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We provide a solution to the open problem of bandwidth selection
for the nonparametric estimation of potentially nonstationary regres-
sions, a setting in which the popular method of cross-validation has
not been justified theoretically. Our procedure is based on minimiz-
ing moment conditions involving nonparametric residuals and applies
to β-recurrent Markov chains, stationary processes being a special
case, as well as nonlinear functions of integrated processes. Local and
uniform versions of the criterion are proposed. The selected band-
widths are rate-optimal up to a logarithmic factor, a typical cost of
adaptation in other contexts. We further show that the bias induced
by (near-)minimax optimality can be removed by virtue of a simple
randomized procedure. In a Monte Carlo exercise, we find that our
proposed bandwidth selection method, and its subsequent bias cor-
rection, fare favorably relative to cross-validation, even in stationary
environments.

1. Introduction. The vast literature on unit root and cointegration has
largely focused on linear models. While it is well-known that the limiting be-
havior of partial sums, and affine functionals of them, can be approximated
by Gaussian processes, much less is known about the asymptotic behavior
of functional estimators of nonstationary time series.

Nonparametric regression with nonstationary discrete-time processes has
been receiving attention only in recent years. The literature on nonparamet-
ric autoregression mainly focuses on β-recurrent Markov chains and heavily
uses the number of regenerations of recurrent Markov chains to derive the
limiting behavior of the number of visits around a given point (see, e.g.,
Karlsen and Tjøstheim (2001) and Moloche (2001)). Schienle (2010) con-
siders the case of many regressors and addresses the issue of the curse of
dimensionality in the nonstationary case. Guerre (2004) derives convergence
rates for a somewhat more general class of recurrent Markov chains. As
for nonparametric cointegrating regression, two influential approaches have
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emerged. The first is based on a multidimensional extension of β-recurrent
Markov chains and, again, employs the notion of regeneration time (e.g.,
Karlsen, Myklebust and Tjøstheim (2007)). The second considers nonpara-
metric transformations of integrated and near-integrated processes and uses
the occupation density (local time) of partial sums to derive the estima-
tors’ asymptotic behavior (e.g., Bandi (2004), Wang and Phillips (2009a,b).
There is indeed a parallel literature on the nonparametric estimation of the
infinitesimal moment functionals of recurrent diffusion processes (see, e.g.,
Bandi and Phillips (2003, 2007), and Bandi and Moloche (2008)). On the
one hand, in this case, one can possibly exploit the local Gaussianity prop-
erty of a diffusion processes for the purpose of statistical inference. On the
other hand, contrary to the corresponding estimation problem in discrete
time, one has to control the rate at which the discrete time interval between
adjacent observations goes to zero. Conditions on this rate are needed to ap-
proximate the continuous sample path of the underlying process and yield
consistency (see, e.g., Bandi, Corradi and Moloche (2009)).

The papers cited above establish consistency and asymptotic mixed nor-
mality for kernel estimators of nonstationary autoregressions and cointegrat-
ing regressions but provide little practical guidance on bandwidth selection.
Guerre (2004) proposes useful adaptive rates (guaranteeing that the bias
and variance are of the same order) but does not provide a rule to select the
“constant” term and, ultimately, the numerical value of the smoothing se-
quence. In the context of kernel-based tests for the correct specification of the
functional form in a nonstationary environment, Gao et al. (2009) suggest
a bootstrap procedure to select the bandwidth parameter which maximizes
the local power function, while controlling for size. Their approach, however,
may not be employed to find optimal bandwidths for conditional moment
kernel estimators.

This paper aims at filling an important – in our opinion – gap in the
existing literature by suggesting a procedure for data-driven bandwidth se-
lection in the context of nonparametric autoregressions and nonparametric
cointegrating regressions. The proposed method applies to both β-recurrent
Markov chains and nonlinear functions of integrated (and stationary) pro-
cesses. Importantly, while we emphasize the nonstationary (null recurrent)
case (β < 1) for which automated bandwidth procedures have – to the best
of our knowledge – not been proposed, the methods are readily applicable to
stationary (or positive recurrent) models (β = 1) for which cross-validation
continues to be the most widely-used method of data-driven bandwidth
choice.

We offer three contributions. The rate conditions on the bandwidth se-
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quence for asymptotic mixed normality depend on β, the generally unknown
regularity of the chain. Although β can be estimated, its estimator converges
only at a logarithmic rate (see, e.g., Karlsen and Tjøstheim (2001)). First,
we establish that the (generally unknown and process-specific) rate con-
ditions for consistency and asymptotic mixed normality in nonparametric
nonstationary autoregressions and nonparametric cointegrating regressions,
respectively, can be expressed in terms of the almost-sure rates of divergence
of the empirical occupation densities. This set of results provides us with
a useful framework to verify the relevant rate conditions empirically and
guarantee that they are satisfied in any given sample. Second, we discuss
a fully automated method of bandwidth choice. The method consists in se-
lecting the bandwidth vector minimizing a set of sample moment conditions
constructed using nonparametric residuals. Even though the limiting rate
conditions for mixed asymptotic normality are the same for first and second
conditional moment estimation, we allow the search to be over two distinct
bandwidth parameters in order to improve finite-sample performance. We
show that the resulting adaptive bandwidths are rate-optimal – in the sense
of optimally balancing the rates of the asymptotic bias and variance term of
the estimator(s) – up to a logarithmic factor, a traditional cost of adapta-
tion in other contexts (see, e.g., Lepskii (1991)). One would generally stop
here. However, minimax optimality is, of course, such that the rate condition
for zero-mean asymptotic normality will not be satisfied. The presence of an
asymptotic bias, as yielded by minimax optimality, may unduly affect statis-
tical inference, something that one might want to rectify for the purpose of
superior finite-sample performance. To this extent, third, we propose a sim-
ple bias correction relying on a randomized procedure based on conditional
inference. The outcome of the latter indicates whether the selected band-
widths satisfy all rate conditions for zero-mean mixed normality or whether,
more likely, one should search for smaller bandwidths. We suggest an easy-
to-implement stopping rule ensuring that the selected bandwidths are the
largest ones, starting from the minimax solution, for which the asymptotic
biases are zero.

Two versions of our methods are discussed. The first version selects adap-
tive bandwidths guaranteeing consistency and mixed normality at a given
point of the function of interest and is, therefore, point-wise in nature. The
second version selects uniform bandwidths yielding consistency and mixed
normality regardless of the evaluation point.

Finite-sample behavior is analyzed in a Monte Carlo exercise and com-
pared to cross-validation. We show that our methods fare favorably with
respect to cross-validation. We view this result as being important. Cross-
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validation continues to be the most widely-employed approach in empirical
work but has not been justified theoretically in the context of nonstation-
ary models. Contrary to cross-validation, which is uniform in nature, the
method we provide has a point-wise version leading to local adaptation of
the smoothing parameter(s). In its uniform version, our method outperforms
cross-validation and applies to nonstationary and stationary models alike,
thereby allowing the user to be agnostic about the stationarity feature of
the underlying process.

The paper is organized as follows. Section 2 and 3 present asymptotic
mixed normality results for nonparametric nonstationary autoregressions
and nonparametric cointegrating regressions, respectively. We show how the
bandwidth conditions which the extant literature has expressed as functions
of the unknown regularity of the chain can be suitably expressed in terms
of the almost-sure rate of divergence of the chain’s empirical occupation
density. Section 4 contains the substantive core of our work and discusses
data-driven bandwidth choice in nonstationary, as well as stationary, envi-
ronments and its minimax optimality properties. Finally, Section 5 provides
a simple randomized procedure to adjust the adaptive optimal bandwidths
in order to reduce the biases induced by minimax optimality, when it is
deemed appropriate to do so. We stress that the suggested bias correction
is made possible by our representation of the bandwidth conditions as func-
tions of the process’ occupation density (as in Section 2 and 3). All proofs
are collected in Appendix A. The supplementary document Bandi, Corradi
and Wilhelm (2011) reports the findings of a Monte Carlo study.

2. Nonparametric Nonstationary Autoregression. Intuitively, one
can estimate conditional moments, evaluated at a given point, only if a neigh-
borhood of that point is visited infinitely often as time grows. Otherwise,
not enough information is gathered. For this reason, it is natural to focus
attention on irreducible recurrent chains, i.e., chains satisfying the property
that, at any point in time, the neighborhood of each point has a strictly pos-
itive probability of being visited and, eventually, it will be visited an infinite
number of times. For positive recurrent chains, the expected time between
two consecutive visits is finite. Hence, the time spent in the neighborhood of
a point grows linearly with the sample size, n say. For null recurrent chains,
the expected time between two consecutive visits is infinite. Therefore, the
time spent in the neighborhood of a point grows at a rate, possibly ran-
dom, which is slower than n. Since, up to some mild regularity conditions,
positive recurrent chains are strongly mixing, consistency and asymptotic
normality follow by, e.g., Robinson (1983) and bandwidth selection may be
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implemented, as is customary in much empirical work, by virtue of cross-
validation. Nonparametric regression with null recurrent chains, however,
poses substantial theoretical challenges since the amount of time spent in
the neighborhood of a point is not only unknown but also random.

In an important contribution, Karlsen and Tjøstheim (2001) derive con-
sistency and mixed asymptotic normality for conditional moment estimators
in the case of null recurrent Markov chains. This is accomplished via split
chains, i.e., by splitting the chain into identically and independently dis-
tributed components. The number of these iid components, i.e. the number
of complete regenerations, Tn say, is of the same almost-sure order as the
time spent in the neighborhood of each point.

Let µ(Xt−1) = E[Xt|Xt−1] and σ2(Xt−1) = V ar(Xt|Xt−1) = E[ũ2
t |Xt−1]

so that Xt can be written as

Xt = µ(Xt−1) + ũt = µ(Xt−1) + σ(Xt−1)ut,

where ut is such that E[ut|Ft] = 0 and E[u2
t |Ft] = 1 given the filtration

Ft = σ(Xt−1, Xt−2, . . .). Now, define the two estimators

µ̂n,hµn(x) =
∑n
j=1XjKhµn

(Xj−1 − x)∑n
j=1Khµn

(Xj−1 − x)
,

µ̂
(2)
n,hσn

(x) =
∑n
j=1X

2
jKhσn (Xj−1 − x)∑n

j=1Khσn (Xj−1 − x)
,

and σ̂2
hn

(x) = µ̂
(2)
n,hσn

(x) − (µ̂n,hµn(x))2. Here, K is some kernel function and
Kh(x) = 1

hK(xh). We rely on the following Assumption which largely corre-
sponds to Assumption B0-B4 in Karlsen and Tjøstheim (2001).

