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1 Introduction

1) It’s hard to believe the standard assumption that product characteristics in demand models are

exogenous.

2) Maybe even harder to find instruments for endogenous product characteristics - 1) probably

need alot of them. 2) if part of the error term is an ”unobserved product characteristic” that is also

chosen by the firm, it is hard to imagine one could ever find an ”instrument” that is correlated with

the observed product characteristics but uncorrelated with the unobserved product characteristics.

3) Alternative approaches - Crawford Shum approach - explicitly model firms choice of char-

acteristics. nice approach, but definitely some limitations. Gets very hard very quickly - CS can

only look at monopoly situations with one, observed product characteristic. . Ask Greg about

identification issues.

4) Ackerberg, Berry, Benkard, and Pakes briefly mention a possible approach to dealing with

endogenous product characteristics. This approach is similar to that of Olley-Pakes and the liter-

ature stemming from there - basically one assumes that . Two potential issues with this method

are: 1) can’t deal with endogenous unobserved product characteristics, 2) relies on non-directly

testable informational assumptions on unobservables. In contrast, our identification will hinge on

at least partially testable informational assumptions on observables (our price instruments). In

many cases, one will need to rely on informational assumptions on unobservables as that might
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ackerber@econ.ucla.edu or Gregory S. Crawford, Department of Economics, University of Arizona, Tuc-
son, AZ 85721-0108, phone 520-621-5247, email crawford@eller.arizona.edu.
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be the only alternative. But it seems preferable to make such an assumption on observables if

possible .

5) Our paper starts with the observation that one does not always need to estimate causal

effects of changing characteristics - for many questions, e.g. most short-run antitrust questions,

one is primarily interested in own and cross price elasticities. For other questions, e.g. hedonic

issues, causal effects of characteristics are likely more important.

6) If this is the case, we show that under some conditions, one can consistently estimate these

price elasticities. These conditions concern correlations between instruments and the endogenous

product characteristics. Note that we are not really doing anything different than standard, e.g.

BLP model - only difference would be in thinking about what makes a good instrument, and maybe

trying to construct instruments that satisfy these properties, possibly from existing instruments..

7) Sheds light on what make good price instruments in these demand models - in particular,

what make good price instruments when product characteristics are endogenous.

2 Econometric Preliminaries

We start by discussing some relatively simple econometric results that are relevant for our treat-

ment of endogenous product characteristics. These results all concern instrumental variables

estimation of casual effects in the presence of covariates. A key difference from the standard

treatment of instrumental variables is that we will consider a situation where one is not interested

in estimating the casual effects of the covariates (on the dependent variable). This allows us to

use identification conditions that are different than the standard IV conditions. We later argue

that these alternative identification conditions are particularly useful in a situation where product

characteristics are endogenous. Another interesting attribute of these alternative identification

conditions is that they are partially testable. We start by showing these ideas in a linear situation,

and then generalize the ideas to the non-parametric model of Chernozhukov, Imbens, and Newey

(2006).

2.1 Linear Model

Consider a linear model of the form

(1) yi = β1xi + β2pi + εi

β1 and β2 respectively measure the causal effects of observables xi and pi on yi. εi represents

unobservables that also affect yi. Looking ahead to our application, one might interpret (1) as

the demand curve for a product whose characteristics and price vary across markets - pi is the

price in market i, xi is an L-vector of the product’s characteristics in market i, and yi is quantity

2



demanded. εi are unobservables that could represent either characteristics of the product that are

not observed by the econometrician or demand shocks in market i.

Throughout, we will assume that pi is potentially correlated with εi, i.e. that it is endogenous.

We will also consider the possibility that xi is endogenous. As mentioned in the introduction and

above, a key distinction between xi and pi is that we assume that we are primarily interested in

estimating the causal effect of pi on yi. In contrast we are less interested or not interested in the

causal effects of xi on yi. We assume that we observe zi, a potential instrument for pi. In the

demand context, one can think of zi as a cost shifter. In contrast, we assume we do not have

outside instruments for the covariates xi. WLOG, all variables are assumed mean-zero.

Consider IV estimation of (1) using (xi, zi) as instruments for (xi, pi). Aside from regularity

and rank conditions, the typical assumptions made to ensure identification of the causal effect β2

are

Assumption L1: E [εizi] = 0, E [εixi] = 0

Note that for simplicity we are considering the necessity for the instrument zi to be correlated

with pi (conditional on xi) as a ”rank” condition. This will be implicitly assumed throughout.

