Orthogonal Instruments: Estimating Price Elasticities in the Presence of Endogenous Product Characteristics

Gregory S. Crawford
Dept. of Economics
University of Warwick

with Dan Ackerberg and Jin Hahn
University of Michigan and UCLA
CREST, Paris
June 20, 2011

Introduction

- In structural econometric modeling, we often care most about a subset of the structural parameters
- In IO: price elasticities
- In Labor: returns to education (?)
- Current estimation approaches ignore this distinction
- Inference tends to be "all or nothing"

Introduction/Outline

- Purpose of this paper (and Outline for the talk):
(1) Propose a simple tool - "Orthogonal Instruments" - to estimate a single structural parameter of interest in the presence of a second, possibly-endogenous, explanatory variable
\star Orthogonal Instruments (Ols) \equiv instruments for the variable of interest that are uncorrelated with the second endogenous variable
(2) Demonstrate the consistency of Ols for the parameter of interest
\star Also: Discuss strategies to minimize and/or quantify asymptotic bias when Ols can't be found
(3) Apply these tools in a standard IO setting:
* Demand estimation

Differentiated Product Demand Models I

- Large area of research in empirical IO past 10-15 years has been models of differentiated product demand.
- Goal is to estimate a demand system for a differentiated product market
- This has many uses in industrial organization, marketing, strategy, e.g.
- Own-price and cross-price elasticities, for pricing, merger analysis, etc.
- Elasticities w.r.t. product characteristics
- Welfare effects of new products or price or characteristic changes
- Input into many other interesting IO questions

Differentiated Product Demand Models II

- Typically have product level data on markets across time or space.
- Observe prices, characteristics, and market shares of products in each market.

A Dimensionality Problem I

- Probably the biggest econometric hurdle in these models is a dimensionality problem:
- With a homogenous product, there is one demand curve to estimate:

$$
Q=\beta_{0}+\beta_{1} p+\varepsilon
$$

- With J differentiated products, there are J demand curves to estimate.

A Dimensionality Problem II

- Even if one uses a linear demand system

$$
\begin{aligned}
Q_{1} & =\beta_{0,1}+\beta_{1,1} p_{1}+\cdots+\beta_{J, 1} p_{J}+\varepsilon_{1} \\
& \vdots \\
Q_{J} & =\beta_{0, J}+\beta_{1, J} p_{1}+\cdots+\beta_{J, J} p_{J}+\varepsilon_{J}
\end{aligned}
$$

unless J is very small there are typically too many parameters to estimate.

Solutions in the Literature I

- Recent approaches reduce dimensionality by parameterizing elasticities based on observed product characteristics.
(1) Direct restrictions on coefficients in linear system
\star Hausman (1996), Pinske, Slade, and Brett (2002), Davis (2008)
(2) Hedonic utility/aggregated discrete choice approach
\star Bresnahan (1987), Berry, Levinsohn, and Pakes (1995) (BLP)
ڤ Specify consumer utility functions as a function of a product's observed and unobserved characteristics.
* Aggregate demands over consumers to get product level market shares.
* Typically built up from individual level discrete choice models.

Solutions in the Literature II

- Both approaches have advantages and disadvantages, although the second approach has arguably been more popular.
- We'll focus on the second approach, "Aggregated Discrete Choice Models",
- But the basic ideas of our paper are also applicable to the first approach.

Types of Aggregated Discrete Choice Models

- Aggregated Discrete Choice Models are very common in the empirical literature.
- There are three main types:
(1) Logit Model
(2) Nested Logit Model
(3) Discrete-Choice Random Coefficients Model (RCM)
- RCM most flexible in terms of substitution patterns.

Logit Model I

- Utility function (consumer i, product j)

$$
u_{i j}=\beta p_{j}+x_{j} \theta+\xi_{j}+\varepsilon_{i j}
$$

where

- x_{j} - observed (to econometrician) characteristics of product j
- p_{j} - price of product j
- ξ_{j} - unobserved characteristic of or demand shock for product j
- β, θ - parameters
- $\varepsilon_{i j}$ - idiosyncratic taste consumer i has for product j (i.i.d Extreme Value)

Logit Model II

- Consumer i chooses the product j that gives him/her the highest utility.
- Aggregating choices over consumers leads to the "market share" equation

$$
\begin{aligned}
s_{j} & =\int \cdots \int 1\left(u_{i j}>u_{i k} \quad \forall k \neq j\right) p\left(\varepsilon_{1}, \ldots, \varepsilon_{J}\right) \\
& =\frac{\exp \left[\beta p_{j}+x_{j} \theta+\xi_{j}\right]}{1+\sum_{k} \exp \left[\beta p_{k}+w_{k} \theta+\xi_{k}\right]}
\end{aligned}
$$

Nested Logit

- Nested Logit Model (Goldberg (1995), Bresnahan, Stern, and Trajtenberg (1997))

$$
u_{i j}=\beta p_{j}+x_{j} \theta+\zeta_{i g(j)}+\xi_{j}+\sigma \varepsilon_{i j}
$$

where

- $\zeta_{i g(j)}$ - consumer i's idiosyncratic taste for products in group g.