Assumption 1. (i) Let {Xt, t ≥ 0} be a β-recurrent, φ-irreducible
Markov chain on a general state space (E, E) with transition probability
P . Let β ∈ (0, 1].

(ii) The invariant measure πs has a locally twice continuously differentiable
density ps which is locally strictly positive, i.e., ps(x) > 0.

(iii) The kernel function K is a bounded density with compact support
satisfying

∫
uK(u)du = 0 and K2 =

∫
K2(u)du < ∞. The set Nx =

{y : Kh=1(y − x) 6= 0} is a small set (see Karlsen and Tjøstheim
(2001)) for all x ∈ Dx, where Dx is a compact set in R so that Dx =
{x : ps(x) > δ} with δ > 0 arbitrarily small and independent of x.

(iv) We have limh↓0 limy→xP (y,Ah) = 0 for all sets Ah ∈ E so that Ah ↓ ∅
when h ↓ 0.
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(v) The functions µ(x) and σ2(x) are locally twice continuously differen-
tiable for all x ∈ Dx.

For i = µ, σ, define the estimator of the occupation density as

(1) L̂n,hin(x) =
1
hin

n∑
j=1

Khin
(Xj−1 − x) .

Here as well as below, we occasionally omit the superscripts µ and σ of
the bandwidths when the discussion applies to both or if it is clear from
the context which of the two is referred to. In the positive recurrent case
(β = 1), as n→∞ and hn → 0 with nhn →∞, L̂n,hn(x)/n a.s.→ ϕ(x), where
ϕ(x) is the density associated with the time-invariant probability measure.
Whenever 0 < β < 1 under Assumption 1(i)-(iii) and provided n→∞ and
hn → 0 with hnn

βu(n) → ∞, L̂n,hn(x)/(nβu(n)) d→ cXMβ, where cX is
a process-specific constant, Mβ is the Mittag-Leffler density with param-
eter β, and the positive function u(·) defined on [b,∞), with b ≥ 0, is a
slowly-varying function at infinity. In this case, both the rate of divergence
of the occupation density L̂n,hn(x), namely nβu(n), and the features of the
asymptotic distribution, Mβ, depend on the degree of recurrence β. Simi-

larly, Tn/(nβu(n)) d→ Mβ, where Tn is, as earlier, the number of complete
regenerations.

Theorem 1. Let Assumption 1 hold and let (E[X2
t |Xt−1])2m < ∞ for

some m ≥ 2 and Xt−1 in a neighborhood of x with x ∈ Dx.

(a) If (i) hµnL̂n,hµn(x) a.s.→ ∞ and (ii) (hµn)5L̂n,hµn(x) a.s.→ 0, then√
hµnL̂n,hµn(x)

(
µ̂n,hµn(x)− µ(x)

)
d→ N

(
0, σ2(x)K2

)
.

(b) If (i) hσnL̂n,hσn(x) a.s.→ ∞ and (ii) (hσn)5L̂n,hσn(x) a.s.→ 0, then√
hσnL̂n,hσn(x)

(
µ̂

(2)
n,hσn

(x)− µ(2)(x)
)

d→ N

(
0,
(
µ(4)(x)−

(
µ(2)(x)

)2
)
K2

)
.

Remark 1. In Theorem 1, and in analogous results below, the condition
h5
nL̂n,hn(x) a.s.→ C, where C is a constant, would give rise to an asymptotic

bias which is a function of the process’ invariant measure as well as a func-
tion of the moment being estimated.

The statement in the theorem above is similar to that in Theorem 5.4
in Karlsen and Tjøstheim (2001). However, Karlsen and Tjøstheim (2001)
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state the bandwidth conditions as hnnβ−ε →∞ and h5
nn

β+ε → 0. Their rate
conditions are sufficient, not necessary. In fact, as is clear from their proofs,
they require hnTn

a.s.→ ∞ and h5
nTn

a.s.→ 0, where the number of regenerations
Tn is at least of almost-sure order nβ−ε and at most of almost-sure order
nβ+ε. Now, in general, β is unknown and, although it can be estimated, its
proposed estimator only converges at a logarithmic rate and thus may not
be overly useful in practice (Karlsen and Tjøstheim (2001), Remark 3.7).
Having made these points, it is empirically important to express the rate
conditions on the smoothing sequences in terms of estimated occupation
densities, as we do in Theorem 1. The key argument used in the proof of
Theorem 1 is that hnL̂n,hn(x) a.s.→ ∞ and h5

nL̂n,hn(x) a.s.→ 0 if, and only if,
hna(n)→∞ and h5

na(n)→ 0 respectively, with

a(n) = nβ(log log nβu(n))1−βu(n log lognβu(n))

and u(·) denoting a slowly-varying function at infinity. Since a(n) defines
the almost-sure rate of the number of regenerations, the argument implies
that our assumptions are equivalent to expressing the rates in terms of the
(random) number of regenerations. The “if” part is somewhat more intu-
itive. In essence, if hna(n)→∞, then L̂n,hn(x)/a(n), under mild regularity
conditions, satisfies a strong law of large numbers, and thus L̂n,hn(x) =
Oa.s.(a(n)). As for the less intuitive “only if” part, it follows from the fact
that, as shown in the Appendix, L̂n,hn(x) = Oa.s.(a(n)) + Op(

√
a(n)/hn)

and so hnL̂n,hn(x) a.s.→ ∞ only if hna(n)→∞.
In Section 4, in order to show selection of a (local or global) near rate-

optimal bandwidth, we require uniform consistency of the first two condi-
tional moment estimators. The needed result is contained in the following
theorem.

Theorem 2. Let Assumption 1 hold and let (E[X2
t |Xt−1])2m < ∞ for

some m ≥ 2 and Xt−1 in a neighborhood of x for all x ∈ Dx. Then:

(a)

sup
x∈Dx

∣∣∣µ̂n,hµn(x)− µ(x)
∣∣∣ = Op

√√√√ log(n)
L̂n,hµn(x)hµn

+O
(
(hµn)2

)
,

(b)

sup
x∈Dx

∣∣∣µ̂(2)
n,hσn

(x)− µ(2)(x)
∣∣∣ = Op

√√√√ log(n)
L̂n,hσn(x)hσn

+O
(
(hσn)2

)
.
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3. Nonparametric Cointegrating Regression. We now consider the
following data generating process:

(2) Yt = f(Xt) + α(Xt)εt.

It is immediate to see that, whenever Xt is a null recurrent Markov process
or, using a more traditional modeling approach, an integrated processes, and
εt is short-memory, the data generating process in (2) can be viewed as a
nonlinear generalization of the classical cointegrating equation. In general,
Yt and Xt are jointly dependent, as they both belong to a larger structural
model, and, consequently, εt is not independent of Xt. In this sense, non-
parametric estimation of nonlinear cointegrating regressions is a somewhat
more complicated task than nonparametric nonstationary autoregression.

As mentioned, there are two main approaches to nonparametric cointe-
grating regression. In the first approach, Karlsen, Myklebust and Tjøstheim
(2007) assume thatXt is a β-recurrent Markov chain and extend the method-
ology outlined in the previous section to the multivariate case and to the
possible endogeneity of εt. Bandi (2004) and Wang and Phillips (2009a,b),
instead, work under the assumption that Xt is an integrated or a near-
integrated process. The interplay between the two methods is discussed in
Bandi (2004).

If Xt is an integrated process, then, as n → ∞ and hn → 0 so that
hnn

1/2 → ∞, L̂n,hn(x)/n1/2 d→ L0(0, 1), where L0(0, 1) is the local time of
a Brownian motion at 0 between 0 and 1, i.e. the amount of time spent
by the process around zero between time 0 and time 1. Compared to the
β-recurrent case, this is a more explicit representation of the empirical occu-
pation density’s limiting behavior, which results from the stronger (but, in
nonstationary econometrics, more conventional) I(1) structure of the under-
lying process. Clearly, when setting β = 1/2 (the Brownian motion case) in
the first approach, we obtainM1/2

d= L0(0, 1), where d= denotes equivalence
in distribution. The common distribution is that of a truncated Gaussian
random variable on a positive support.

Now, define the two estimators

f̂n,hµn(x) =
∑n
j=1 YjKhµn

(Xj − x)∑n
j=1Khµn

(Xj − x)
,

f̂
(2)
n,hσn

(x) =
∑n
j=1 Y

2
j Khσn (Xj − x)∑n

j=1Khσn (Xj − x)

and α̂2
n,hn

(x) = f̂
(2)
n,hσn

(x)− (f̂n,hµn(x))2. When Xt is β-recurrent, E[εt|Ft] = 0
and E[ε2t |Ft] = 1 with Ft = σ(Xt−1, Xt−2, . . .), the statement in Theorem 1
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extends rather straightforwardly to the cointegrating regression case. In fact,
if E[εt|Xt] = 0 and εt is geometrically strong mixing, given Assumption 1(i)-
(v), consistency and asymptotic mixed normality follow directly from The-
orem 3.5 in Karlsen, Myklebust and Tjøstheim (2007) by simply setting
“their” k equal to 0. Under analogous assumptions, Moloche (2001) estab-
lishes consistency and asymptotic mixed normality for local linear and local
polynomial estimators of nonlinear cointegrating regressions driven by re-
current Markov chains. For the case of (near-)integrated processes, whenever
E[εt|Ft] = 0, consistency and mixed asymptotic normality are established
in Wang and Phillips (2009a).

