=
∞|τ ⊆ T , j ∈ I} be the sets of all valuations and all bids respectively. Letτ

j←. = {τ ∈ T |
∃τ
′ ⊆ T : cj(τ ) 6= ∞ andτ ∈ τ

′} be the set of tasks over which agentj submits bids. Hence,
A = {τ j←.

k |τk ∈ τ
j←., j ∈ I, cj(τ ) ∈ C} is the set containing all the tasks bid by each bidder.12

Furthermore, we need to define some auxiliary sets as follows. Given a valuation over a set of
tasksτ , a set of nodesA ⊆ A fulfills it if and only if:

⋃

τ
j←.

k
∈A

{τ j←.
k } = τ and|τ | = |A|

12. Recall that since the mechanism has been proven to be incentive-compatible we can use the agents’ true valuations
and costs instead of their reported counterparts.
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For instance, the set of nodesA = {τ4←.
1 , τ2←.

2 } fulfills any valuation over{τ1, τ2}. Hence, the
subsets ofA that fulfill a valuation over a set of tasksτ are expressed usingAτ which is defined
as:

Aτ = {A ⊆ A |
⋃

τ
j←.

k
∈A

{τ j←.
k } = τ and |τ | = |A|}

For instance, considering the example in figure 1,

A{τ1,τ2} = {{τ4←.
1 , τ4←.

2 }, {τ4←.
1 , τ2←.

2 }, {τ4←.
1 , τ5←.

2 }}
A{τ1,τ3} = {{τ4←.

1 , τ4←.
3 }, {τ4←.

1 , τ2←.
3 }}

Given the above definitions, we can now define the set of all hyperedges connected to a valuation
vi(τ ) ∈ V as:

Ev
i (τ ) = ∪a∈Aτ {{vi(τ )} ∪ a}

For instance, from figure 1:

Ev
1 (τ1, τ2) = {e1, e2, e3} andEv

1 (τ3) = {e4, e5},

wheree1 = {v1(τ1, τ2), τ
4←.
1 , τ4←.

2 }, e2 = {v1(τ1, τ2), τ
4←.
1 , τ2←.

2 }, . . . , and so on.
The set of all hyperedges containing valuations of the very same agenti is defined as:

Ev
i =

⋃

τ⊆T

Ev
i (τ )

Then, the set of hyperedges connecting nodes inV to nodes inA is defined as:

Ev =
⋃

i∈I

Ev
i

Given this, we define the valuation hypergraph as a pair:

Hv = (V ∪ A, Ev)

Thus, each hyperedge inHv consists of a single valuation vertex corresponding to an element inV
along with a complete task allocation for the valued tasks out of the task-per-bidder nodes inA.

The valuation hypergraphHv partly defines the space within which a solution needs to be found.
However, in order to define the quality of the solution found, it is important to define the weight
attached to each hyperedge of the hypergraphHv. The weight of a hyperedge is actually equal to
the expected value of the allocation of the tasks to a set of task performers (bidders). Consider, for
instance, valuationv1(τ1, τ2). All the possible matchings that fulfill it are represented by all the
pairs(τ .←1

1 , τ .←1
2 ). For example, the hyperedgee2 involving the pairing(τ4←1

1 , τ2←1
2 ) denotes that

agent 4 performs task 1 for agent 1 and agent 2 performs task 2 for agent 1. The expected valuation
associated to this allocation depends on the POS of agents4 and2 when performing tasksτ1 andτ2

respectively.
In this case, the expected valuation associated toe2 is assessed as:

v1(τ
4←1
1 , τ2←1

2 ) = v1(τ1, τ2) · p4(τ
4←1
1 ) · p2(τ

2←1
2 )+

v1(τ1) · p4(τ
4←1
1 ) · (1 − p2(τ

2←1
2 ))+

v1(τ2) · (1 − p4(τ
4←1
1 )) · p2(τ

2←1
2 )