Discrete-Choice Random Coefficients

- Random Coefficients plus logit error (Berry, Levinsohn, and Pakes (1995))

$$
u_{i j}=\beta_{i} p_{j}+x_{j} \theta_{i}+\xi_{j}+\varepsilon_{i j}
$$

where

- β_{i} - consumer i's distaste for price;
- θ_{i} - consumer i 's taste for characteristics.
- Typically assume parameterized distributions for β_{i} and θ_{i}, e.g.

$$
\beta_{i} \sim N\left(\beta, \sigma_{\beta}^{2}\right), \quad \theta_{i} \sim N\left(\theta, \Sigma_{\theta}\right)
$$

Estimation I

- Estimation of these models involves matching market shares predicted by the model to market shares observed in the data.
- This can often be quite straightforward, e.g.
- Logit model generates an estimating equation of the form

$$
\ln \left(\frac{s_{j}}{s_{0}}\right)=\beta p_{j}+x_{j} \theta+\xi_{j}
$$

- Nested Logit model

$$
\ln \left(\frac{s_{j}}{s_{0}}\right)=\beta p_{j}+x_{j} \theta+\sigma \ln \left(s_{j \mid g}\right)+\xi_{j}
$$

Estimation II

- Random coefficients model is a bit more complicated
- Estimating equation looks as follows:

$$
\delta_{j}\left(\left\{s_{l}, w_{l}, p_{l}\right\}_{j=0}^{J} ; \Sigma_{\theta}, \sigma_{\beta}^{2}\right)=\beta p_{j}+x_{j} \theta+\xi_{j}
$$

- Computing the left hand side variable typically requires simulation and an inversion routine.
- Estimation typically proceeds using either linear methods (logit, nested logit) or GMM (random coefficients models).

Estimation III

- Researchers have typically worried about the possible endogeneity of price.
- If the residual ξ_{j} represents unobserved product characteristics or unobserved demand shocks for product j,
- Then a firm's profit maximizing price will generally depend on ξ_{j},
- Generating correlation and endogeneity.
- Estimation has typically proceeded using instruments for price,
- Linear IV methods in logit and nested logit cases,
- GMM with instruments for price in random coefficient models.

Price Instruments

Commonly used instruments for price:

- Cost shifters
- Characteristics of competing products (Bresnahan, BLP)
- "Other Prices" Instruments:
- Prices of the same product by the same firm in other markets夫 Hausman (1996), Nevo (2001)
- Prices of the same product by other firms in the same market ^ Crawford and Yurukoglu (2011)

Exogenous Characteristics: Why?

- By contrast, researchers have (admittedly) relied upon the assumption that product characteristics x are exogenous.
- Question: Why is this?
- Characteristics are choice variables just like price.
- Seems like these choices might also depend on ξ_{j}.
- Answers:
(1) There is an argument is that price may be "more endogenous" than product characteristics
* As price is often is a more flexible and variable decision than are product characteristics (e.g. automobiles).
(2) Perhaps the problem is too hard to deal with?

Exogenous Characteristics: Problems

- We agree with the first argument, but
(1) This will clearly depend on the product under study.
(2) Even if x is "less endogenous" than p, it still may be problematic.
- Note also that if x is incorrectly assumed exogenous, it will generally bias all the coefficients in the model
- Including the coefficient on price.
- This transmitted bias, e.g. to the price coefficient, might be expected to be less than any direct bias ...
- (were one not to be instrumenting for price)
- But one can easily construct examples where the bias is large.

Exogenous Characteristics: Solutions in the Lit I

A few solutions have been briefly discussed in the literature.
(1) Find instruments for endogenous product characteristics.

- Problems:
* Already hard enough to find valid instruments for price
* Unlike price, for which one often needs just one instrument, here one would need at least as many instruments as characteristics
* If residual ξ_{j} is an unobserved product characteristic that is chosen by firms, it could be hard to find a valid instrument.

Exogenous Characteristics: Solutions in the Lit II

A few solutions, cont:
(2) BLP briefly suggest a solution based on timing. Suppose one has panel data, i.e. markets over time.

$$
\ln \left(\frac{s_{j t}}{s_{0 t}}\right)=\beta p_{j t}+w_{j t} \theta+\xi_{j t}
$$

- Instead of considering a moment in $\xi_{j t}$, assume $\xi_{j t}$ follows a first order Markov process and consider a moment in the innovations in $\xi_{j t}$, i.e.

$$
E\left[\xi_{j t}-E\left[\xi_{j t} \mid \xi_{j t-1}\right] \mid w_{j t}, Z_{j t}\right]
$$

Exogenous Characteristics: Solutions in the Lit III

A few solutions, cont:
(2) BLP Soln, cont.:

- With appropriate assumptions on:
(1) The timing of the choice of product characteristics, and
(2) The information set of firms at various points in time One can show that this moment should equal zero.
- Similar to Olley and Pakes (1996) methodology for estimating production functions.
\star Reasonably demanding on the data, plus relies on fairly strong, non-directly-testable assumptions on unobservables.
* Applied in Sweeting (2007).