There are two compoments of Assumption (L1). The first states that zi is a valid instrument

for pi, i.e. it is uncorrelated with the residual. As is well known, without outside instruments,

E [εixi] = 0 is also generally necessary for identification of β2. Even if E [εizi] = 0, any correlation

between εi and xi will generally render IV estimates of β2 inconsistent.This ”transmitted bias” in

analagous to that when one uses OLS when one regressor is exogenous and another is endogenous

- in that case, OLS generally produces inconsistent estimates of both coefficients.

Now consider the following alternative set of assumptions

Assumption L2: E [εizi] = 0, E [zixi] = 0

Note the distinction between (L1) and (L2) arises in the second component - while (L1) requires

xi to be uncorrelated with εi, (L2) requires xi to be uncorrelated with zi.

One can easily show that (again assuming regularity and rank conditions hold) that (L2)

ensures identification of the causal effect β2. To see this, decompose εi into its linear projection

on xi and a residual, i.e.

εi = λxi + ε̃i

and consider the transformed model

(2) yi = β̃1xi + β2pi + ε̃i

where β̃1 = β1 + λ.
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By construction,

(3) E [ε̃ixi] = 0

In addition,

(4) E [ε̃izi] = E [(εi − λxi)zi] = E [εizi]− λE [xizi] = 0

by (L2). Together, (3), (4) imply that the transformed model (2) satisfies (L1). Hence, applying

IV to this model produces consistent estimates of β̃1 and β2. While β̃1 = β1 + λ is not the causal

effect of xi on yi, β2 is the causal effect of pi on yi, so IV under (L2) consistently estimates the

parameter we are interested in.

There are a couple of intuitive ways to think about this result. First, for some intuition behind

why this works, note that under (L2), we could simply ignore xi - lumping it in with the error

term. This results in the model

yi = β2pi + (β1xi + εi)

Since zi is uncorrelated with both xi and εi, it is uncorrelated with the composite error term

(β1xi + εi). Hence, IV consistently estimates β2. Of course, one would never do this in practice, as

the resulting estimator would be inefficient relative to the one including xi as a covariate. A second

source of intuition behind the result is that because xi and zi are uncorrelated, the ”transmitted

bias” on β2 described above disappears. This is again analagous to the more well-known OLS

result - suppose that pi is exogeous and xi is endogenous - in this case OLS can consistently

estimate the causal effect of pi when pi and xi are uncorrelated. However, in a moment we argue

that this is a much more powerful result in an IV setting.

In summary, we can obtain consistent estimates of the causal effect of pi on yi even if other

covariates xi are endogenous and we have no outside instruments for them. We feel that this

is an underappreciated result for a number of reasons. First, it is always preferable to have

more possible identifying assumptions - in some cases, one simply might be more willing to make

assumption (L2) than assumption (L1). Second, an important distinction between (L1) and (L2)

is that while (L1) is not a directly testable set of assumptions1, part of (L2) is directly testable.

Specifically, one can fairly easily check whether E [zixi] = 0 in one’s dataset. It seems to us that

if this condition appears to hold, there is no reason to make the non-directly testable assumption

that E [εixi] = 0. Thirdly, taking somewhat of a Bayesian perspective, we feel that in some

cases, verifying that E [zixi] = 0 may make us more confident in the untestable assumption that

E [εizi] = 0. The basic idea here is that if εi is analagous to xi (except for the fact that εi is

1It could be indirectly testable in the case where one has overidentifying restrictions, but those tests rely on
auxiliary assumptions.
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unobserved to the econometrician), e.g. xi are observed product characteristics, εi are unobserved

(to the econometrician) product characteristics, a finding that E [zixi] 6= 0 might make one worried

that E [εizi] = 0. In our empirical model we investigate this idea further.

Lastly, compare this result to the OLS result described above where pi is exogeous and xi is

endogenous. In the OLS case, pi and xi will either be correlated or not - there is not much one

can do to estimate the causal effect of pi if they are correlated. On the other hand, in the IV case,

there is the possibility that one has multiple instruments for pi. In this case, one can explicitly

look for potential instruments that satisfy E [zixi] = 0. If one can find such an instrument (or

instruments), we have shown that one can estimate β2 consistently even with an endogenous xi.