We now turn to the endogenous case in which εt is no longer a martingale
difference sequence but is, instead, correlated with Xt. For completeness, we
consider both approaches in the extant literature. We begin by evaluating
the case in which Xt is a β-recurrent Markov chain. We then focus on the
integrated (or near-integrated) case.

In what follows, we make use of Assumption 2 which largely corresponds
to Assumptions D1-D5 in Karlsen, Myklebust and Tjøstheim (2007) and
builds on Assumption 1.

Assumption 2. (i) The joint process {(Xt, εt), t ≥ 0} is a φ-irreducible
Harris recurrent Markov chain on the state space (Ẽ, Ẽ) = (E1 ×
E2, E1 ⊗ E2) with marginal transition probabilities P1 and P2. The in-
variant measure of the joint process π(s) has a density ps with respect
to the two-dimensional Lebesgue measure so that

∫
ps(x, ε)dε > 0,

limδ↓0
∫
|ps(x + δ, ε) − ps(x, ε)|dε = 0 and, for all Ah ∈ Ẽ∞ such that

Ah ↓ ∅, limh↓0 limy→x
∫
ε P ((y, ε), Ah)|ε|dε = 0.

(ii) The marginal processXt satisfies Assumption 1(i) and Assumption 1(iii)-
(iv). In addition, the marginal transition probability function P1 is in-
dependent of any initial distribution λ. The kernel function satisfies
Assumption 1(iii).

(iii) The residual εt has bounded support for all t.
(iv) (a)

∫
εpε|X(ε|x)dε = 0 and (b)

∫
ε2pε|X(ε|x)dε = 1.

(v) The functions f(x) and α(x) are locally twice continuously differen-
tiable for all x ∈ Dx.

Assumptions 2(i)-(ii) are a multivariate extension of Assumption 1. As-
sumption 2(iii) – bounded support of ε – is used in the proof of Theorem 4.1
in Karlsen, Myklebust and Tjøstheim (2007), a result which we will refer
to below. Their simulation results, however, indicate that its violation does
not have any practical effect. Assumption 2(iv)(a) qualifies the degree of
dependence between Xt and εt. Even though it seems a rather stringent
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requirement, it is satisfied whenever (i) Xt and εt are asymptotically in-
dependent, in the sense that the joint invariant measure of (Xt, εt) can be
factorized into the product of the corresponding two marginal measures, and
(ii) the integral of ε with respect to the invariant measure is equal to zero.
In this case, in fact,

∫
εpε|X(ε|x)dε =

∫
εps(x, ε)/ps(x)dε =

∫
εps(ε)dε = 0.

Clearly, asymptotic independence does not imply independence. One im-
portant implication of asymptotic independence is the following. Since Xt

is null recurrent and, loosely speaking, its variability increases with t, while
εt is short-memory and its variability does not depend on t, we allow for
a situation where, analogously to the linear case, E[εt|Xt] 6= 0 but is a de-
creasing function of t, so that limn→∞

1
n

∑n
t=1E[εt|Xt] = 0 a.s.. Similarly,

limn→∞
1
n

∑n
t=1E[ε2t |Xt] = 1 a.s..

Theorem 3. Let Assumption 2 be satisfied. Further, assume that we
have limn→∞

1
n

∑n
t=1(E[Y 2

t |Xt])2m <∞ for some m ≥ 2 and Xt in a neigh-
borhood of x with x ∈ Dx, and

∫
limy→x|∂2ps(y, ε)/∂y2||ε|dε <∞.

(a) If (i) hµnL̂n,hµn(x) a.s.→ ∞ and (ii) (hµn)5L̂n,hµn(x) a.s.→ 0 then√
hµnL̂n,hµn(x)

(
f̂n,hµn(x)− f(x)

)
d→ N

(
0, α2(x)K2

)
.

(b) If (i) hσnL̂n,hσn(x) a.s.→ ∞ and (ii) (hσn)5L̂n,hσn(x) a.s.→ 0, then√
hσnL̂n,hσn(x)

(
f̂

(2)
n,hσn

(x)− f (2)(x)
)

d→ N

(
0,
(
f (4)(x)−

(
f (2)(x)

)2
)
K2

)
.

Theorem 3(a) is adapted from Theorem 4.1 in Karlsen, Myklebust and
Tjøstheim (2007). As earlier, to provide a feasible bandwidth selection proce-
dure, we show that our rate conditions hnL̂n,hn(x) a.s.→ ∞ and h5

nL̂n,hn(x) a.s.→
0 are almost-surely equivalent to hna(n)→∞ and h5

na(n)→ 0.
It should be pointed out that, whenever εt is not a martingale difference

sequence, one can no longer interpret f(x) and f (2)(x) as conditional (on
x) first and second moments. However, under Assumption 2(iv), one can
interpret f(x) as limn→∞

1
n

∑n
t=1E[Yt|Xt = x] and, similarly, f (2)(x) as

limn→∞
1
n

∑n
t=1E[Y 2

t |Xt = x], with probability one.
The corresponding uniform result, needed in the next section, is contained

in the following theorem.

Theorem 4. Let Assumption 2 and limn→∞
1
n

∑n
t=1(E[Y 2

t |Xt])2m <∞
hold for some m ≥ 2 and Xt in a neighborhood of x for all x ∈ Dx. If

(3) sup
x∈Dx

∣∣∣∣∣
√

hµn
a(n) log(n)

n∑
t=1

E
[
Khµn

(Xt − x)εtα(Xt)
]∣∣∣∣∣ = O(1)
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as well as infx∈Dx ps(x) ≥ δ > 0, then:

(a)

sup
x∈Dx

∣∣∣f̂n,hµn(x)− f(x)
∣∣∣ = Op

√√√√ log(n)
L̂n,hµn(x)hµn

+O
(
(hµn)2

)
.

(b) If, in addition,

(4) sup
x∈Dx

∣∣∣∣∣
√

hσn
a(n) log(n)

n∑
t=1

E
[
Khσn (Xt − x)α(Xt)

(
ε2t − 1

)]∣∣∣∣∣ = O(1),

then

sup
x∈Dx

∣∣∣f̂ (2)
n,hσn

(x)− f (2) (x)
∣∣∣ = Op

√√√√ log(n)
L̂n,hσn(x)hσn

+O
(
(hσn)2

)
.

The statement in Theorem 4 is similar to that in Theorem 4.2 in Gao,
Li and Tjøstheim (2009). We, however, show how the rates can be stated
in terms of estimated occupation densities. Further, we establish sharper
rates, but only in probability, and over a compact set, while they establish
almost-sure rates over an increasing set. The uniform rate result above relies
on a strengthening of Assumption 2(iv). We simply require the dependence
between Xt and εt to go to zero fast enough.

We now turn to the case in which Xt is an integrated process, not neces-
sarily Markov, and εt in (2) is not independent of Xt. Assumption 3(ii)-(iv)
below corresponds to Assumptions 2-4 in Wang and Phillips (2009b) while
Assumption 3(i) is a strengthened version of their Assumption 1. We explain
below why we use this stronger version and outline what would happen if,
instead, we were to use their Assumption 1.

Assumption 3. (i) Xt = Xt−1 + ξt, ξt =
∑∞
k=0 φkηt−k, where (a)

E[|ξt|2(4+γ)] ≤ C1 < ∞ for γ > 0, (b) ηk is iid, (c) φk decays fast
enough, as k →∞, as to ensure that ξt is α-mixing with size −(4(4 +
γ))/γ, and (d) there exists 0 < ω2

0 <∞ so that |T−1E[(
∑m+T
k=m+1 ξk)

2]−
ω2

0| ≤ C2T
−ψ, with ψ > 0 and C2 independent of m.

(ii) K is a second-order kernel, bounded and with bounded support, and∫
|eixtK(t)dt|dx <∞.

(iii) εt as defined in (2) writes as εt = g(ηt, . . . , ηt−m0), where g is a mea-
surable function on Rm0 and m0 < ∞. In addition, ηt = 0 for t =
1, . . . ,m0 − 1, E[εt] = 0, E[ε2t ] = 1 and E[ε4t ] <∞.

(iv) The functions f(x) and α(x) are locally twice continuously differen-
tiable for all x ∈ Dx.
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Theorem 5. Let Assumption 3 hold.

(a) If (i) hµnL̂n,hµn(x) a.s.→ ∞ and (ii) (hµn)5L̂n,hµn(x) a.s.→ 0, then√
hµnL̂n,hµn(x)

(
f̂n,hµn(x)− f(x)

)
d→ N

(
0, σ2(x)K2

)
.

(b) If (i) hσnL̂n,hσn(x) a.s.→ ∞ and (ii) (hσn)5L̂n,hσn(x) a.s.→ 0, then√
hσnL̂n,hσn(x)

(
f̂

(2)
n,hσn

(x)− f (2)(x)
)

d→ N

(
0,
(
f (4)(x)−

(
f (2)(x)

)2
)
K2

)
.