Exogenous Characteristics: Solutions in the Lit IV

A few solutions, cont:
(3) Formally model endogenous choice of product characteristics

- Paper by Crawford, Shcherbakov, and Shum (2006)
- Using results from screening literature
* e.g. Mussa and Rosen (1978), Rochet and Stole (2002)
- CS are able to explicitly model a multiproduct monopolist's choices of a one-dimensional product characteristic (and price).
- Problems:
* Very tied to assumptions of monopoly and that product characteristic space is one dimensional (or maybe discrete).
\star Would be much harder to do in oligopoly or with multidimensional characteristics. Lots of issues, including possible multiple equilibria.
* Identification questions

Our "Solution"

- Certainly simpler that those described above
- In some cases our "solution" will imply that existing estimation procedures provide consistent estimates of own- and cross-price elasticities,
- Even if product characteristics are endogenous.
- Whether or not this is the case
- i.e. whether existing procedures provide consistent estimates
will actually be testable.
- If it is not the case, there may be other things we can do

Our "Solution": Caveat

- One important caveat:
- We will assume that our primary concern is estimation of own and cross price elasticities,
* i.e. we will give up on estimating elasticities w.r.t. characteristics.
$\star \Rightarrow$ Only appropriate for answering price related (i.e. short run) policy questions.

Warm-up: OLS

- Our solution is based on a very simple econometric result...
- Consider a linear regression model

$$
\begin{equation*}
y_{i}=x_{i 1}^{\prime} \beta+x_{i 2}^{\prime} \theta+\varepsilon_{i} \tag{1}
\end{equation*}
$$

such that

- $x_{i 1}$ is exogenous $\left(E\left[x_{i 1} \varepsilon_{i}\right]=0\right)$, but
- but $x_{i 2}$ is not $\left(E\left[x_{i 2} \varepsilon_{i}\right] \neq 0\right)$.
- Because the regressor vector $\left(x_{i 1}^{\prime}, x_{i 2}^{\prime}\right)^{\prime}$ is correlated with the error ε_{i},
- A textbook argument establishes that the OLS estimator of the coefficient vector $\left(\beta^{\prime}, \theta^{\prime}\right)^{\prime}$ is inconsistent in general.

When is OLS estimator for β consistent? |

- We may ask if there are conditions under which the OLS estimator for β is consistent.
- For this purpose, write

$$
\varepsilon_{i}=x_{i 2}^{\prime} \gamma+\varepsilon_{i}^{*},
$$

where

- $\gamma=\left(E\left[x_{i 2} x_{i 2}^{\prime}\right]\right)^{-1} E\left[x_{i 2} \varepsilon_{i}\right]$ is the population regression coefficient when ε_{i} is regressed on $x_{i 2}$.
- Note that $E\left[x_{i 2} \varepsilon_{i}^{*}\right]=0$ by construction.

When is OLS estimator for β consistent? II

- We may then write

$$
\begin{equation*}
y_{i}=x_{i 1}^{\prime} \beta+x_{i 2}^{\prime}(\theta+\gamma)+\varepsilon_{i}^{*} \tag{2}
\end{equation*}
$$

- Question: If we regress y_{i} on $\left(x_{i 1}^{\prime}, x_{i 2}^{\prime}\right)^{\prime}$,
- Does the OLS estimator consistently estimate $\left(\beta^{\prime},(\theta+\gamma)^{\prime}\right)^{\prime}$?
- Answer: Only if $E\left[x_{i 1} \varepsilon_{i}^{*}\right]=0$ and $E\left[x_{i 2} \varepsilon_{i}^{*}\right]=0$.
- We are guaranteed that $E\left[x_{i 2} \varepsilon_{i}^{*}\right]=0$, but
- $E\left[x_{i 1} \varepsilon_{i}^{*}\right]=0$ is likely to be violated in general