This result is therefore important for the instrument selection issue when one is concerned about

an endogenous xi. It seems to us that one should be looking for instruments that satisfy this

property. Later, this ends up being a key goal of our empirical model. Even if one is reasonably

comfortable assuming that xi is exogenous, it seems to us that considering E [zixi] might be useful

to examine possible ”robustness” to violations of this assumption.

2.2 Non-linear Models

We next examine if this result holds up as we move to more flexible, non-parametric models.

As an example, we consider the non-parametric IV model of Chernozhukov, Imbens, and Newey

(2006) (CIN), i.e.

(5) yi = g(xi, pi, εi)

where xi and pi are defined as above. Two important restrictions of the CIN model are that εi

is a scalar unobservable and that g is strictly monotonic in εi. While this does allow for some

forms of unobservable heterogeneous treatment effects (where the effect of pi on yi depends on

unobservables) it is not completely flexible in this dimension. On the other hand, the model

is completely flexible in allowing heterogenous treatment effects that depend on the observed

covariates xi. CIN normalize the distribution of εi to be U(0, 1) - this is WLOG because of the

non-parametric treatment of g - intuitively, an appropriate g can turn the uniform random variable

into whatever distribution one wants.

The analogue of causal effects in the CIN model are ”quantile treatment effects”. Specifically,

g(x′i, p
′
i, qτ )− g(xi, pi, qτ )

is the causal effect on yi from moving from (xi, pi) to (x′i, p
′
i), evaluated at the τth quantile of the

εi distribution. Given the above normalization of εi to be U(0, 1), this is also the causal effect of

moving from (xi, pi) to (x′i, p
′
i) conditional on εi = qτ . As in the above linear model, we assume

that we are only interested in estimating the causal effects of changing pi. In other words, the
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”quantile treatment effects” we are interested in are all given a fixed xi (i.e. involve x′i = xi).

Again ignoring regularity and rank conditions, the key identification assumption of CIN is

Assumption N1: (xi, zi) are jointly independent of εi

This independence condition is considerably stronger than the zero correlation conditions in the

linear model, but that is what is typically required for non-parametric identification of these sorts

of models. More importantly for our purposes, while this assumption allows arbitrary correlation

between pi and εi, it assumes that xi is exogenous.

Our question is whether, as was done in the linear model, we can replace the assumption that

εi is independent of xi with an alternative assumption relying more on assumptions regarding the

relationship between xi and zi. It turns out we can. Consider

Assumption N2: (xi, εi) are jointly independent of zi

To consider estimation under (N2), we first show that (N2) implies that εi and zi are inde-

pendent conditional on xi. To prove this, note that

p(zi, εi|xi) =
p(zi, εi, xi)

p(xi)

=
p(zi)p(εi, xi)

p(xi)

= p(zi)p(εi|xi)

= p(zi|xi)p(εi|xi)

where the second and last equalities follow from (N2).

What is the meaning of this result? (N2) states directly that our instrument is valid (in the

sense of being independent of εi) in the entire population. This simple implication of (N2)

says that our instruments continue to be valid even after conditioning on xi. That is to say,

conditioning on xi does not generate correlations between zi and εi. The importance of this result

is quite intuitive - it says we can simply condition on xi to avoid the problem of xi being correlated

with εi - doing this conditioning does not destroy the properties of our instrument.

To formally do this conditioning, assume that xi has a discrete support to avoid technical

issues. Pulling the xi dependence into the g function, we get

(6) yi = gxi
(pi, εi)

Think about estimating this transformed model separately for each possible value in the support of

xi. As just shown, conditional on being at each of these support points, εi and zi are independent.

Of course, because of the correlation between εi and xi, the distribution of εi will vary across these

support points. At each support point, renormalize the distribution of εi to be U(0, 1) - this only
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involves changing gi. This transformed model now satisfies (N1) - hence, the CIN result suggests

that we can estimate quantile treatment effects of this transformed model.

Importantly, because we have completely conditioned on xi, our quantile treatment effects are

conditioned completely on xi. That is,

gxi
(p′i, qτ )− gxi

(pi, qτ )

is the causal effect on yi from moving from (pi) to (p′i), evaluated at the τth quantile of the εi

distribution conditional on xi. These are slightly different than the quantile treatment effects of

the untransformed model, but fine for our empirical purposes.