(23)
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wherep is a function that returns the POS of the agent that is assigned a given task(computed using
confidence, reputation, or trust). Notice that the value(1 − pi(τ

i←j
k )) represents the probability of

agenti failing to perform taskτk for agent j. Since no requests are submitted forτ1 andτ2 alone,
v(τ1) = v(τ2) = 0. Thus, the expected valuation associated to the particular allocation represented
by arce2 becomesv1(τ

4←1
1 , τ2←1

2 ) = v1(τ1, τ2) · p4(τ
4←1
1 ) · p2(τ

2←1
2 ). With a similar argument,

we obtainv1(τ
4←1
1 , τ5←1

2 ) = v1(τ1, τ2) · p4(τ
4←1
1 ) · p5(τ

5←1
2 ) 6= v1(τ

4←1
1 , τ2←1

2 ), corresponding
to hyperedgee3.

Generalising, given a hyperedgee ∈ Ev with valuationvi(τ ), we can readily build an allocation
for the tasks inτ from the elements ine andvi(τ ). If p is a function that returns the POS (be it
confidence, reputation, or trust) of a given task performer from eachrequester’s point of view, then
we can compute the expected valuation of the allocation defined by hyperedgee as follows:

vi(τ ) =
∑

τ ′⊆τ


vi(τ

′)
∏

τ
j←.

l
∈e,τl∈τ ′

pj(τ
j←i
l )

∏

τ
j←.

l
∈e,τw∈τ \τ ′

(
1 − pj(τ

j←i
w )

)

 (24)

In other words, given a hyperedgee ∈ Ev, its weight is assessed using equation (24) which is
equivalent to the expected value computed in equation (17) (i.e. the sum of expected values over
all allocations from agenti). Now, given that each edge of the valuation hypergraph is assigned a
weight,Hv is termed a weighted hypergraph.

5.1.3 THE BID HYPERGRAPH

To define the bid hypergraph we need to determine the hyperedges that connect bids to task-per-
bidder nodes. In more detail, given a bidcj(τ ) ∈ C, we relate it to the task-per-bidder nodes inA

by constructing hyperedgeEc
j (τ ) = {cj(τ )}∪{τ j←.

k |τk ∈ τ}. This hyperedge is assigned a weight
which is equal to the cost ofcj(τ ). Then the set of all hyperedges containing all the bids of agenti
can be defined as:

Ec
i =

⋃

τ⊆T

E i
c(τ )

Given this, the set of all hyperedges connecting nodes inC to nodes inA can be defined as:

Ec =
⋃

i∈I

Ec
i

Finally, we define the bid hypergraph as a pair:

Hc = (A ∪ C, Ec)

In other words, each hyperedge inHc consists of a single bid vertex corresponding to an element in
C along with the corresponding task-per-bidder nodes inA. Notice that our definitions of valuation
and bid hypergraphs ensure that each hyperedge inHv contains a single valuation fromV and each
hyperedge inHc contains a single bid fromC.

5.1.4 DEFINING THE MATCHING PROBLEM FOR THEGTBM

Having defined the valuation and bid hypergraphs, we can now structurally characterise the notions
of feasible and optimal allocations (these are needed to determine the computational complexity of
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the problem and define the objective function in particular). For this purpose, we must firstly recall
some notions of hypergraph theory. In a hypergraph, two hyperedges are said to beadjacentif their
intersection is not empty. Otherwise they are said to bedisjoint. For a hypergraphH = (X, E), a
family E ′ ⊆ E is defined to be amatchingif the hyperedges ofE ′ are pairwise disjoint. With respect
to a given matchingE ′, a vertexxi is said to bematchedor coveredif there is a hyperedge inE ′

incident toxi. If a vertex is not matched, it is said to beunmatchedor exposed. A matching that
leaves no vertices exposed is said to becomplete.

Based on the definitions above, we can characterise feasible allocations inthe GTBM as follows.
First, we must find a matching for the valuation hypergraph that is not necessarily complete (some
valuations may remain exposed). Second, we must find another matching for the bid hypergraph
that is not necessarily complete either. The two matchings must be related in the following manner:
the task-per-bidder nodes in both matchings should be the same. In other words, given a task-per-
bidder node, it must be related to some valuation node and to some bid node, orelse be excluded
from both matchings. In this way, valuations and bids are linked to create single-task allocations.
For instance, in figure 1, ife2 belongs to the matching for the valuation hypergraph, thene′4 must
be part of the matching for the bid hypergraph to ensure that there is a bid for τ2←.