The statement in Theorem 5(a) builds on that in Theorem 3.1 in Wang
and Phillips (2009b). Again, their bandwidth conditions are stated in the
somewhat more familiar form

√
nhn → ∞ and

√
nh5

n → 0. In the proof,
we show that hnL̂n,hn(x) a.s.→ ∞ if, and only if,

√
nhn → ∞ and that

h5
nL̂n,hn(x) a.s.→ 0 only if

√
nh5

n → 0. On the other hand,
√
nh5

n → 0 implies
h5
nL̂n,hn(x)

p→ 0, not necessarily h5
nL̂n,hn(x) a.s.→ 0. Theorem 5(b) follows

naturally.
Contrary to the general β-recurrent case, for which β is unknown, in the

I(1) case (β = 1
2) one could in principle set the bandwidth parameter equal

to hn = cn−1/10 in order to balance the variance and the squared bias term
(see, e.g., Bandi (2004)). Alternatively, one could set hn = cn−(1/10+ε), with
ε > 0 arbitrarily small, to ensure that the bias is asymptotically negligible.
Several issues, however, arise. First, choosing the constant term c appro-
priately is a non-trivial applied problem. Classical rules-of-thumb may, for
instance, be imprecise and cross-validation has not been justified for this
type of problems. Second, for empirically reasonable sample sizes n, it may
be better to set the bandwidth parameter as a function of the occupation
density rather than as a function of n. In other words, it may be better to
rely on the effective number of visits the process makes at a point, rather
than on the notional divergence rate of the occupation density (

√
n). Lastly,

in general, one does not know whether Xt is I(1) rather than I(0). If a pre-
liminary unit-root test is run, and the null of a unit root is not rejected, then
one may assume that L̂n,hn(x) diverges at rate

√
n. If the null is rejected

in favor of stationarity, however, then L̂n,hn(x) diverges at rate n. Now, it
is well known that unit-root tests have little power against I(0) alternatives
characterized by a root close to, but strictly below, one. Importantly, under
our rate conditions, the statements in Theorem 5 hold even if Xt in Assump-
tion 3(i) is replaced by Xt = αXt−1 +ξt with |a| ≤ 1. Hence, Theorem 5, like
Theorems 1-4 above, applies to both the stationary and nonstationary case.
We believe that avoiding pre-testing for a unit root and/or stationarity may
be empirically useful.
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It should be pointed out that Assumption 1 in Wang and Phillips (2009b)
allows for near-integrated processes, i.e., Xt = exp(c/n)Xt−1 +ξt with c ≤ 0.
In our context, we could allow for c < 0 at the cost of stating our rate
conditions as hnL̂n,hn(x)

p→ ∞ and h5
nL̂n,hn(x)

p→ 0, i.e. by weakening the
almost-sure rates to rates in probability. Thus, in practical applications, we
can employ L̂n,hn(x), instead of

√
n, even in the case of near-integrated

processes. Finally, we establish uniform consistency.

Theorem 6. Let Assumption 3 and (3) hold with a(n) = n1/2, and
suppose hµnE[exp{Khµn

(Xt − x)α(Xt)εt}] ≤ ∆ <∞. Then

(a)

sup
x∈Dx

∣∣∣f̂n,hµn(x)− f(x)
∣∣∣ = Op

√√√√ log(n)
L̂n,hµn(x)hµn

+O
(
(hµn)2

)
.

(b) If, in addition, (4) holds with a(n) = n1/2 and hσnE[exp{Khσn(Xt −
x)α(Xt)(ε2t − 1)}] ≤ ∆ <∞, then

sup
x∈Dx

∣∣∣f̂ (2)
n,hσn

(x)− f (2)(x)
∣∣∣ = Op

√√√√ log(n)
L̂n,hσn(x)hσn

+O
(
(hσn)2

)
.

The uniform rate in Theorem 6(a) requires two additional conditions. The
first condition, controlling the rate at which the dependence between εt and
(X1, . . . , Xt) approaches zero, allows us to treat the term Khn(Xt−x)α(Xt)εt
as a martingale difference sequence. The second is a Cramèr-type condition
permitting the use of exponential inequalities for unbounded martingales,
e.g., Lesigne and Volný (2001). If either condition fails to hold, we would
have a less sharp uniform rate. Analogous additional conditions are required
for the uniform consistency of the conditional second moment.

4. Adaptive Bandwidth Selection. To the best of our knowledge,
there are no data-driven procedures for choosing the bandwidth in the case
of nonparametric nonstationary autoregressions or nonparametric cointe-
grating regressions. In spite of being used widely in empirical work, cross-
validation, or suitable modifications of cross-validation, have not been for-
mally justified in a nonstationary framework. However, an important contri-
bution in this area is the work by Guerre (2004) who, under slightly different
assumptions, suggests a bandwidth based on the minimization of the em-
pirical bias-variance trade-off. In terms of our notation, Guerre’s adaptive
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bandwidth is defined as

ĥn(x;L, σ2) = min

h ≥ 0 s.t. L2h2
n∑
j=1

1 {|Xj − x| ≤ h} ≥ σ2

 ,
where L is the Lipschitz constant characterizing the conditional expectation
function, i.e. |µ(x)−µ(x′)| ≤ L|x−x′| and σ2 is so that E[u2

i |Xi] ≤ σ2. The
selected bandwidth is a function of two constants, L and σ2, which are, in
general, unknown. It is, therefore, not feasible in practice.

Our goal is to select a bandwidth which may or may not depend on the
evaluation point (and, hence, is point-wise or uniform in nature) but does
not require the choice of unknown quantities, such as L and σ2, and is, in
that sense, fully data-driven. We begin by outlining the case in which we
select a local bandwidth which depends on the evaluation point. Let

ûi,hn =
Xi − µ̂n,hµn (Xi−1)
σ̂n,hn(Xi−1)

and ε̂i,hn =
Yi − f̂n,hµn (Xi)
α̂n,hn(Xi)

,

wi,hµn(x) = 1{|Xi − x| < hµn}/
∑n
i=1 1{|Xi − x| < hµn} as well as

m̂u
n,hn(x) =

( ∑n
i=1 ûi,hnwi−1,hµn

(x)∑n
i=1 û

2
i,hn

wi−1,hµn
(x)− 1

)
,

m̂ε
n,hn(x) =

( ∑n
i=1 ε̂i,hnwi,hµn(x)∑n

i=1 ε̂
2
i,hn

wi,hµn(x)− 1

)
,

where hn = (hµn, h
σ
n). We begin with the case of nonparametric autoregres-

sion. The bandwidth vector ĥn is selected as:

(5) ĥn(x) =
(
ĥµn(x), ĥσn(x)

)
= arg inf

hn(x)∈Hn(x,ς)

∥∥∥m̂u
n,hn(x)

∥∥∥ ,
where ‖ · ‖ denotes the Euclidean norm and we define Hn(x, ς) = {hn(x) :
log(n)/(L̂n,hµ,σn (x)ς) < hµ,σn (x) < ς} for some ς > 0. It is easy to see
that

∑n
i=1 ûi,hnwi−1,hµn

(x) =
∑n
i=1 ui,hnwi−1,hµn

(x) + op(1) if, and only if,
|µ̂n,hµn(x) − µ(x)| = op(1). Similarly, for the second moment condition, we
have

∑n
i=1 û

2
i,hn

wi−1,hµn
(x) =

∑n
i=1 u

2
i,hn

wi−1,hµn
(x) + op(1) if, and only if,

|µ̂n,hµn(x)−µ(x)| = op(1) and |µ̂(2)
n,hσn

(x)−µ(2)(x)| = op(1). One can also show
that

∑n
i=1 ui,hnwi−1,hµn

(x) = op(1) and
∑n
i=1 u

2
i,hn

wi−1,hµn
(x) = 1+op(1) since

E[ui|Xi−1] = 0 and E[u2
i |Xi−1] = 1. Thus, the bandwidth vector selected

according to (5) ensures the consistency of the first two conditional moment
estimators. Given Assumption 1, such a bandwidth vector exists. Further-
more, we will show that the selected bandwidth vector is rate-optimal, in the
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sense of optimally balancing the rates of the asymptotic bias and variance
terms of the estimator(s), up to a logarithmic factor.

The nonparametric cointegrating case is treated analogously, defining

(6) h̃n(x) =
(
h̃µn(x), h̃σn(x)

)
= arg inf

hn(x)∈Hn(x,ς)

∥∥∥m̂ε
n,hn(x)

∥∥∥ .
As already pointed out, we wish to allow for E[εi|Xi] 6= 0. Nonetheless, under
either Assumption 2(iv) in the β-recurrent case, or Assumption 3(i) and As-
sumption 3(iii) in the case of integrated processes, limn→∞

1
n

∑n
i=1E[εi|Xi]→

0 and limn→∞
1
n

∑n
i=1E[(ε2i − 1)|Xi] → 0. These conditions ensure that∑n

i=1 ε̂i,hnwi,hµn(x) = op(1) and
∑n
i=1 ε̂

2
i,hn

wi,hµn(x) = 1 + op(1) if, and only if,

|f̂n,hµn(x) − f(x)| = op(1) and |f̂ (2)
n,hσn

(x) − f (2)(x)| = op(1). Moreover, under
additional conditions (in Theorems 4 and 6) on the rate at which E[εi|Fi]
and E[(ε2i − 1)|Fi] approach zero, h̃n(x) is also rate-optimal up to a loga-
rithmic factor.

It is evident from the definition of ĥn(x) and h̃n(x) that we can be silent
about stationarity or the degree of recurrence of the process. The criteria to
be minimized, in fact, simply depend on the estimated occupation densities.

Theorem 7. Assume that the kernel K is twice continuously differen-
tiable on the interior of its support.

(a) Nonparametric Autoregression: Under the assumptions of Theorem 2,
ĥin(x), i = µ, σ, as defined in (5), is at least of probability order γ(n)−1/5

and at most of probability order log1/5(n)γ(n)−1/5. In the positive recur-
rent (ergodic) case, β = 1 and γ(n) = n, while in the null recurrent case,
γ(n) = a(n) with

(7) a(n) = nβ(log log nβu(n))1−βu(n log log nβu(n))

and u(·) a slowly-varying function at infinity.
(b) Nonparametric cointegration: Either (b1) the assumptions in Theorem 4

hold or (b2) the assumptions in Theorem 6 hold. Then, h̃in(x), i = µ, σ,
as defined in (6), is at least of probability order γ(n)−1/5 and at most of
probability order log1/5(n)γ(n)−1/5, where γ(n) is defined as in part (a)
if (b1) holds or is γ(n) = n1/2 if (b2) holds.

Remark 2. As established in Theorem 7, the adaptive bandwidths ob-
tained by the minimization of the above moment conditions are rate-optimal
up to a logarithmic factor. This result holds for stationary processes, inte-
grated processes, and general β-recurrent processes. The logarithmic factor is
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the same cost of adaptation as in, e.g., Lepskii (1991), Lepski, Mammen and
Spokoiny (1997) and Lepski and Spokoiny (1997) in other contexts. These
methods generally lead to the choice of the largest bandwidth for which the
bias is sufficiently small. Their criteria require a choice of threshold, some-
thing that is not needed in our framework.