Summarizing, we have shown that as in the linear model, we do not have to necessarily assume

that the covariates xi are exogenous to estimate the causal effect of pi on yi. We can instead look

for instruments for pi that appear to be independent of the covariates xi. Note that assumption

(N2) is not quite as testable as in the linear case. Not only does zi have to be independent of each

of xi and εi individually, but zi has do be independent of the entire joint distribution of (xi, εi).

The only part of this that is directly testable is that zi is independent of xi. However, this still

should be a useful test. In addition, again appealing to a Bayesian perspective, finding evidence

that zi is independent of xi may be supportive of the assumption that zi is independent of εi and

the joint distribution (xi, εi).

Before continuing, note that there is a third possible identifying assumption that one could

also use to identify the above model. One could directly make the assumption that εi and zi are

independent conditional on xi, i.e.

Assumption N3: (zi, εi) are independent conditional on xi

Identification of conditional quantile treatment effects under this assumption follows directly

from the above. Note that while (N2) implies (N3), the reverse is not so. We think there are

at least two important examples when this is the case. First, note that under (N3), there can

actually be correlation not only between zi and xi, but also between xi and εi. Suppose, for

example

zi = f 1(xi) + η1
i

εi = f 2(xi) + η2
i

If η1
i and η2

i are independent (conditional on xi), then (N3) will hold, even though both zi and εi

are correlated with xi. Given the structure of these two equations, this type of assumption might

be appropriate when xi’s are can be thought of as being determined outside the economic model

under consideration.

As a second example, suppose that zi satisfies (N2), i.e. (xi, εi) are jointly independent of zi.

But suppose that the econometrician does not directly observe the instrument zi. Suppose instead
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that what is observed is some function of zi and xi, i.e.:

z∗i = h(zi, xi)

In this case, while the observed instrument z∗i certainly does not satisfy (N2), it does satisfy (N3).

Hence, the causal effect of the endogenous pi will be identified. Note that this would also be the

case if other random variables ηi that are independent of xi and εi also entered the above equation,

e.g.

z∗i = h(zi, xi, ηi)

2.3 Combining Identification Assumptions

Note that one can use different types of the above identification assumptions for different covari-

ates. For example, suppose we expand our demand model to the following

(7) yi = g(mi, xi, pi, εi)

where now both mi and xi are covariates. Again, suppose that we are only interested in estimating

the causal effect of pi on yi. Consider the following assumption

Assumption N4: (xi, εi) are jointly independent of zi, conditional on mi

Assumption (N4) essentially combines assumption (N2) on the xi covariates and assumption

(N3) on the mi covariates. To verify that we can identify conditional (on mi and xi) quantile

treatment effects in this model, we just need to show that (N4) implies that (zi, εi) are independent

conditional on xi and mi, i.e.

p(zi, εi|xi,mi) =
p(zi, εi, xi|mi)

p(xi|mi)

=
p(zi|mi)p(εi, xi|mi)

p(xi|mi)

= p(zi|mi)p(εi|xi, mi)

= p(zi|xi,mi)p(εi|xi,mi)

Given this result, it follows from the above (treating xi = (xi, mi)) that we can identify the

conditional quantile treatment effects.

Why might we want to treat our covariates asymetrically? Recall our demand example.

Suppose that mi are market characteristics (e.g. the distribution of income, population density,

etc.) and that xi and εi are respectively, observed and unobserved (to the econometrician) product

characteristics. Recall that pi is price, zi is an instrument for price, and yi is demand for the

product. If zi, are e.g. input price shocks, it seems presumptous to assume that they are
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independent of general market characteristics. However, it does seem plausible that, conditional

on market conditions, variation in zi might beWe independent of product characteristics xi and

εi. The next section formulates an economic model of endogenous produxt characteristics and

demand that can be used to assess when this might be the case.

3 An Empirical Model of Demand with Endogenous Prod-

uct Characteristics

To summarize, the above econometric discussion suggests that if we can find instruments for

price that are uncorrelated or independent of observed product characteristics, we can identify

price derivatives and elasticities. This is true even if product characteristics are endogenous

w.r.t. demand unobservables. We now turn to investigating how one might find or construct

such instruments. To do this, we will consider a formal model where firms decide on product

characteristics and prices.