When is OLS estimator for β consistent? III

- Why might $E\left[x_{i 1} \varepsilon_{i}^{*}\right] \neq 0$
- The new error term is $\varepsilon_{i}^{*}=\varepsilon_{i}-x_{i 2}^{\prime} \gamma$
- As such, $E\left[x_{i 1} \varepsilon_{i}^{*}\right]=E\left[x_{i 1} \varepsilon_{i}\right]-E\left[x_{i 1} x_{i 2}^{\prime}\right] \gamma$
- This will not be zero unless $E\left[x_{i 1} x_{i 2}^{\prime}\right]=0$ (which is testable)
- If $E\left[x_{i 1} x_{i 2}^{\prime}\right]=0$, then the OLS estimator consistently estimates $\left(\beta^{\prime},(\theta+\gamma)^{\prime}\right)^{\prime}$.
- In other words, the OLS estimator for β in the regression of y_{i} on $\left(x_{i 1}^{\prime}, x_{i 2}^{\prime}\right)^{\prime}$ in (1) or (2) is consistent.
- Bottom Line: When $x_{i 1}$ and $x_{i 2}$ are uncorrelated, bias from an endogenous $x_{i 2}$ doesn't get transmitted to β

What of in IV Settings? I

- It turns out that there is a similar result for IV models.
- We consider the similar linear regression model

$$
\begin{equation*}
y_{i}=x_{i 1}^{\prime} \beta+x_{i 2}^{\prime} \theta+\varepsilon_{i} \tag{3}
\end{equation*}
$$

where both $x_{i 1}$ and $x_{i 2}$ are endogenous.

- In IO applications, $x_{i 1}=p_{i}$, price, and $x_{i 2}=x_{i}$, characteristics.
- Suppose
- We have an instrument z_{i} for $x_{i 1}\left(E\left[z_{i} \varepsilon_{i}\right]=0\right)$, but
- No instrument for $x_{i 2}$.

What of in IV Settings? II

- We consider the properties of IV regression using z_{i} as instrument for $x_{i 1}$, but incorrectly treating $x_{i 2}$ as exogenous.
- Because $\left(z_{i}^{\prime}, x_{i 2}^{\prime}\right)^{\prime}$ is correlated with ε_{i},
- We can easily see that the IV estimator for $\left(\beta^{\prime}, \theta^{\prime}\right)^{\prime}$ is inconsistent.
- Our question is whether the estimator for β may be consistent under some conditions.
- Our main result: if z_{i} is uncorrelated with $x_{i 2}$, one will get consistent estimate of β, even with endogenous $x_{i 2}$.

What of in IV Settings? III

- In order to understand this result, we again write

$$
\varepsilon_{i}=x_{i 2}^{\prime} \gamma+\varepsilon_{i}^{*},
$$

where ε_{i}^{*} denotes the residual in the projection ε_{i} on $x_{i 2}$.

- Now, we rewrite the model

$$
\begin{equation*}
y_{i}=x_{i 1}^{\prime} \beta+x_{i 2}^{\prime}(\theta+\gamma)+\varepsilon_{i}^{*} \tag{4}
\end{equation*}
$$

Note:

- $x_{i 2}$ is uncorrelated with $\varepsilon_{i}^{*}\left(E\left[x_{i 2} \varepsilon_{i}^{*}\right]=0\right)$ by construction.

What of in IV Settings? IV

- Note also that

$$
E\left[z_{i} \varepsilon_{i}^{*}\right]=E\left[z_{i}\left(\varepsilon_{i}-x_{i 2}^{\prime} \gamma\right)\right]=E\left[z_{i} \varepsilon_{i}\right]-E\left[z_{i} x_{i 2}^{\prime}\right] \gamma=0
$$

if $E\left[z_{i} x_{i 2}^{\prime}\right]=0$.

- Following the identical logic as in the OLS case,
- It follows that the IV regression of y_{i} on $\left(x_{i 1}^{\prime}, x_{i 2}^{\prime}\right)^{\prime}$ using $\left(z_{i}^{\prime}, x_{i 2}^{\prime}\right)^{\prime}$
- Will produce a consistent estimator of $\left(\beta^{\prime},(\theta+\gamma)^{\prime}\right)^{\prime} \ldots$
- If z_{i} and $x_{i 2}$ are uncorrelated.

A Useful Result?

- This seems to us to be much more useful than the OLS result
- With OLS, either $x_{i 1}$ and $x_{i 2}$ are correlated or they are uncorrelated.
\star There is not much one can do if they are correlated.
- With IV, one often has a choice of what instrument z_{i} to use.
» Appropriate choice of instruments may lead to a desirable result.
- In our demand system context, we are suggesting looking for price instruments, z, that are uncorrelated with the potentially endogenous product characteristics, x.
- A nice aspect of this condition is that it is testable, since both z and x are observed.

Applications to DCMs in IO: Estimation

- Let's apply this result to aggregated discrete choice models.
- Start with the Logit model:

$$
\ln \left(\frac{s_{j}}{s_{0}}\right)=\beta p_{j}+x_{j} \theta+\xi_{j}
$$

- Assume both p_{j} and x_{j} are endogenous, but we only have an instrument z_{j} for p_{j}.
- Run IV using z_{j} as instrument for p_{j} but treating X_{j} as exogenous.
- Our previous result says that this will generate consistent estimates of the price coefficient β (but not the characteristics coefficients θ) if z_{j} is uncorrelated with x_{j}.