Theorem 7 proposes a data-driven procedure for selecting a variable band-
width vector ensuring point-wise consistent estimation. The theorem below
establishes that there exist rate-optimal (again, up to a logarithmic fac-
tor) uniform bandwidths. Let Hn(ς) = {hn : log(n)/(infx∈Dx L̂n,hµ,σn (x)ς) <
hµ,σn < ς} with some ς > 0 and

(8) ĥn =
(
ĥµn, ĥ

σ
n

)
= arg inf

hn∈Hn(ς)
sup
x∈Dx

∥∥∥m̂u
n,hn(x)

∥∥∥ ,
and

(9) h̃n =
(
h̃µn, h̃

σ
n

)
= arg inf

hn∈Hn(ς)
sup
x∈Dx

∥∥∥m̂ε
n,hn(x)

∥∥∥ .
Theorem 8. Assume that the kernel K is twice continuously differen-

tiable on the interior of its support.

(a) Nonparametric autoregression: Under the assumptions of Theorem 2,
ĥin, i = µ, σ, as defined in (8), is of probability order log1/5(n)γ(n)−1/5,
where γ(n) is defined as in Part (a) of Theorem 7.

(b) Nonparametric cointegration: Either (b1) the assumptions in Theorem 4
hold or (b2) the assumptions in Theorem 6 hold. Then, h̃in, i = µ, σ, as
defined in (9), is of probability order log1/5(n)γ(n)−1/5, where γ(n) is
defined as in Part (a) of Theorem 7 if (b1) holds or is γ(n) = n1/2 if
(b2) holds.

5. Bias Correction.

5.1. A point-wise test. The proposed adaptive bandwidths are large enough
as to ensure the consistency of the estimators of the first two conditional
moments. In light of their minimax optimality, they are too large to satisfy
the condition for zero-mean asymptotic normality. If centering of the estima-
tor’s asymptotic distribution is of interest, the a researcher may be willing
to endure a larger, than optimal, mean-squared error in order to achieve
some bias reduction. To this extent, we now propose a theoretical approach
to bias reduction which effectively evaluates the magnitude of the minimax
bandwidths and, if needed, reduces them to the point where the estimators’



DATA-DRIVEN BANDWIDTH SELECTION 17

biases are zero. Said differently, starting from the minimax bandwidths, the
procedure selects the largest bandwidth for which the estimator’s asymptotic
bias is zero.

We note that, in nonlinear cointegration, for example, the condition for
a zero bias is h5

na(n) → 0. This condition is clearly not operational in that
the regularity of the chain is, in general, unknown. However, we have shown
in Theorems 1 and 3 that h5

na(n)→ 0 if, and only if, h5
nL̂n,hn(x) a.s.→ 0. The

mapping between bandwidth conditions written in terms of the almost-sure
divergence rate of number of regenerations and bandwidth conditions based
on the divergence rate of the empirical occupation density (as implied by
Theorems 1, 3 and 5) is not just of theoretical interest. It provides empiri-
cal content to otherwise theoretical statements. In this section, for example,
we show that a bias correction is made possible by our representation of
the bandwidths as functions of the process’ occupation density (as in Sec-
tions 2 and 3). The goal is to verify if h5

nL̂n,hn(x) a.s.→ 0 and, consequently by
Theorems 1 and 3, h5

na(n)→ 0.
We begin with the point-wise bandwidths. Let ĥn(x) = (ĥµn(x), ĥσn(x)) be

the bandwidth vector previously selected. Because the bandwidth rate con-
ditions are the same for both conditional moments, we only consider ĥµn(x)
(expressed as ĥµn) for conciseness. This said, the procedure outlined below
should be separately applied to both bandwidth sequences for bias reduction.
In addition, the method works in the same manner for both nonparametric
autoregressions and nonparametric cointegrating regressions.

The hypothesis of interest is

Hµ
0 (x) : (ĥµn)5−εL̂n,ĥµn(x) a.s.→ ∞

where x ∈ Dx, and ε > 0 arbitrarily small, versus

Hµ
A(x) : negation of H0.

Hσ
0 (x) and Hσ

A(x) are defined in an analogous way, simply replacing ĥµn
by ĥσn. The role of ε > 0 is to ensure that rejection of the null implies
(ĥµn)5L̂n,ĥµn(x) a.s.→ 0. Without ε > 0, (ĥµn)5L̂n,hµn(x) could be Oa.s.(1) under
the alternative, which would not guarantee a zero asymptotic bias. It is im-
mediate to see that, if we reject the null, the selected bandwidth satisfies the
required rate condition for a vanishing asymptotic bias ((ĥµn)5L̂n,ĥµn(x) a.s.→ 0)
and it should be kept. If we fail to reject, then we need to select a smaller
bandwidth.

Remark 3. The notation h5
nL̂n,hn(x) a.s.→ 0 clearly highlights that the

same bandwidth ĥµn(x) should appear outside and inside of the kernel. As
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implied by the proof of Theorems 1, 3, and 5, failure to do so would result
in fundamental theoretical inconsistencies. Again, this theoretical statement
has important empirical implications. In classical stationary regression mod-
els, one could set the bandwidth as being proportional to n−1/5, where n is
the number of observations (hn ∝ n−1/5). This is what plug-in procedures
and rules-of-thumb do, for example. The analogous procedure in our frame-
work, unless one is willing to assume a value for the regularity of the chain,
would be to set the bandwidth as being proportional to the estimated occu-
pation density L̂θ

n,hµn
(x) for some θ (hn ∝ L̂θ

n,hµn
(x)). However, this is not

immediately possible since the bandwidth used to define L̂θ
n,hµn

(x) is the same
bandwidth that one is aiming to choose in the first place. Said differently,
the same bandwidth appears on both sides of the expression hn ∝ L̂θ

n,hµn
(x)

resulting in an unavoidable circularity. Plug-in procedures based on asymp-
totic MSEs and classical rules-of-thumb are therefore even less operational
in nonstationary environments than they are in stationary environments.
Our methods are intended to offer a solution to these issues.

We construct a test of the above null hypothesis similarly as Bandi, Cor-
radi and Moloche (2009). To that end, define

ṼR,n =
∫
U
V 2
R,n(u)π(u)du,

with U = [u, u] being a compact set,
∫
U π(u)du = 1, π(u) ≥ 0 for all u ∈ U ,

VR,n(u) =
2√
R

R∑
j=1

(
1 {vj,n ≤ u} −

1
2

)

and

vj,n =

exp

(ĥµn)5−ε
n∑
j=1

Kĥµn
(Xj − x)


1/2

ηj ,

with η ∼ N(0, IR) iid. The compact set U and the weight function π(·) ought
to be chosen by the user. Examples are provided in the Monte Carlo section
in the Supplementary Material (Bandi, Corradi and Wilhelm (2011)).

In what follows, let the symbols P ∗ and d∗ denote convergence in proba-
bility and in distribution under P ∗, which is the probability law governing
the simulated random variables η, i.e., a standard normal, conditional on
the data. Also, let E∗ and V ar∗ denote the mean and variance operators
under P ∗. Furthermore, the notation a.s.− P is used to mean “for all data
but a set of measure 0”.
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Suppose that (ĥµn)5∑n
j=1Kĥµn

(Xj − x) a.s.→ ∞. Then, conditionally on the
sample and a.s. − P , vj,n diverges to ∞ with probability 1/2 and to −∞
with probability 1/2. Thus, as n → ∞, for any u ∈ U, 1{vj,n ≤ u} is
distributed as a Bernoulli random variable with parameter 1/2. Furthermore,
note that, as n → ∞, for any u ∈ U , 1{vj,n ≤ u} is equal to either 1 or
0 regardless of the evaluation point u. In consequence, as n,R → ∞, for
all u, u′ ∈ U , 2√

R

∑R
j=1(1{vj,n ≤ u} − 1

2) and 2√
R

∑R
j=1(1{vj,n ≤ u′} − 1

2)
converges in d∗−distribution to the same standard normal random variable.
Thus, ṼR,n

d∗→ χ2
1 a.s.−P . It is now immediate to notice that, for all u ∈ U ,

VR,n(u) and ṼR,n have the same limiting distribution. The reason why we are
averaging over U is simply because the finite sample type I and type II errors
may indeed depend on the particular evaluation point. As for the alternative,
if (ĥµn)5∑n

j=1Kĥµn
(Xj − x) a.s.→ 0, (or, if (ĥµn)5∑n

j=1Kĥµn
(Xj − x) = Oa.s.(1)),

then vj,n, as n→∞, conditionally on the sample and a.s.−P , converges to a
(mixed) zero-mean normal random variable. Thus, 2√

R

∑R
j=1(1{vj,n ≤ u}−1

2)

diverges to infinity at speed
√
R whenever u 6= 0 a.s.− P .

Theorem 9. Let Assumption 1, 2, or 3 hold. As R,n→∞,

(a) Under Hµ
0 (x),

VR,n
d∗→ χ2

1 a.s.− P.

(b) Under Hµ
A(x), there are ε1, ε2 > 0 so that

P ∗
(
R−1+ε1VR,n > ε2

)
→ 1 a.s.− P.

Remark 4. In general, R can grow at a faster rate than n. Only, in
the case in which hµn

∑n
j=1Khµn

(Xj − x) diverges at a logarithmic rate, then
R/n→ 0.

If one fails to reject Hµ
0 (x) because VR,n is smaller than, say, the 95%

percentile of a χ2
1 random variable, then we suggest choosing a smaller band-

width until rejection is reached. Specifically, we suggest searching on a grid
until Hµ

0 (x) is rejected, i.e., until reaching

ˆ̂
hµn(x) = max

{
h < ĥµn : s.t. Hµ

0 (x) is rejected
}
.

Starting from the minimax bandwidth, the proposed rule leads to the choice
of the largest bandwidth ensuring a zero asymptotic bias. We stop searching
as soon as we reject the null and the likelihood of rejecting the null is 5% at
every step. In this sense, sequential testing issues are not a concern.
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5.2. A uniform test. Let ĥn = (ĥµn, ĥ
σ
n) be the uniform bandwidth vector

previously chosen (c.f., Theorem 8). In this case, we need to guarantee that
the rate condition for a zero asymptotic bias is satisfied for all x ∈ A ⊆ Dx.
We formalize the hypotheses as follows:

Hµ
0 : (ĥµn)5−ε

∫
A

n∑
j=1

Kĥµn
(Xj − x) dx a.s.→ ∞

versus
Hµ
A : negation of H0.