An important aspect of the models we consider is that we will assume that firms choose product

characteristic before they decide on prices. This assumes that price is in some sense a more flexible

decision than product characteristics. Obviously the appropriability of such an assumption will

depend on the product of study, but it does seem to us that across a wide range of industries,

price is probably a more ”variable” decision than are product characteristics. For example, for

manufactured products, one typically needs to decide on product characteristics a considerable

time before production even occurs. In any case, as we will see, this separation in time will be

important for us to find instruments that satisfy the conditions we are looking for.

Another important characteristic of our models is that they explicitly consider two types of

costs: production costs and development costs. Development costs represent the fixed costs

of developing a product with a particular set of characteristics, production costs represent the

marginal cost of producing/distributing a unit of a product with a particular set of characteristics.

For simplicity, we will assume that there are constant returns to scale, i.e. production costs are

constant in the number of units produced, but the model would not fundamentally change if this

assumption were weakened.

In all cases we will think about a demand function of the form:

(8) yi = g(mi, xi, pi, εi)

where i indexes markets. Conceptually, it is easiest to think of having data across markets, where

in each market there is exactly one differentiated product for sale. In this case, mi represent

market conditions in market i, xi is a vector of the observed characteristics of the product for sale

in market i, pi is the price in market i, and yi are sales of the product. However, one can interpret
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all of what we do in a multiproduct, potentially oligopolistic, setting. In this case, yi and pi are

vectors of quantities and prices of all the products in the market, and xi is a matrix of the sets of

product characteristics across products.

A distinction we will focus on is the interpretation of εi. Recall that there are at least two

interpretations of εi. On one hand, εi could represent the unobserved analogue of xi, i.e. un-

observed (to the econometrician) product characteristics. Another possibility is that εi represent

unobserved (to the econometrician) market variables, i.e. the analogue of mi. We actually discuss

three separate models. The first interprets εi as representing unobserved market variables, e.g.

demand shifters. In this model, there are no product characteristics that are unobserved by the

econometrician. The second model interprets εi as an unobserved product characteristic - there

are no unobserved market variables that influence demand. The third model is most general, in-

terpreting εi as a combination of both types of unobservables. The assumptions we need necessary

to identify price effects will differ across these models.

Lastly, note that we proceed without making functional form assumptions on the various

equations. Because of this we generally assume complete independence of unobserved shocks

affecting various decisions. Talk about how in some cases this may actually be WLOG. With

specific functional forms, we could probably relax some of these independence assumptions to

mean independence or uncorrelatedness assumptions.

3.1 Unobserved Market Conditions

Define µi as a set of market variables that are unobserved by the econometrician. This contrasts

with mi, which are observed market variables. In the current section, we consider a model where

the demand side unobservable εi is determined by these unobserved market variables, i.e.

εi = h(µi)

Note of course that all the elements of µi do not necessarily impact εi. Some components of µi

may only be directly relevant for the supply side of the model.

We first model the costs of firms. Again, we consider two distinct types of costs, development

costs and production costs. Denote the cost of developing a product with characteristics xi as

(9) cd(xi; mi, µi, z
d
i )

These development costs may depend on both observed and unobserved market conditions (mi, µi).

We also introduce a new set of variables zd
i - these represent supply side shocks that impact the

cost of development.
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Similarly, suppose the cost of producing a product with characteristics xi is

cp(xi; mi, µi, z
p
i )

Again, these production costs depend on observed and unobserved market conditions, along with

supply side shocks that impact the cost of production.

Regarding timing in the model, suppose that firms make decisions regarding product charac-

teristics at time td, prior to producing and selling the product at time t. Consider a firm deciding

on its product characteristics xi at time td. Given the above formulation of development costs,

these decisions will clearly depend on mi, µi, and development cost shocks zd
i . Note that the de-

pendence on mi and µi comes from two sources. First, they both affect the costs of development

in (2), second, the both affect demand in (8).