2 and that either
e′1, e′2, or e′3 are part of the matching for the bid hypergraph to ensure that there is a bidfor τ4←.

1 .
More formally:

Definition 7. Feasible allocation.We say that a pair(Ev′ , Ec′) defines a feasible allocation iff:

1. Ev′ is a matching forHv

2. Ec′ is a matching forHc

3. τ ∈ e ⇔ τ ∈ e′ wheree ∈ Ev′ , e′ ∈ Ec′ , τ ∈ A

Given a feasible allocation(Ev′ , Ec′) as defined above, it is straightforward to assess the ex-
pected utility of all agents within the system as follows:

∑

e∈Ev′

w(e) −
∑

e′∈Ec′

w(e′)

since the weights of the hyperedges in the valuation hypergraph stand forexpected valuations and
the weights of the hyperedges in the bid hypergraph stand for costs. Solving equation (17) in the
GTBM amounts to finding the feasible allocation that maximises the expected utility of all agents
within the system. Therefore, the following definition naturally follows.

Definition 8. GTBM Task Allocation ProblemThe problem of assessing the task allocation that
maximises the expected utility of all agents within the system amounts to solving:

arg max
(Ev′ ,Ec′ )

∑

e∈Ev′

wv(e) −
∑

e′∈Ec′

wc(e
′) (25)

where(Ev′ , Ec′) stands for a feasible allocation.

Having defined the matching problem for the GTBM, we next describe our solution to this
problem using Integer Programming techniques that are commonly used to solve such problems
[4].13

13. Other special purpose algorithms (e.g. using dynamic programming or search trees) could be designed to solve
this combinatorial problem. However, to understand the magnitude of the problem and to compare the difficulty of
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5.2 An Integer Programming Solution

In this section we show how to map the problem posed by equation (25) into an integer program
(IP) [28] so that it can be efficiently implemented and solved. Given this translation, the resulting
program can be solved by powerful commercial solvers such as ILOG CPLEX14 or LINGO.15

5.2.1 OBJECTIVE FUNCTION AND SIDE CONSTRAINTS

The translation of equation (25) into an IP is reasonably straightforward given our representation.
Thus, solving the GTBM task allocation problem amounts to maximising the following objective
function:

∑

e∈Ev

xe · wv(e) −
∑

e′∈Ec

ye′ · wc(e
′) (26)

wherexe ∈ {0, 1} is a binary decision variable representing whether the valuation in hyperedge
e is selected or not, andye′ ∈ {0, 1} is a binary decision variable representing whether the bid in
hyperedgee′ is selected or not. Thus,xe is a decision variable that selects a given valuation with a
given task-bidder matching, andye′ selects a given bid.

However, some side constraints must be fulfilled in order to obtain a valid solution. First, the
semantics of the bidding language must be satisfied. Second, if a hyperedge containing a set of task-
per-bidder nodes inA is selected, we must ensure that the bids covering such nodes are selected too.
Moreover, as we employ the XOR bidding language, the auctioneer — the centre in our case — can
only select at most one bid per bidder and at most one valuation per asker. Thus, as for bidders, this
constraint translates into: ∑

e′∈Ec
i

ye′ ≤ 1 ∀i ∈ I (27)

For instance, in figure 1 this constraint ensures the auctioneer selects one hyperedge out ofe′1, e
′
2,

ande′3, since they all belong to agent 4 (they all come from nodes labelled with the same subscript
c4(.)).

For the valuations, the XOR constraints involving them are collected in the following expres-
sion: ∑

e∈Ev
i

xe ≤ 1 ∀i ∈ I (28)

For instance, in figure 1 this constraint forces the auctioneer to select one hyperedge out ofe1, e2, e3, e4,
ande5 since they all belong to agent 1 (they all come from nodes labelled with the samesubscript
v1(.)).