The test statistic VR,n is defined as in the point-wise case except vj,n now
integrates the occupation density L̂n,ĥµn(x) over evaluation points, i.e.

vj,n =

exp

(ĥµn)5−ε
∫
A

n∑
j=1

Kĥµn
(Xj − x) dx


1/2

ηj

with A ⊆ Dx. The final bandwidth is, as earlier, the bandwidth selected by
the moment-based criterion (if the test rejects), or the largest bandwidth
for which the test rejects, respectively.

We emphasize again that, should rate-optimality in an MSE sense be
the only criterion of interest, one could safely avoid the bias correction. In
the Monte Carlo section in the Supplementary Material (Bandi, Corradi
and Wilhelm (2011)), however, we show that, whenever re-centering of the
estimators asymptotic distribution is indeed needed or desired, the method
in this section performs very satisfactorily.

APPENDIX A: PROOFS

Proof of Theorem 1. (a) Hereafter, for notational simplicity we omit
the superscript µ, i.e. we write hn instead of hµn. We first need to show that
hnL̂n,hn(x) a.s.→ ∞ if, and only if, hna(n) → ∞, where a(n) is as defined in
(7). We begin with the “if” part. Given Assumption 1(i), following Karlsen
and Tjøstheim (2001) (KT01 hereafter), L̂n,hn(x) in (1) can be re-written
as a split chain, i.e.,

L̂n,hn(x) = U0,x,hn +
Tn∑
k=1

Uk,x,hn + Un,x,hn ,

where

Uk,x,hn =


∑τ0
j=1Khn (Xj−1 − x) , k = 0∑τk

j=τk−1+1Khn (Xj−1 − x) , 1 ≤ k < n∑n
τ
Tn

+1Khn (Xj−1 − x) , k = n
.
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For any given hn, the Uk,x,hn ’s are identically distributed and independent
random variables. The quantity Tn denotes the number of complete regen-
erations from time 0 to time n, and the τk’s, with k = 0, . . . , n, are the
regeneration time points. Thus, Tn is a random variable playing the same
role as the sample size. By the same argument as that in the proof of Theo-
rem 5.1 in KT01, U0,x,hn and Un,x,hn are of a smaller almost sure order than∑Tn
k=1 Uk,x,hn . Thus, it suffices to study the asymptotic behavior of

Tn∑
k=1

Uk,x,hn =
Tn∑
k=1

(Uk,x,hn − µx,hn) +
Tn∑
k=1

µx,hn ,

where µx,hn = E[Uk,x,hn ]. The difficulty is that Tn is a random variable,
possibly dependent on Uk,x,hn . Now, define the number of visits to a com-
pact set C as TC(n) =

∑n
t=1 1{Xt ∈ C}. From Lemma 3.5 in KT01, it

follows that Tn and TC(n) are of the same almost-sure order. Furthermore,
given Assumption 1(i)-(iii), from Theorem 2 in Chen (1999), it follows that
TC(n) is of almost-sure order a(n). Hence, both Tn and TC(n) are of almost-
sure order a(n). Let, now, Ωn = {ω : ∆ ≤ limn→∞ Tn/a(n) ≤ ∆} with
0 < ∆ ≤ ∆ < ∞, and note that, because of Lemma 3.5 in KT01 and
Theorem 2 in Chen (1999), P (limn→∞Ωn) = 1. We can then proceed con-
ditionally on ω ∈ Ωn. Assume, without loss of generality, that a(n) is an
integer or, equivalently, interpret a(n) as [a(n)]. Given the independence of
the Uk,x,hn ’s:

E


 1
a(n)

a(n)∑
k=1

(Uk,x,hn − µx,hn)

2m


' 1
a(n)2m

a(n)∑
k1=1

. . .

a(n)∑
km=1

E
[
U2
k1,x,hn

]
. . . E

[
U2
km,x,hn

]
' 1
a(n)m

h−mn

where ' means “of the same order as”. The second “'” in the above equa-
tion follows from the fact that, given 1(iii), Lemma 5.2 in KT01 implies
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E[U2m
k,x,hn

] ≤ ch−2m+1
n . Thus, by Borel-Cantelli, letting hn = a(n)−ψ,

lim sup
n
P

∣∣∣∣∣∣ 1
a(n)

a(n)∑
k=1

(Uk,x,hn − µx,hn)

∣∣∣∣∣∣ > δ


≤ a(n)P

∣∣∣∣∣∣ 1
a(n)

a(n)∑
k=1

(Uk,x,hn − µx,hn)

∣∣∣∣∣∣ > δ


≤ a(n)
a(n)2mδ2m

E


a(n)∑
k=1

(Uk,x,hn − µx,hn)

2m


≤ cmδ−2ma(n)−m+1h−mn ≤ cmδ−2ma(n)−m+1+ψm,(10)

and a(n)−1∑a(n)
k=1 (Uk,x,hn − µx,hn) = oa.s.(1), provided −m+ψm < −1, i.e.,

ψ < m−1
m . Given A(iii), m can be set arbitrarily large, and then it just

suffices that h−1
n = o(a(n)). Thus,

L̂n,hn(x) = U0,x,hn +
Tn∑
k=1

Uk,x,hn + Un,x,hn

=
Tn∑
k=1

(Uk,x,hn − µx,hn) + Tnµx,hn + oa.s. (Tn)

=
an∑
k=1

(Uk,x,hn − µx,hn) + anµx,hn + oa.s. (an)

= oa.s(an) +Oa.s.(an),(11)

where the first term in the last equality in (11) holds when hnan → ∞.
Thus, as hnan →∞, we obtain hnL̂n,hn(x) a.s.→ ∞. This concludes the proof
of the “if” part. As for the “only if” part, note that the first three equalities
in (11) hold regardless of the speed at which hn approaches zero, hence

L̂n,hn(x) =
an∑
k=1

(Uk,x,hn − µx,hn) + anµx,hn + oa.s. (an) .

Now, given the independence of the Uk,x,hn ’s, V ar(
∑an
k=1(Uk,x,hn−µx,hn)) =

O(an/hn), and so
∑an
k=1(Uk,x,hn − µx,hn) = Op(

√
an/hn). Thus,

hnL̂n,hn(x) = Op
(√

anhn
)

+O (anhn) + oa.s. (anhn)

and hnL̂n,hn(x) a.s.→ ∞ only if hnan → ∞. In fact, if hnan → 0, then
hnL̂n,hn(x)

p→ 0. It remains to show that h5
nL̂n,hn(x) a.s.→ 0 if, and only
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if, h5
nan → 0. Now,

(12) h5
nL̂n,hn(x) = h5

n

an∑
k=1

(Uk,x,hn − µx,hn) + h5
nanµx,hn + oa.s.

(
h5
nan

)
,

and it is immediate to see that h5
nL̂n,hn(x) a.s.→ 0 only if h5

nan → 0. As for
the “if” part, whenever hna(n) → ∞, by the strong law of large numbers,∑an
k=1(Uk,x,hn − µx,hn) = oa.s.(a(n)), and thus, from (12), we observe that if

h5
nan → 0, then h5

nL̂n,hn(x)n
a.s.→ 0. On the other hand, if hna(n) = O(1) or

o(1), by the same steps used in (10):

lim sup
n
P

∣∣∣∣∣∣h5
n

a(n)∑
k=1

(Uk,x,hn − µx,hn)

∣∣∣∣∣∣ > δ


≤ a(n)h5×2m

n

δ2m
E


a(n)∑
k=1

(Uk,x,hn − µx,hn)

2m


≤ ca(n)m+1h9m
n = oa.s.(a(n)h5

n),

as a(n)h5
n → 0, for m ≥ 2. Thus, the second term on the right-hand side

of (12) is oa.s.(h5
na(n)). Hence, if h5

nan → 0, then h5
nL̂n,hn(x) a.s.→ 0. The

statement in the theorem now follows from Theorem 5.4 in KT01 by noting
that their conditions h−1

n = o(nβ−ε) and h−1
n = o(nβ/5+ε) are sufficient but

not necessary. In effect, their proof relies on the divergence rate of Tn, which
is almost-surely a(n). (b) By the same argument as in (a). Q.E.D.

Proof of Theorem 2. In the light of the stronger assumptions on the
residuals needed for autoregressions, the same arguments as those in the
proof of Theorem 4 imply the result. Q.E.D.

Proof of Theorem 3. (a) By the same argument as in the proof of
Theorem 1, hnL̂n,hn(x) a.s.→ ∞ and h5

nL̂n,hn(x) a.s.→ 0 if, and only if, hna(n)→
∞ and h5

na(n) → 0, respectively, since the divergence rate of L̂n,hn(x)
depends only on the behavior of the marginal process Xt. The statement
of the theorem then follows from Theorem 4.1 in Karlsen, Myklebust and
Tjøstheim (2007). (b) By the same argument as in (a). Q.E.D.

Proof of Theorem 4. (a) In the proof of Theorem 1, we have seen
that hnL̂n,hn(x) = hna(n)(1 + oa.s.(1)). Hence, we need to show that

sup
x∈Dx

∣∣∣f̂n,hµn(x)− f(x)
∣∣∣ = Op

(√
log(n)
hµna(n)

)
+O

(
(hµn)2

)
.
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Recalling that infx∈Dx ps(x) ≥ δ > 0, by the same argument used in the
proof of Theorem 4.2 in Gao, Li and Tjøstheim (2009), it suffices to focus
on the variance term and show that

(13) sup
x∈Dx

∣∣∣∣∣ 1
a(n)

n∑
t=1

α(Xt)εtKhµn
(Xt − x)

∣∣∣∣∣ = Op

(√
log(n)
hµna(n)

)
.