In addition, a forward looking firm will also want to consider the impact of its development

decisions on production costs. As such, the firm will try to make inferences about production

cost shocks zp
i . To formalize these possible inferences, consider the firm’s information set at time

t

I td

i = {mi, µi, z
d
i , z

p1
i }

There is a new variable in this information set, zp1
i . This represents shocks that do not directly

impact development costs, but that impact the firms percieved distribution of zp
i . Note that zp1

i , for

example, could include particular elements of zp
i , if that element happened to have been observed

by the firm at or prior to time td. zp1
i could also contain signals that are informative to the firm

regarding on zp
i . Given the above information set, the firm has perceptions of the distribution of

zp
i , i.e.

f(zp
i |I td

i )

This percieved distibution of zp
i is sufficient to examine the firm’s choice of

product characteristics xi. More specifically, in this model, the firm’s choice of characteristics will

be of the form:

xi = fx(I
td

i ) = fx(mi, µi, z
d
i , z

p1
i )

Again, we assume that there is a time period between when product characteristics are chosen

and when price is chosen. In this time period, the actual production cost shocks zp
i are real-

ized. What we want to do now is decompose these production shocks into components that were

predictable at time td (i.e. depend on the information set at time td) and components that are

independent of this information set.

This decomposition is actually fairly easy to do. For example, suppose that zp
i has only one

element. Consider the cumulative distribution function of this zp
i ,

F (zp
i |I td

i )

11



Inverting this CDF generates the equation

zp
i = F−1(zp2

i |I td

i ) = h(zp2
i , I td

i )

where the newly defined zp2
i is independent of I td

i and has a uniform distribution U(0, 1). This

equation decomposes zp
i into two components - a part that is known at time td (I td

i ), and a part

that is not known at time td (zp2
i ) and by construction independent of the information set at td.

In other words, zp2
i can be interpreted as the part of zp

i that is not predictable given I td

i . Note

that it is possible that zp
i = h(zp2

i ). This would be the case if zp
i was independent of I td

i to start

with.

This decomposition can also be done in the case where zp
i is a vector of shocks - one simply can

do these CDF inversions sequentially (see the appendix). This results in a vector of ”innovations”

zp2
i that are independent of the information at td. To make things simpler however, we will assume

the existence of a subset of variables in zp
i that are independent of I td

i . Call this subset zp2
i .

Now lets move back to the firms decision of product characteristics at time td. Given the

above informational structure, the firms optimal choice of product characteristics will take the

form:

xi = fx(mi, µi, z
d
i , z

p1
i )

Note that mi, µi may affect After choosing these characteristics, the firm moves to time t, observing

zp2
i (and thus zp

i ). The firm now decides on prices

pi = fp(xi, mi, µi, z
p
i )

.

Now to the pricing decision, at time t - think of the (zp2
i1 , ...., zp2

iK) being realized.

Start by assuming that observed supply shocks are independent of

This decomposition of zp
i into components actually allows us to think about things much more

simply. Assume that one of these z is completely independent, in the sense that it is random

something that is

ν
\p
i = (νp1

i , νp2
i ) = (νp1

i , νp2
i (νp1

i ,mi, µi))

νp1
i are the elements of the production shocks that are observed to the firm when making their

development decisions. In contrast, νp2
i are not observed

3.2 Unobserved Product Characteristics

We start with a model where we interpret εi as an unobserved product characteristic. We will

start by considering εi symetrically to xi. That is, just as the firm makes decisions on what xi
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they will have for their product, they decide on what εi they will have for their product. Later,

we will consider asymetric models where εi is determined according to a different process than xi.

4 Notes on Bounding Bias (from acnotes.tex)

First I look at the OLS case - i.e. where one explanatory variable is endogenous, and the question

is how much bias is imparted on the other coefficient. Later I move to the IV case we have been

thinking about.

Consider the following model:

yi = β1x1i + β2x2i + εi

where all variables have been demeaned. Suppose that x1 is potentially correlated with the

residual ε, but x2 is uncorrelated with ε. Our primary concern is to estimate the parameter β2.

Consider the OLS estimator formed by regressing y on x1 and x2.

βOLS = (X ′X)−1X ′y

where

X =




x11 x21

. .

. .

x1N x2N


 y =




y1

.

.

yN




Substituting in, we get:

βOLS = (X ′X)−1X ′y

= (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε

The second term is a bias term. Looking at this bias term in more detail, we have:

(X ′X)−1X ′ε =

[
1
N

∑
i x

2
1i

1
N

∑
i x1ix2i

1
N

∑
i x1ix2i

1
N

∑
i x

2
2i

]−1 [
1
N

∑
i x1iεi

0

]

The zero in the second element of X ′ε follows because of the assumption that x2 is uncorrelated

with ε.2 WLOG, normalize the variance of each of x1i and x2i to unity. This generates a bias