If a valuation hyperedgee ∈ Ev is selected, the set of task-per-bidder nodes inA connected
to e must be performed by the corresponding bidder agent. For instance, in figure 1, if hyperedge
e5 is selected, the task-per-bidder nodesτ4←1

1 andτ4←1
3 must be covered by some bid of agent4.

In this case, bidc4(τ1, τ3) is the one covering those tasks. Thus, if we select hyperedgee5 we are
forced to select bidc4(τ1, τ3) by selecting hyperedgee′3. Thus, in terms of hyperedges, we must

solving this problem against other similar problems, we believe it is better to first attempt to find the solution using
standard techniques such as IP.

14.http://www.ilog.com
15.http://www.lindo.com
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ensure that the number of valuation hyperarcs containing a given task-per-bidder node is less than
or equal to the number of bid hyperarcs containing it. Graphically, this meansthat the number of
incident valuation hyperedges in a given nodea ∈ A must be less than the number of incident bid
hyperedges ina.

∑

e∈Ev ,e∈τ
j←.

k

xe ≤
∑

e′∈Ec,e′∈τ
j←.

k

ye′ ∀τ j←.
k ∈ A (29)

In case of no free-disposal (i.e. if we do not allow agents to execute tasks without them being asked
for) we simply have to replace≤ with =. To summarise, solving the GTBM task allocation problem
amounts to maximising the objective function defined by expression 26 subjectto the constraints in
expressions (27), (28), and (29). Next, we determine the complexity results for this problem.

5.2.2 COMPLEXITY RESULTS

Having represented the GTBM task allocation problem and defined the corresponding IP formula-
tion, we analyse its computational complexity in order to show the difficulty in solving the GTBM.
We also identify the main parameters that affect the computational costs of finding the optimal al-
location. These parameters should then allow us to determine in which settings theGTBM can be
practically used.

Proposition 4. The GTBM task allocation problem isNP-complete and cannot be approximated
to a ratio n1−ǫ in polynomial time unlessP = ZPP, wheren is the total number of bids and
valuations.

Proof. Notice that our optimisation model as formalised by equation 26 naturally translates to a
combinatorial exchange [18]. This translation can be achieved using ourrepresentation by taking
the goods (in a combinatorial exchange) to be the dummy tasksτ ∈ T , the bids the elements inC,
and the asks the weights of the hyperedges inHv. Thus, while bids remain the same in the exchange,
the number of valuations may significantly increase. The reason being that the introduction of
trust in our theoretical model makes the initial valuations (asks), the elements inV, allocation-
dependent. Hence, every single valuation inV causes several asks to be originated for the exchange
when considering the bidder to which each task may be allocated (see examples in section 5.1.2).
As shown by Sandholm et al. [35], the decision problem for a binary single-unit combinatorial
exchange winner determination problem isNP-complete and the optimisation problem cannot be
approximated to a ration1−ǫ in polynomial time unlessP = ZPP, wheren is the number of bids.
Therefore, the optimisation problem isNP-hard, and so it is in GTBM.

From the above proof, it can be understood that the search space in theGTBM task allocation
problem is significantly larger than in traditional combinatorial exchanges because of the depen-
dency of valuations on the bidders performing tasks. In what follows we provide a formula that
allows us to calculate exactly how big this search space is. This allows us to determine whether
the instance to be solved can actually be handled by the solver (which will have its own limits on
memory requirements and computation time).

In more detail, say thatAk is the subset ofA containing the task-per-bidder nodes referring
to the same tasks. More formally,Ak = {τ j←.

k ∈ A | j ∈ I}. From the example in figure 1,
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A2 = {τ4←.
2 , τ2←.