Now notice that, by condition (3),

sup
x∈Dx

∣∣∣∣∣ 1
a(n)

n∑
t=1

α(Xt)εtKhµn
(Xt − x)

∣∣∣∣∣
≤ sup

x∈Dx

∣∣∣∣∣ 1
a(n)

n∑
t=1

(
α(Xt)εtKhµn

(Xt − x)− E
[
Khµn

(Xt − x) εtα(Xt)
])∣∣∣∣∣

+ sup
x∈Dx

∣∣∣∣∣ 1
a(n)

n∑
t=1

E
[
Khµn

(Xt − x) εtα(Xt)
]∣∣∣∣∣ .

= sup
x∈Dx

∣∣∣∣∣ 1
a(n)

n∑
t=1

(
α(Xt)εtKhµn

(Xt − x)− E
[
Khµn

(Xt − x) εtα(Xt)
])∣∣∣∣∣

+Op

(√
log(n)
hµna(n)

)
.

Therefore, we can proceed as if E[Khµn
(Xt − x)εtα(Xt)] = 0 for all x ∈ Dx.

Without loss of generality, assume that Dx is an interval of length one. We
cover Dx with Qn = n/(a(n)1/2(hµn)3/2) balls Si, centered at si, of radius
a(n)1/2(hµn)3/2/n, i = 1, . . . , Qn. Now,

sup
x∈Dx

∣∣∣∣∣ 1
a(n)

n∑
t=1

α(Xt)εtKhµn
(Xt − x)

∣∣∣∣∣
≤ max

j=1,...,Qn

∣∣∣∣∣ 1
a(n)

n∑
t=1

α(Xt)εtKhµn
(Xt − sj)

∣∣∣∣∣
+ max
j=1,...,Qn

sup
x∈Sj

∣∣∣∣∣ 1
a(n)

n∑
t=1

α(Xt)εt
(
Khµn

(Xt − x)−Khµn
(Xt − sj)

)∣∣∣∣∣
= In,hµn + IIn,hµn .

Given Assumption 2(ii)-(iv) and (v), it is immediate to see that

IIn,hµn = Op

(
n

hµna(n)
a(n)1/2(hµn)3/2

nhµn

)
= Op

 1√
hµna(n)

 = op

(√
log(n)
hµna(n)

)
.
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As for In,hµn , given Assumption 2(i)-(iv),

In,hµn = max
j=1,...,Qn

∣∣∣∣∣ 1
a(n)

Tn∑
k=1

Zk(sj)

∣∣∣∣∣ (1 + oa.s.(1)) ,

where Zk(sj) =
∑τk
t=τk−1 α(Xt)εtKhµn

(Xt − sj), τk, k = 1, . . . , Tn, are the
regeneration times, and Tn is the number of complete regenerations. For
each j, Zk(sj), k = 1, . . . , Tn, is a sequence of iid random variables so that
maxj=1,...,Qn E[|Zk(sj)|2m) = O((hµn)−2m+1) (KT01, Lemma 5.2), with m
defined in the statement of the theorem. As shown in the proof of Theorem 1,
with probability one, ∆ ≤ limn→∞ Tn/a(n) ≤ ∆, hence we can replace a(n)
with Tn. Now, given Assumption 2(v), by the same argument used in Hansen
(2008), proof of Theorem 2), it follows that for some constant C,

lim
n→∞

Pr

 max
j=1,...,Qn

∣∣∣∣∣∣ 1
a(n)

a(n)∑
k=1

Zk(sj)1

|Zk(sj)| >
√
a(n)
hµn


∣∣∣∣∣∣ > η

 = 0.

where η = C
√

log(n)/(hµna(n)). Further, define Z̃k(sj) = Zk(sj)1{|Zk(sj)| ≤√
a(n)/hµn} so that, given Assumption 2(iv), by the Bernstein inequality for

zero mean iid sequences (e.g., Theorem 2.18 in Fan and Yao (2005)),

Pr

 max
j=1,...,Qn

∣∣∣∣∣∣ 1
a(n)

a(n)∑
k=1

Z̃k(sj)

∣∣∣∣∣∣ > η


≤ Qn exp

− η2a(n)

V ar
(
Z̃k(sj)

)
+ η supk

∣∣∣Z̃k(sj)∣∣∣


≤ Qn exp

−
C2 log(n)

hµna(n)
a(n)

c 1
hµn

+ C

√
log(n)
hµna(n)

√
a(n)
hµn


=

n

a(n)1/2(hµn)3/2
n−fC → 0,

with fC , an increasing function of C, and C finite but sufficiently large. (b)
By the same argument used to show (a). Q.E.D.

Proof of Theorem 5. (a) As in the case of previous theorems, we only
prove Part (a). We need to show that hnL̂n,hn(x) a.s.→ ∞ only if hn

√
n→∞

and, analogously, h5
nL̂n,hn(x) a.s.→ 0 only if h5

n

√
n→ 0. Given Assumption 3,
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the statement then follows from Theorem 3.1 in Wang and Phillips (2009b).
Write

1√
n
L̂n,hn(x) =

1√
n

n∑
j=1

Khn


∑j

i=1
ξi√

n
− x√

n

n−1/2

 =
cn
n

n∑
j=1

g (cnxj,n) ,

where g(s) = K(s) and cn =
√
n/hn. Hereafter, let φε(x) = 1

ε
√

2π
e−x

2/(2ε2)

for ε > 0. Along the lines of the proof of Theorem 2.1 in Wang and Phillips
(2009b):

1√
n
L̂n,hn(x) =

cn
n

n∑
j=1

g (cnxj,n)− cn
n

n∑
j=1

∫ ∞
−∞

g (cn(xj,n + zε))φ(z)dz


+

cn
n

n∑
j=1

∫ ∞
−∞

g (cn(xj,n + zε))φ(z)dz − 1
n

n∑
j=1

φε(xj,n)

+
1
n

n∑
j=1

φε(xj,n).

Let G(s) = ω0Ws, where Ws is a standard Brownian motion, and notice
that

sup
0≤r≤1

∣∣∣∣∣∣ 1n
[nr]∑
j=1

φε(xj,n)−
∫ r

0
φε(G(t))dt

∣∣∣∣∣∣
≤
∫ 1

0

∣∣∣∣φε(xnt,n)−
∫ r

0
φε(G(t))

∣∣∣∣ dt+
2
n

≤ Aε sup
0≤t≤1

∣∣∣x[nt],n −G(t)
∣∣∣+ 2/n = oa.s.

(√
2 log log n

)
,(14)

where Aε is a term depending on ε, and the last equality on the right-hand
side of (14) follows from the fact that, given Assumption 3(i), by Lemma 2.(i)
in Corradi (1999), uniformly in t ∈ [0, 1], |x[nt],n −G(t)| = oa.s.(

√
log log n).

Now, as ε→ 0,∫ r

0
φε(G(t))dt =

∫ ∞
−∞

φε(x)L(r, εx)dx = L(0, r) + oa.s.(1),

where L(0, r) is the local time of G(t) at spatial point 0 between time 0 and
time r. By Lemma 7 in Jeganathan (2004), for any ε > 0, and recalling that∫
K(u)du = 1,

cn
n

n∑
j=1

∫ ∞
−∞

g (cn(xj,n + zε))φ(z)dz − 1
n

n∑
j=1

φε(xj,n) = oa.s.(1).
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Finally, from the proof of Theorem 2.1 in (Wang and Phillips, 2009a, pp.726-
728),

cn
n

n∑
j=1

g (cnxj,n)− cn
n

n∑
j=1

∫ ∞
−∞

g (cn(xj,n + zε))φ(z)dz = op(1).

Thus,
1√
n
L̂n,hn(x) = L(0, 1) + oa.s.

(√
log log n

)
+ op(1),

that is

(15) hnL̂n,hn(x) =
√
nhnL(0, 1) + oa.s.

(√
nhn

√
log logn

)
+ op(

√
nhn).

Because L(0, 1) > 0 a.s., it is immediate to see that, whenever
√
nhn →∞,

then hnL̂n,hn(x) a.s.→ ∞. Similarly, if hnL̂n,hn(x) a.s.→ ∞, then
√
nhn → ∞.

Also,

h5
nL̂n,hn(x) =

√
nh5

nL(0, 1) + oa.s.
(√

nh5
n

√
log logn

)
+ op(

√
nh5

n).

Thus, if h5
nL̂n,hn(x) a.s.→ 0, then h5

n

√
n→ 0.On the other hand, h5

n

√
n→ 0 im-

plies h5
nL̂n,hn(x)

p→ 0, though it does not necessarily imply that h5
nL̂n,hn(x) a.s.→

0. Q.E.D.

Proof of Theorem 6. (a) As shown in Theorem 5, we have hnL̂n,hn(x) =
hnn

1/2(1 + oa.s.(1)). Hence, it suffices to show that

sup
x∈Dx

∣∣∣f̂n,hµn (x)− f (x)
∣∣∣ = Op

√ log(n)
hµnn1/2

+O
(
(hµn)2

)
.

Given the condition (3) with a(n) = n1/2, we can proceed as if Khµn
(Xt −

x)εtα(Xt) were a martingale difference sequence. By the same argument
used in the proof of Theorem 4, we simply need to show that

max
j=1,...,Q̃n

∣∣∣∣∣ 1
n1/2

n∑
t=1

α(Xt)εtKhµn
(Xt − sj)

∣∣∣∣∣ = Op

√ log(n)
hµnn1/2

 ,
where Q̃n = n3/4(hµn)−3/2. Given hµnE[exp{Khµn

(Xt−x)α(Xt)εt}] ≤ ∆ <∞,
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by Theorem 3.2 in Lesigne and Volný (2001), letting η = C
√

log(n)/(hµnn1/2),

Pr

(
max

j=1,...,Qn

∣∣∣∣∣ 1√
n

n∑
t=1

α(Xt)εtKhµn
(Xt − sj)

∣∣∣∣∣ > η

)

≤ Q̃n Pr

(∣∣∣∣∣
n∑
t=1

α(Xt)εtK
(
Xt − sj
hµn

)∣∣∣∣∣ > ηhµn
√
n

)

≤ Q̃n exp
(
−1

2
C∆η

2/3 (hµn√n)1/3) =
n3/4

(hµn)3/2
n−C∆fC → 0,

where 0 < C∆ < 1, with C∆ a decreasing function of ∆ and fC an increasing
function of C. The statement then follows for C large enough. Q.E.D.