2gsc: Don’t we need to be a little more careful here? Strictly speaking the second element is only
zero asymptotically, so should we call this the asymptotic bias? And have plim’s in front of all the
1/N terms?
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term of

(X ′X)−1X ′ε =

[
1 Cov(x1i, x2i)

Cov(x1i, x2i) 1

]−1 [
Cov(x1i, εi)

0

]

Inverting the matrix manually generates a bias vector of:

(X ′X)−1X ′ε =

[
1

1−Cov(x1i,x2i)2
Cov(x1i, εi)

−Cov(x1i,x2i)
1−Cov(x1i,x2i)2

Cov(x1i, εi)

]

We are only concerned with the second term in this bias vector, i.e.

bias =
−Cov(x1i, x2i)

1− Cov(x1i, x2i)2
Cov(x1i, εi)

The absolute value of this bias is

abs(bias) =
abs(Cov(x1i, x2i))

1− Cov(x1i, x2i)2
abs(Cov(x1i, εi))

First note that this bias term is increasing in the absolute value of Cov(x1i, x2i) over its feasible

range (−1 < Cov(x1i, x2i) < 1). This means that given any level of correlation between x1i and

εi, lower (absolute) values of Cov(x1i, x2i) indicate lower values of bias.

Next, note that Cov(x1i, x2i) is observed by the econometrician. Given this, our question is

whether we can bound this bias. Unfortunately, Cov(x1i, εi) is not observed by the econometrician,

and can in general can take any value from -∞ to∞ (as long as V ar(εi) is set high enough). Hence,

we need to make some additional assumptions in order to bound this bias term. There are a couple

of ways to proceed.

First, one could make a direct assumption on the possible range of Cov(x1i, εi). This seems

like a strange term to be making assumptions on though.

Second, note that the covariance of two variables is bounded by the product of their two

variances, i.e.

abs(Cov(x1i, εi)) < SD(x1i)SD(εi)

< SD(εi)

This implies that that:

abs(bias) <
abs(Cov(x1i, x2i))

1− Cov(x1i, x2i)2
SD(εi)

This bound can potentially be pretty tight. Suppose for example that x1i, x2i, and εi all contribute

”equally” (in a causal sense) to yi. This would be the case if we set β1 = 1, β2 = 1, and SD(εi) = 1.

Then if, for example, Cov(x1i, x2i) = 0.2, the maximal bias is 0.2, or 20% - this maximum occurs

when x1i and εi are perfectly correlated.
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It turns out that one can actually shrink these bounds a bit more. The reason is that if x1i and

x2i are correlated and x2i and εi are uncorrelated, then x1i and εi cannot be perfectly correlated.

However, this does not increase the bound by much when Cov(x1i, x2i) is small, so we ignore this

approach for now.

Of course, the above assumption that SD(εi) <= 1 is one that could certainly seem arbitrary.

Is there any natural upper bound for SD(εi)? One somewhat natural bound might be the standard

deviation of the dependent variable SD(yi). It is not necessarily the case that SD(εi) is less than

SD(yi). However, there is a more primitive assumption that generates this result - that εi is

positively correlated with β1x1i + β2x2i. This condition can also hold if εi is negatively correlated

with β1x1i + β2x2i, but it cannot be too negatively correlated. Formally,

V ar(yi) = V ar(βxi) + V ar(εi) + 2Cov(βxi, εi)

Therefore:

V ar(yi) > V ar(εi) ⇔ V ar(βxi) + 2Cov(βxi, εi) > 0

⇔ V ar(βxi) + 2Corr(βxi, εi)SD(βxi)SD(εi) > 0

This clearly indicates that if Corr(βxi, εi)̇ > 0, then SD(εi) < SD(yi). But even if Corr(βxi, εi)̇ <

0, then the condition will still hold unless Corr(βxi, εi) is very negative and SD(εi) is reasonably

high. For example, note that if we assume that the observed characteristic are ”twice as impor-

tant” as unobserved characteristics (in the sense that SD(βxi) > 2SD(εi)), then the condition

must hold, even if Corr(βxi, εi) = −1.

A couple of more notes - in the BLP context, at least the price component of βxi will be

negatively correlated with εi. This is slightly problematic for the potential argument that

Corr(βxi, εi)̇ > 0 (but not for the potential argument that SD(βxi) > 2SD(εi)).