2 , τ5←.
2 }. Thus, the expression to assess the number of feasible allocations is:

|Ev| =
∑

i∈I

∑

vi(τ ) 6=0

∏

τk∈τ

|Ak| (30)

Observe that the number of possible allocations can be computed as the cardinality of Ev (i.e. the
number of valuation hyperarcs) since it exactly determines the number of ways the valuations can
be satisfied by the provided bids. The total number of decision variables ofthe Integer Program is
thus|Ev|+ |Ec|. Since the number of expected valuations is several times larger than the number of
bids, we expect the number of decision variables associated to bid hyperedges to be much less than
the number of valuation hyperedges. Hence, assuming that|Ec| ≪ |Ev|, the number of decision
variables will be of the order of|Ev|.

In order to understand the implications of these parameters, consider the case in which all task
performers bid overall tasks andall requesters submit asinglevaluation over all tasks. Specifically,
consider a scenario with 15 task performers, 20 requesters, and 5 tasks. Given that in this case
|Ak = 5|, the number of allocations is|Ev| = 20 ∗ 155 = 15187500. In reality, agents may not be
able to submit bids and asks over all tasks and this would result in a significantly lower number of
allocations (given the possible matchings). Hence, to see whether such instances can be practically
solved, in appendix A we report the running times of the solver, showing that instances with less
than2×105 variables can be comfortably solved within 40 seconds (in the worst case). When taken
together, our empirical results and our formula to compute the size of the input(i.e. equation 30)
allow us to affirm that, even if the computational cost associated to the GTBM has the potential to
be rather high, our solution can handle small and medium sized problems in reasonable time (see
table 3). However, as can be seen, the time to complete grows exponentially withthe number of

Set Tasks Task Requesters Task Performers Worst Case Running Time
1 5 20 15 34 s
2 8 20 15 40 mins
3 10 20 15 3 days

Table 3:Average running times for different numbers of tasks and agents (taken over 300 sample runs for set
1, 50 sample runs for sets 2 and 3).

tasks. During our experimental analysis, we also found that the impact of increasing the number of
task performers and task requesters was not as significant as increasing the number of tasks. This
can be explained by the fact that, given our setup, a larger number of tasks allows significantly more
matchings between bids and asks than a larger number of bids and asks. Hence, many more task
requesters and performers can be accomodated for small numbers of tasks. It should also be noted
that we expect these worst case results to occur fairly rarely on average (much less than half of the
instances generated from the same parameters), as shown in figure 2 in appendix A.

Having described the complete picture of the GTBM and its implementation, we nextdiscuss
some important issues that may arise when trying to use a GTBM for task allocation.

6. Discussion

In this paper we have developed task allocation mechanisms that operate effectively when agents
cannot reliably complete tasks assigned to them. Specifically, we have designed a novel Generalised
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Trust-Based Mechanism that is efficient and individually rational. This mechanism deals with the
case where task requesters form their opinions about task performersusing reports from their envi-
ronment and their own direct interactions with the performers. In addition to studying the economic
properties of the allocation mechanisms, we provided the optimisation model that generates the so-
lutions that guarantee the efficiency of our mechanism. This optimisation model isthe first solver
for trust-based mechanisms (and other mechanisms in which the value of an allocation depends on
the performer of the allocation) and is based on Integer Programming. As a result, we have shown
that the input explodes combinatorially due to the huge number of possible allocations that must
be enumerated. Nevertheless, while the computational cost associated to theGTBM is shown to be
rather high, given our implementation, solutions can be found for small and medium scenarios in
reasonable time.

Speaking more generally, our work on trust-based mechanisms has a number of broader im-
plications. First, the GTBM shows how to explicitly blend work on trust models withwork on
mechanism design. Since the mechanism guarantees that certain propertieshold for task allocation
problems, it can be used as a new, well-founded testbed within which trust models can be evaluated.
Up to now, trust models have mainly been tested with random scenarios and interactions that obey
somewhat ad hoc market rules such as those used in the ART testbed [11].Second, our work is
the first single-stage interdependent valuations mechanism that is efficient and individually rational
(as opposed to Mezzetti’s two-stage mechanism). This has been made achievable in the settings we
consider by capturing the interdependence between types through the trust function and making the
payments to the agents contingent on theactual executionof tasks. Another novelty of our approach
is that we are able to extract the (maximum) marginal contribution of an agent despite the valua-
tions being interdependent (as we have shown in Section 4.4). Third, ourimplementation of GTBM
highlights the importance of considering the computational aspects of any newmechanism, since
these determine whether the mechanism is implementable for realistic scenarios and can indeed
bring about its claimed benefits. Our work is a strong statement in this direction since we provide
the complete picture of the problem, starting from its representation, through itsimplementation
and sample results, to its complexity analysis.