Proof of Theorem 7. Below, we prove Part (b). Part (a) follows by
the same argument, given Theorem 2. We begin with the first moment con-
dition. For any sequence hn(x) ∈ Hn(x, ς),

n∑
i=1

ε̂i,hnwi,hµn(x) =
n∑
i=1

εiwi,hµn(x)−
n∑
i=1

f̂n,hµn (Xi)− f(Xi)
α(Xi)

wi,hµn(x)

+
n∑
i=1

α(Xi)− α̂n,hn(Xi)
α̂n,hn(Xi)

εiwi,hµn(x)

−
n∑
i=1

α(Xi)− α̂n,hn(Xi)
α(Xi)α̂n,hn(Xi)

(
f̂n,hµn (Xi)− f(Xi)

)
wi,hµn(x).(16)

It is immediate to see that the third term cannot be of larger order than the
first term and the fourth term cannot be of larger order than the second term
for all hn(x) ∈ Hn(x, ς). For bandwidth sequences in the setHn(x, ς), in fact,
supx∈Dx{f̂n,hµn(x)− f(x)} and supx∈Dx{α̂n,hn(Xi)− α(Xi)} are bounded in
probability given Theorem 4 or 6. Now, write

(17)
n∑
i=1

εiwi,hµn(x) =
1

γ(n)hµn

∑n
i=1 εi1 {|Xi − x| < hµn}

1
γ(n)hµn

∑n
i=1 1 {|Xi − x| < hµn}

,

where the denominator in (17) is Oa.s.(1), and bounded away from zero, for
γ(n) = a(n), under Assumption 2, by Theorem 3, for γ(n) = n1/2, under
Assumption 3, by Theorem 5, and for γ(n) = n in the stationary case, by
the strong law of large numbers. As for the numerator in (17), recalling that
E[εi1{|Xi−x| < hµn}] = o(1), the contribution of the bias term is negligible,
and thus it is Op((γ(n)hµn)−1/2). As for the second term in (16), by either
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Theorem 4 or Theorem 6:∣∣∣∣∣
n∑
i=1

f̂n,hµn (Xi)− f(Xi)
a(Xi)

wi,hµn(x)

∣∣∣∣∣
≤ sup

z:|x−z|≤hµn,x∈Dx

∣∣∣f̂n,hµn (z)− f(z)
∣∣∣ n∑
i=1

wi,hµn(x)
α(Xi)

=

Op
√√√√ log(n)

L̂n,hµn(x)hµn

+O
(
(hµn)2

)Op(1).

As shown in the proof of Theorem 1 and 5 respectively, for all x ∈ Dx,
L̂n,hµn(x)hµn is Oa.s.(a(n)hµn), in the β-recurrent case, Oa.s.(nhµn) when β = 1,
and Oa.s.(

√
nhµn) in the integrated case. Hence,

∑n
i=1 ε̂i,hnwi,hµn(x) is at least

of probability order (hµn)2 + 1/
√
γ(n)hµn and at most of probability order

(hµn)2 +
√

log n/(γ(n)hµn). We now turn to the second moment condition.

n∑
i=1

(
ε̂2i,hnwi,hµn(x)− 1

)
=

n∑
i=1

(
ε2i,hnwi,hµn(x)− 1

)
−

n∑
i=1

ε2iwi,hµn(x)
α̂2
n,hn

(Xi)

(
f̂

(2)
n,hσn

(Xi)− f (2) (Xi)
)

+
n∑
i=1

ε2iwi,hµn(x)
α̂2
n,hn

(Xi)

(
f̂n,hµn (Xi)

2 − f (Xi)
2
)

+
n∑
i=1

(
f̂n,hµn (Xi)− f (Xi)

)2

α̂2
n,hn

(Xi)
wi,hµn(x)

+ 2
n∑
i=1

(
f̂n,hµn (Xi)− f (Xi)

)
(Yi − f(Xi))

α̂2
n,hn

(Xi)
wi,hµn(x).(18)

It is immediate to see that, for all hn(x) ∈ Hn(x, ς), the fourth term in (18)
cannot be of larger probability order than the third term, while the fifth term
cannot be of larger probability order than the first and third terms. Hence,
the last two terms in (18) can be neglected. Since E[ε2i,hn |Xi = x]− σ2(x) =
o(1), the bias component is asymptotically zero and

∑n
i=1(ε2i,hnwi,hµn(x) −

1) = Op((γ(n)hµn)−1/2), where, again, γ(n) differs across the various cases.
As for the second term on the right-hand side of (18), because of either
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Theorem 4 or Theorem 6,∣∣∣∣∣
n∑
i=1

ε2iwi,hµn(x)
α̂2
n,hn

(Xi)

(
f̂

(2)
n,hσn

(Xi)− f (2) (Xi)
)∣∣∣∣∣

≤ sup
z:|x−z|≤hµn,x∈Dx

∣∣∣f̂ (2)
n,hσn

(z)− f (2) (z)
∣∣∣ n∑
i=1

ε2iwi,hµn(x)
α̂2
n,hn

(Xi)

=

Op
√√√√ log(n)

L̂n,hσn(x)hσn

+O
(
(hσn)2

)Op(1)

=

(
Op

(√
log(n)
γ(n)hσn

)
+O

(
(hσn)2

))
Op(1).

By the same argument,∣∣∣∣∣
n∑
i=1

ε2iwi,hµn(x)
α̂2
n,hn

(Xi)

(
f̂n,hµn (Xi)

2 − f (Xi)
2
)∣∣∣∣∣

is majorized by a Op(
√

log(n)/(γ(n)hµn))) +Op((hµn)2) term. Thus, the term∑n
i=1 ε̂i,hnwi,hµn(x) is at least of probability order (hµn)2 +1/

√
γ(n)hµn+hσ2

n +

1/
√
γ(n)hσn and at most of probability order (hµn)2 +

√
log n/(γ(n)hµn) +

(hσn)2 +
√

log n/(γ(n)hσn). The statement then follows directly from the def-
inition of h̃n(x). Q.E.D.

Proof of Theorem 8. We prove Part (b) as earlier. Part (a) follows
from the same argument, given Theorem 2. As for the first moment condi-
tion, by the triangle inequality, we note that, for all hn ∈ Hn(ς),

sup
x∈Dx

∣∣∣∣∣
n∑
i=1

ε̂i,hnwi,h(x)

∣∣∣∣∣
≤ sup

x∈Dx

∣∣∣∣∣
n∑
i=1

εi,hnwi,hµn(x)

∣∣∣∣∣+ sup
x∈Dx

∣∣∣∣∣
n∑
i=1

f̂n,hµn (Xi)− f(Xi)
α(Xi)

wi,hµn(x)

∣∣∣∣∣
+ sup
x∈Dx

∣∣∣∣∣
n∑
i=1

α(Xi)− α̂n,hn(Xi)
α̂n,hn(Xi)α(Xi)

εiwi,hµn(x)

∣∣∣∣∣
+ sup
x∈Dx

∣∣∣∣∣
n∑
i=1

α(Xi)− α̂n,hn(Xi)
α(Xi)α̂n,hn(Xi)

(
f̂n,hµn (Xi)− f(Xi)

)
whµn(x)

∣∣∣∣∣ .(19)

By the same argument used in either Theorem 4 or Theorem 6, we have
supx∈Dx |

∑n
i=1 εi,hnwi,hµn(x)| = Op(

√
log n/(γ(n)hµn)). Because the last two
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terms on the right-hand side of (19) cannot be of larger probability order
than the first two terms on Hn(ς), and because

sup
x∈Dx

∣∣∣∣∣
n∑
i=1

f̂n,hµn (Xi)− f(Xi)
α(Xi)

wi,hµn(x)

∣∣∣∣∣
≤ sup

z:|x−z|≤hµn,x∈Dx

∣∣∣f̂n,hµn (z)− f(z)
∣∣∣ sup
x∈Dx

n∑
i=1

wi,hµn(x)
α(Xi)

=

(
Op

(√
log n
γ(n)hµn

)
+O

(
(hµn)2

))
Op(1)

it follows that the left-hand side sup is at most Op(
√

log n/(γ(n)hµn)) +
Op((hµn)2). Also,

sup
x∈Dx

∣∣∣∣∣
n∑
i=1

ε̂i,hnwi,h(x)

∣∣∣∣∣
≥ sup

x∈Dx

∣∣∣∣∣
n∑
i=1

εi,hnwi,hµn(x)−
n∑
i=1

f̂n,hµn (Xi)− f(Xi)
α(Xi)

wi,hµn(x)

∣∣∣∣∣
− sup
x∈Dx

∣∣∣∣∣
n∑
i=1

α(Xi)− α̂n,hn(Xi)
ân,hn(Xi)a(Xi)

εiwi,hµn(x)

∣∣∣∣∣
− sup
x∈Dx

∣∣∣∣∣
n∑
i=1

α(Xi)− α̂n,hn(Xi)
α(Xi)α̂n,hn(Xi)

(
f̂n,hµn (Xi)− f(Xi)

)
whµn(x)

∣∣∣∣∣
and, thus, supx∈Dx |

∑n
i=1 ε̂i,hnwi,h(x)| is at least Op(

√
log n/(γ(n)hµn)) +

Op((hµn)2). By the same argument used in the proof of Theorem 7, it is
immediate to see that supx∈Dx |

∑n
i=1(ε̂2i,hnwi,hµn(x) − 1)| is (at most and at

least) Op((hµn)2 +
√

log n/(γ(n)hµn) + (hσn)2 +
√

log n/(γ(n)hσn)). The state-

ment then follows from the definition of h̃n in (9). Q.E.D.

Proof of Theorem 9. The methods used to prove Theorem 3 in Bandi,
Corradi and Moloche (2009) yield the result. Q.E.D.
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SUPPLEMENTARY MATERIAL

Supplement: Simulation Experiment
(). This supplementary document provides the details and results of a sim-
ulation experiment illustrating the performance of the bandwidth selection
procedure proposed in the main text.
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