Applications to DCMs in IO: Comments

- We've also developed some extensions of this result:
- It is typically better to include x_{j} than drop it completely from the model. Why?
\star Because it reduces the asymptotic variance of $\hat{\beta}$
- What if you have multiple parameters of interest (common in aggregated DCMs)?
* If can find multiple Ols, then logic holds.

ฝ For aggregated DCMs, we can show you can consistently estimate not only all "price parameters," but (critically) also all the own- and cross-price elasticities.

Plan for the rest of the talk

- We've now established our basic results about the merits of Orthogonal Instruments
- Particularly as applied to ADMs commonly used in empirical IO
- The balance of the talk
- Discusses what types of instruments might be orthogonal
- Presents some preliminary results applying these ideas in US pay-television markets

What Types of Instruments Might be Orthogonal? I

- In our demand system context, is there a reason to think one might be able to find price instruments that are uncorrelated with product characteristics?
- We hope so...
- Recall that one interpretation of ξ is that it represents product characteristics that are observed by firms and customers but unobserved to the econometrician.
\star Standard IV condition is that z is uncorrelated with these unobserved product characteristics.
- If we can find z 's that are uncorrelated with these unobserved product characteristics...
* Shouldn't we be able to find z 's that are uncorrelated with the observed product characteristics?

What Types of Instruments Might be Orthogonal? II

What sort of data generating processes would generate such instruments?

- We are still thinking about these issues, but can describe one particular process.
- Want instruments that affect price-setting but do not affect choices of characteristics.
- Perhaps the easiest way to think of such an instrument is to think of a timing story.
\star Suppose product characteristics are chosen at some point in time prior to when price is set.
* Then what we optimally would want would be shocks that occur between these points in time and that are unanticipated by firms.
* For example, unanticipated shocks to input prices that occur between these points in time would be excellent instruments.

What Types of Instruments Might be Orthogonal? III

DGPs to generate orthogonal instruments, cont:

- This timing story is somewhat reminiscent of the Olley and Pakes (1996)-style identification strategy, but in contrast to that, this is a directly testable restriction.
- Currently thinking through what the implications are on various types of instruments, e.g. standard cost shifters, BLP "competitive" instruments and Hausman/Nevo "other price" instruments.
- Likely depends on the interpretation of ξ.
- Will revisit this in the context of our application

Bounding the Bias I

- What can we say when we cannot find any instrument that is orthogonal to a potentially-endogenous x_{2} ?
- We can't use our consistency and efficiency results
- We can, however, try to bound the magnitude of any bias
- Suppose, for the model

$$
y=x_{1} \beta+x_{2} \theta+\varepsilon
$$

- We have instruments z_{1} and z_{2} on x_{1}.
- We are concerned that x_{2} may be endogenous as well, but we don't have an instrument for x_{2}.

Bounding the Bias II

- We compare the asymptotic bias for β of the two IV estimators, one using z_{1} and the other one using z_{2}.
- Let $\hat{\beta}_{j}, j=\{1,2\}$ be the estimator of β using z_{j} as an instrument
- The asymptotic bias for each estimator is then

$$
\begin{aligned}
& \operatorname{plim} \widehat{\beta}_{1}-\beta=\frac{-E\left[z_{1} x_{2}\right]}{E\left[z_{1} x_{1}\right] E\left[x_{2}^{2}\right]-E\left[x_{2} x_{1}\right] E\left[z_{1} x_{2}\right]} E\left[x_{2} \varepsilon\right] \\
& \operatorname{plim} \widehat{\beta}_{2}-\beta=\frac{-E\left[z_{2} x_{2}\right]}{E\left[z_{2} x_{1}\right] E\left[x_{2}^{2}\right]-E\left[x_{2} x_{1}\right] E\left[z_{2} x_{2}\right]} E\left[x_{2} \varepsilon\right]
\end{aligned}
$$

- If, indeed, x_{2} is uncorrelated with ϵ, then there is no bias.
- Else, as usual, that bias is transmitted to β