In practical terms, the GTBM is a step towards building robust multi-agent systems for uncertain
environments. In such environments, it is important to aggregate the agents’preferences, while
taking into account the uncertainty in order to ensure that the solutions chosen result in the best
possible outcome for the whole system. Prior to the GTBM, it was not possible tocome up with
an efficient solution that would maximise this expected utility. Moreover, the fact that agents can
express their perception of the task performers’ POS is a new way of building more expressive
interactions between buyers and sellers of services [34]. We believe that the more such perceptions
are expressed, the better is the ensuing matching between buyers and sellers and our results are
proof of the gain in efficiency this better matching brings about (see sections 3.2.1, 3.3.1, and 4.3).

By introducing GTBM as a new class of mechanisms, this work lays the foundations for several
areas of inquiry. To this end, we outline some of the main areas below.

• Budget Balance: An important economic property of mechanisms in some contexts is budget
balance.16 However, as mentioned in section 3.3.2, we have designed our TBMs without

16. If a mechanism is budget balanced, it computes transfers in each allocation such that the overall transfer in the system
is zero [21]. Thus, in a budget balanced mechanism, for each allocation K and associated transfer vectorr, we have∑

ri∈ r ri = 0.
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considering budget balance. In fact, the GTBM is not budget balancedin the same respect
as the VCG and Porter et al.’s mechanism. This is necessary to ensure thatthe mechanism is
efficient, individual rational and incentive compatible. Now, one possibleway of overcoming
this problem is to sacrifice either efficiency or individual rationality. In fact, the dAGVA
mechanism is a counterpart of the VCG which does indeed sacrifice individual rationality
for budget balance (see section 2). Moreover, [29] develop mechanisms where a number
of budget balancing schemes are proposed and near-incentive compatibility is attained by
making the payments by the agents as close as possible to those of the VCG ones. The
most effective scheme, the Threshold rule, results in a low loss of incentive-compatibility
and it has a relatively high efficiency (around80%). Such budget balance may be useful in
situations where the centre cannot run the risk of incurring a loss in generating the efficient
outcome for the set of agents in the system. For example, MoviePictures.com may not find it
worth injecting money into the system to find the efficient outcome if all its subunits are all
nearly equally competitive (both in price and POS). Instead MoviePictures.com might prefer
a mechanism that generates a near-efficient outcome without having to invest in this way. By
doing this, the set of agents that participate might be reduced because it is not individually
rational for all of them, but MoviePictures.com may obtain a better outcome.

• Trust in Task Requesters: One other common criticism of mechanisms such as ours is that
the task requesters (and the centre) must be trusted to reveal the observed execution of the
task [22]. However, in our setting, task requesters have a strong incentive to reveal their
observations (in case these are not publicly visible) since they would prefer their chosen task
performer to be available next time the mechanism is run. To this end, they must ensure
that the task performer does not go bankrupt. As noted in equations (13)and (18), the task
performer would have to pay a significant amount to the centre in case it is reported to fail
at its task. Hence, the task requester is better off revealing a successful execution if the task
performer is indeed successful.

Another issue with the trust function used is that weights given to each agent’s EQOS report
may be uncertain. Thus, in this case, agents may have to learn these weights over multiple
interactions. Given this, it is important to develop learning and search techniques that will
be able to deal with the large number of possible weights that could be used in these trust
functions. These techniques will have to take into account the fact that agents may lose out
significantly while exploring the search space.