Bounding the Bias: Intermediate Results I

- It turns out we can simplify this.
- We can use the identity

$$
\frac{-E\left[z_{1} x_{2}\right]}{E\left[z_{1} x_{1}\right] E\left[x_{2}^{2}\right]-E\left[x_{2} x_{1}\right] E\left[z_{1} x_{2}\right]}=-\frac{\frac{E\left[z_{1} x_{2}\right]}{E\left[x_{2}^{2}\right]}}{E\left[z_{1} x_{1}\right]-\frac{E\left[x_{2} x_{1}\right]}{E\left[x_{2}^{2}\right]} E\left[x_{2}^{2}\right] \frac{E\left[z_{1} x_{2}\right]}{E\left[x_{2}^{2}\right]}}=-\frac{\beta_{x_{2} z_{1}}}{E\left[z_{1} x_{1}\right]-E\left[\left(\beta_{x_{2} x_{1} x_{2}}\right)\left(\beta_{1} x_{2}\right)\right]}
$$

where

$$
\begin{aligned}
\beta_{x_{2} z_{1}} & =\frac{E\left[x_{2} z_{1}\right]}{E\left[x_{2}^{2}\right]}, \quad \beta_{x_{2} x_{1}}=\frac{E\left[x_{2} x_{1}\right]}{E\left[x_{2}^{2}\right]} \\
M_{x_{2}} z_{1} & =z_{1}-\beta_{x_{2} z_{1} x_{2}}, \quad M_{x_{2}} x_{1}=x_{1}-\beta_{x_{2} x_{1} x_{2}}
\end{aligned}
$$

Note:

- $\beta_{x_{2} z_{j}}=$ the correlation between our x_{1}-instrument, z_{j}, and x_{2} (ideally this would be zero)
- $M_{x_{2}} x_{1}, M_{x_{2}} z_{j}=x_{1}, z_{j}$, controlling for x_{2}.

Bounding the Bias: Intermediate Results II

- Noting that

$$
\begin{aligned}
E\left[z_{1} x_{1}\right]-E\left[\left(\beta_{x_{2} x_{1} x_{2}}\right)\left(\beta_{x_{2} z_{1}} x_{2}\right)\right] & =E\left[\left(\beta_{x_{2} z_{1} x_{2}}+M_{x_{2}} z_{1}\right)\left(\beta_{x_{2} x_{1} x_{2}}+u\right)\right]-E\left[(\beta _ { x _ { 2 } x _ { 1 } x _ { 2 } }) \left(\beta_{x_{2} z_{1} x_{2}}\right.\right. \\
& =E\left[x_{1} M_{x_{2}} z_{1}\right]
\end{aligned}
$$

we can conclude that the ratio in the bias formula is just

$$
\begin{gathered}
\frac{-E\left[z_{1} x_{2}\right]}{E\left[z_{1} x_{1}\right] E\left[x_{2}^{2}\right]-E\left[x_{2} x_{1}\right] E\left[z_{1} x_{2}\right]}=-\frac{\beta_{x_{2} z_{1}}}{E\left[x_{1} M_{x_{2}} z_{1}\right]} \\
\frac{-E\left[z_{2} x_{2}\right]}{E\left[z_{2} x_{1}\right] E\left[x_{2}^{2}\right]-E\left[x_{2} x_{1}\right] E\left[z_{2} x_{2}\right]}=-\frac{\beta_{x_{2} z_{2}}}{E\left[x_{1} M_{x_{2}} z_{2}\right]}
\end{gathered}
$$

Bounding the Bias: An Intuitive Formula

$\operatorname{plim} \widehat{\beta}_{1}-\beta=\frac{-E\left[z_{1} x_{2}\right]}{E\left[z_{1} x_{1}\right] E\left[x_{2}^{2}\right]-E\left[x_{2} x_{1}\right] E\left[z_{1} x_{2}\right]} E\left[x_{2} \varepsilon\right]=-\frac{\beta_{x_{2} z_{1}}}{E\left[x_{1} M_{x_{2}} z_{1}\right]} E\left[x_{2} \varepsilon\right]$

- In other words, the asymptotic bias depends on three factors
- The correlation between our instrument and the potentially endogenous variable ($\beta_{x_{2} z_{j}}$)
- The strength of our instrument for our variable of interest, controlling for $x_{2}\left(E\left[x_{1} M_{x_{2}} z_{j}\right]\right)$, and
- The correlation between our the potentially endogenous variable and the error, $E\left[x_{2} \varepsilon\right]$

Bounding the Bias: How to use? I

We can use our bias results in a number of ways:
(1) Selecting an instrument to minimize asymptotic bias:

- In particular, we may want to consider choosing an instrument depending on whether

$$
\left|\frac{\beta_{x_{2} z_{1}}}{E\left[x_{1} M_{x_{2}} z_{1}\right]}\right| \lesseqgtr\left|\frac{\beta_{x_{2} z_{2}}}{E\left[x_{1} M_{x_{2}} z_{2}\right]}\right|
$$

Bounding the Bias: How to use? II

How to use our bias results, cont.:
(2) Perhaps we can bound the absolute magnitude of the bias?

- If we are willing to make an assumption on ε,
\star For example, that $\operatorname{sd}(\varepsilon)<\operatorname{sd}(y)$
\star (As would be true as long as the explanatory variables and ε are not too negatively correlated)
- Then

$$
\begin{aligned}
\operatorname{abs}\left(\operatorname{cov}\left(x_{2}, \varepsilon\right)\right) & <\operatorname{sd}\left(x_{2}\right) \operatorname{sd}(\varepsilon) \\
& <\operatorname{sd}\left(x_{2}\right) \operatorname{sd}(y)
\end{aligned}
$$

- And we can bound the bias:

$$
a b s(\text { bias })<\frac{\beta_{x_{2} z_{1}}}{E\left[x_{1} M_{x_{2}} z_{1}\right]} \operatorname{sd}\left(x_{2}\right) s d(y)
$$

Empirical Application: US Pay-TV Markets I

- Data on demand for cable systems. Goal is to estimate price elasticity of demand.
- e.g. To measure cable system market power;
- How market power has changed in response to satellite competition, etc.
- Observe prices, service characteristics, and market shares for cross section of approximately 4,000 cable systems across the US in 1995.
- (Crawford and Yurukoglu (2011) use information on 25,000 bundle-years from 1997-2007 that we will soon bring in)

Empirical Application: US Pay-TV Markets II

- Keep things simple. We consider a logit demand model:

$$
u_{i j n t}=X_{j n t} \beta-\alpha p_{j n t}+W_{j n t} \gamma+\xi_{j n t}+\varepsilon_{i j n t}
$$

- We only consider one service characteristic $\mathrm{X}_{\text {jnt }}$ - the number of cable programming networks offered on service j in market n in year t
- $W_{j n t}$ are other explanatory variables that are assumed exogenous.
- In a given market, cable system may offer a number of alternative products j (e.g. basic, expanded basic) characterized by different prices and number of networks.

Empirical Application: US Pay-TV Markets III

- What's in $\xi_{j n t}$? Possibilities include:
- Unobserved-to-the-econometrician tastes (for price and/or quality) across markets and time
- Unobserved quality of offered products
* Particularly likely if only condition on total number of channels
- Unobserved additional services (e.g. broadband, voice) offered by the firm
- We are in the process of thinking through the implications of each of these for the plausibility of various Ols

Empirical Application: US Pay-TV Markets IV

- We consider a number of potential instruments for price:
(1) hp - Homes Passed - the number of homes potentially served by the system. May create bargaining power with television networks.
(2) tcx - Average Affiliate Fees - average fees charged by networks on a particular cable system.
(3) msosubs - Multiple System Operator (MSO) Subscribers - many operators own multiple cable systems across the country (e.g. Comcast, Cox).
* This is the total number of subscribers on an operator's systems. Again, this could affect bargaining power.
(9) tip - prices in other markets (à la Hausman (1996) and Nevo (2001)) of the same MSO.
* Idea is that this will pick up supply shocks.
(0) (Not yet: prices in same market of other firms (à la Crawford and Yurukoglu (2011)).

First-Stage Results

- First stage results (all instruments used separately):

Instrument	Coefficient
hp	-0.51
	(0.06)
tcx	1.287
	(0.110)
msosubs	-0.337
	(0.019)
tip	0.642
	(0.017)

- All highly significant and with expected signs (though no clustering)

Correlation of Instruments with Product Characteristic

- Regression of product characteristic on the various instruments plus bias bounds.

	Regression coef	Bound on abs bias
	$\beta_{x_{2} z_{j}}$	$\frac{\beta_{x_{2} z_{j}}}{E\left[p M_{x_{2}} z_{j}\right]}$
Hp	0.157	0.42
	(0.008)	
Tcx	4.698	2.43
	(0.030)	
Msosubs	0.217	0.08
	(0.027)	
Tip	-0.024	0.004
	(0.027)	

- Suggests that tip may be the best instrument - insignificant regression coefficient and very small bias.

Estimated Price Coefficients

- Estimated price coefficients using each of the instruments separately

	Price Coefficient
OLS	-0.038
	(0.002)
Hp	-0.022
	(0.022)
Tcx	-0.024
	(0.015)
msosubs	-0.025
	(0.010)
Tip	-0.070
	(0.005)

- Fairly large differences across specifications. Implied elasticities between -0.24 and -1 . General consensus is that elasticities are closer to -1 .
- Tip related instruments provide the most reasonable estimates, consistent with finding that they are the most robust to endogenous characteristics.

Extensions I

Extensions to the simple framework presented here:
(1) Non-parametrics

$$
y=g\left(x_{1}, x_{2}, \varepsilon\right)
$$

where x_{1} and x_{2} are endogenous.

- Consider identification under the assumption that the instrument z is independent of $\left(x_{2}, \varepsilon\right)$.
- Let $\varepsilon^{*}=F\left(\varepsilon \mid x_{2}\right)$ and $g^{*}\left(x_{1}, x_{2}, \varepsilon^{*}\right) \equiv g\left(x_{1}, x_{2}, F^{-1}\left(\varepsilon^{*} \mid x_{2}\right)\right)$
- Under a monotonicity assumption similar to that in Chernozukov, Imbens, and Newey (2007), can show

$$
\frac{\partial g^{*}\left(x_{1}, x_{2}, \varepsilon^{*}\right)}{\partial x_{1}}=\frac{\partial g\left(x_{1}, x_{2}, \varepsilon\right)}{\partial x_{1}}
$$

is identified.