• Iterative Mechanisms: The GTBM is a one shot mechanism in which the allocation and
the payments are calculated given the type of the agents{v, c, η} and their trust functions.
However, in some cases the participants may be engaged in repeated interactions that can be
exploited by their trust models in order to build accurate trust values of their counterparts.
In such situations, the introduction of multiple rounds can compromise the properties of the
mechanism by allowing for a greater range of strategies (e.g. cornering the market by consis-
tently offering low prices in initial rounds or accepting losses in initial roundsby providing
false and damaging information about competitors). However, the explosionin the strategy
space also implies that agents might not be able to compute their optimal strategy due to the
intractability of such a process. Now, one way of solving this problem is to constrain the
strategies of the agents to be myopic (i.e. best response to the current round) as shown by
[30] using proxy bidding. Another is to allow the agents to learn the trust models without

32



TRUST-BASED MECHANISMS FORROBUST AND EFFICIENT TASK ALLOCATION

participating in the allocation problem. Then, once the agents have an accurate representa-
tion of the trust functions and POS values, the mechanism can be implemented asa one shot
encounter. Note that this problem arises inanyone-shot mechanism which is implemented in
an iterative context and is not solely in the realm of the GTBM.

• Computational Cost: As discussed in section 5, the algorithms we developed to compute the
efficient allocation have to be run multiple times to compute the individual payments tothe
agents for TBMs. Hence, the time needed to compute the allocation and pay the agents may
be impractical if the agents have a very limited time to find a solution, put forward alarge
number of bids, or ask for a large number of tasks to be performed. Hence, it is important
that either less complex mechanisms such as those described in [27] or approximate (and
computationally less expensive) algorithms be developed to solve such problems [1]. This
will require more work in developing local approximation algorithms and the approximate
mechanisms that preserve some of the properties we seek. In this vein, this paper provides a
starting point for these future mechanisms since it provides the efficient mechanisms against
which the approximate ones can be compared.
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Appendix A. Analysing the Performance of the IP Solution

In this section we analyse the computational performance of the Integer Programming solution we
detailed in section 5 in order to gauge the sizes of problems that can be solvedin reasonable time. To
this end, it is important to recall that (as was shown in section 5) the number ofinput variables to the
optimization problem is nearly equal to the number of valuation hyperedges|Ev|, since|Ec| ≪ |Ev|.
Given this, we can assume that the performance of the solver is directly related to the number of
possible allocations approximated as|Ev|.

Therefore, our test set is composed of several instances of the GTBMTask Allocation Problem
characterised by the number of possible allocations. In more detail, to produce such allocations,
bids and valuations are generated so that the number of bids submitted by a single bidder and the
number of valuations submitted by a single requester follow a geometric distribution with thep
parameter set to0.23 [25] (in order to randomly generate relatively large numbers of bids/asksper
agent).17 A medium-sized problem is set as follows. The number of negotiated tasks is set to 5.
The number of task performers is set to15 and the number of task requesters is set to20. The
average number of generated valuations for each instance is88 and the average number of bids is
65. Finally, the number of runs of the experiments is 300. Our experiments wereperformed on a
Xeon dual processor machine with 3Ghz CPUs, 2 GB RAM and the commercialsoftware employed
to solve the Integer Program is ILOG CPLEX 9.1.

The results are shown in figure 2. Specifically, thex-axis represents the number of allocations
of a given problem instance and they-axis represents the time in seconds elapsed in solving the
corresponding problem instance. Notice that the dependence of the difficulty of the problem on the
number of allocations is quite clear. Moreover, as can be seen, it is possible to solve a problem with
less than2 × 105 variables within 40 seconds. It is important to note that the performance of the
solver used is critical in this case and future advancements to Mixed IntegerProgramming (MIP)
solvers and cpu clock speeds can only improve our results.

Given these results and since we provide a general formula (see equation 30) to compute a priori
the number of generated allocations, it is possible to estimate the feasibility of a general problem
before performing it. This means that the system designer can ask task requesters and performers
to constrain the number of tasks they ask for or the number of bids they issueto come up with an
input that can be solved by the program in a reasonable time. It will be more important, however, to
design special purpose algorithms that can deal with larger inputs and this isleft as future work.

17. Settingp higher would result in fewer bids/asks per agent.
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Figure 2: Performance of the IP solution.
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