Extensions II

(2) Uses beyond Industrial Organization

- Seems to us that Orthogonal Instruments may also be useful for general IV situations
- Seems quite common to be interested in a subset of the structural parameters, e.g.
* Returns to education but not to experience, tenure, etc.
- Examining correlations between instruments and "exogenous" variables can tell you how robust your estimates are to those "exogenous" variables actually being endogenous.
- Also may provide a way of choosing between instruments.

Conclusions

- Perhaps endogenous product characteristics in differentiated product demand models is not as problematic as commonly thought.
- We derive conditions under which we can show that standard estimation procedures provide consistent estimates of price derivatives and elasticities
- These conditions are testable and have implications on what price instruments one might want to be using use in practice.
- Also sheds light on what sort of data-generating processes would be most likely to generate such instruments.
- Idea seems to work reasonably well in a simple example.

Next Steps

- Extend the data and analysis to more systems, years, etc.
- As in Crawford and Yurukoglu (2011)
- Further develop our thinking about the timing of decisions in pay-television markets
- Seems reasonable that number of channels "more exogenous" in the short-run than prices
- In which case can use changes in costs / other prices / similar to identify likely-to-be-orthogonal instruments.

Bỉrry, S., J. Levinsohn, and A. Pakes (1995): "Automobile Prices in Market Equilibrium," Econometrica, 63(4), 841-890.
Besnahan, T. (1987): "Competition and Collusion in the American Auto Industry: The 1955 Price War," Journal of Industrial Economics, 35(4), 457-482.
Beipesnahan, T., S. Stern, and M. Trajtenberg (1997): "Market Segmentation and the Sources of Rents from Innovation: Personal Computers in the late 1980s," Rand Journal of Economics, pp. S17-S44.
Cternozukov, V., G. Imbens, and W. Newey (2007):
"Instrumental variable estimation of nonseparable models," Journal of Econometrics, 139(1), 4-14.
© Modeling of Endogenous Quality Choice: The Case of Cable Television," mimeo, University of Arizona.
Cenfford, G., and A. Yurukoglu (2011): "The Welfare Effects of Bundling in Multichannel Television Markets," forthcoming, American Economic Review.

Dinis, P. (2008): "Spatial Competition in Retail Markets: Movie Theaters," Rand Journal of Economics, 37(4), 964-982.
Goldberg, P. (1995): "Product Differentiation and Oligopoly in International Markets: The Case of the US Automobile Industry," Econometrica, 63, 891-951.
畘usman, J. (1996): "Valuation of New Goods under Perfect and Imperfect Competition," in The Economics of New Goods, ed. by T. Bresnahan, and R. Gordon. University of Chicago Press.

Russa, M., and S. Rosen (1978): "Monopoly and Product Quality," Journal of Economic Theory, 18(2), 301-17.
Revo, A. (2001): "Measuring Market Power in the Ready-To-Eat Cereal Industry," Econometrica, 69(2), 307-342.
Oley, S., and A. Pakes (1996): "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, 64, 1263-1297.
Painske, J., M. Slade, and C. Brett (2002): "Spatial Price Competition," Econometrica, 70(3), 1111-1153.

Rochet, J.-C., and L. A. Stole (2002): "Nonlinear Pricing with Random Participation," Review of Economic Studies, 69(1), 277-311. Suteting, A. (2007): "Dynamic Product Repositioning in Differentiated Products Industries: The Case of Format Switching in the Commercial Radio Industry," Working Paper, Duke University.

Bounding the Bias: How to use?

How to use our bias results, cont.:
(2) Minimizing the asymptotic bias using a linear combination of instruments

- Let $\delta_{1} z_{1}+\delta_{2} z_{2}$ be an instrument.
- We then have the asymptotic bias proportional to

$$
-\frac{\delta_{1} \beta_{x_{2} z_{1}}+\delta_{2} \beta_{x_{2} z_{2}}}{\delta_{1} E\left[x_{1} M_{x_{2}} z_{1}\right]+\delta_{2} E\left[x_{1} M_{x_{2}} z_{2}\right]}
$$

- We can eliminate the asymptotic bias if $\delta_{1}=1$ and $\delta_{2}=-\frac{\beta_{x_{2}} z_{1}}{\beta_{x_{2} z_{2}}}$.
- Unfortunately, our efficiency results are for orthogonal instruments, not for "estimated orthogonal instruments".
* If we have two instruments, might we not instead just do "vanilla IV", i.e. instrument for x_{1} and x_{2} with z_{1} and z_{2} ?