Also, another way motivate this condition is using a hypothetical though experiment. Suppose,

we took a dataset (i.e. observed xi’s and yi’s) and forced all xi’s to their means. The question

is what is the variance of the new yi’s. If one is willing to assume that the new yi’s are not as

varied as the original yi’s then SD(εi) must be < SD(yi).

4.1 An Alternative Derivation of the above Bound

You might want to ignore this section - it’s just a different way to end up with the same result

as above - the reason it is here is that I wasn’t completely sure of this result a-priori, and once

I went through it, no sense in deleting it. This might also be an easier way to analyze the case

when X1 is more than single dimensional. Anyway....
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Next consider the alternative formulation of the model

Y = X1β1 + X2β2 + ε

= X1β1 + X2β2 + (PX1 + I − PX1)ε

where PX1 = X1(X
′
1X1)

−1X ′
1. Define γ as the hypothetical regression coefficient if one regressed

ε on X1. Since PX1ε = X1(X
′
1X1)

−1X ′
1ε = X1γ we can rewrite the model as:

Y = X1(β1 + γ) + X2β2 + (I − PX1)ε

(NB: I’m not sure if we want γ to be the actual regression coefficient if one regressed ε on X1 with

the dataset at hand, or if we want it to represent the plim of this regression coefficient. In any

case, I think the difference will asymptotically disappear). Again consider OLS estimation of this

model

βOLS = (X ′X)−1X ′y

Substituting in, we get:

βOLS = (X ′X)−1X ′y

= (X ′X)−1X ′(X1(β1 + γ) + X2β2 + (I − PX1)ε)

=

[
β1 + γ

β2

]
+ (X ′X)−1X ′ε∗

where

ε∗ = (I − PX1)ε

The second term is again a bias term. With the same normalizations as before, we have:

(X ′X)−1X ′ε∗ =

[
1 Cov(x1i, x2i)

Cov(x1i, x2i) 1

]−1 [
0

X ′
2ε
∗

]

The zero in the first element of X ′ε∗ follows because X ′
1(I − PX1) = 0. Inverting the matrix

manually generates a bias vector of:

(X ′X)−1X ′ε =

[ −Cov(x1i,x2i)
1−Cov(x1i,x2i)2

X ′
2ε
∗

1
1−Cov(x1i,x2i)2

X ′
2ε
∗

]
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The second term in this bias vector is:

bias =
1

1− Cov(x1i, x2i)2
X ′

2ε
∗

=
1

1− Cov(x1i, x2i)2
X ′

2(I − PX1)ε

= − 1

1− Cov(x1i, x2i)2
X ′

2X1(X
′
1X1)

−1X ′
1ε

=
−Cov(x1i, x2i)

1− Cov(x1i, x2i)2
Cov(x1i, εi)

the same result as before.

4.2 IV Situation

Same essential argument goes through for an IV estimator when x2i is also endogenous. We

assume the existance of an instrument zi that is correlated with x2i but uncorrelated with εi. Note

that we will not be instrumenting for x2i, i.e. our instrument matrix Z is equal to:

Z =




x11 z1

. .

. .

x1N zN




The IV estimator is given by:

βIV = (Z ′X)−1Z ′y

= (Z
′
X)−1Z ′(Xβ + ε)

= β + (Z ′X)−1Z ′ε

This bias term is now:

(Z ′X)−1Z ′ε =

[
1
N

∑
i x

2
1i

1
N

∑
i x1ix2i

1
N

∑
i zix1i

1
N

∑
i zix2i

]−1 [
1
N

∑
i x1iεi

0

]

The zero in the second element of Z ′ε follows because of the assumption that z is uncorrelated

with ε. Again, normalize the variances of each of x1i, x2i, and zi to unity. This generates a bias

term of

(Z ′X)−1Z ′ε =

[
1 Cov(x1i, x2i)

Cov(zi, x1i) Cov(zi, x2i)

]−1 [
Cov(x1i, εi)

0

]
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Inverting the matrix manually generates a bias vector of:

(X ′X)−1X ′ε =

[
Cov(zi,x2i)

Cov(zi,x2i)−Cov(zi,x1i)Cov(x1i,x2i)
Cov(x1i, εi)

−Cov(zi,x1i)
Cov(zi,x2i)−Cov(zi,x1i)Cov(x1i,x2i)

Cov(x1i, εi)

]

Again, we are only concerned with the second term in this bias vector, i.e.

(10) bias =
−Cov(zi, x1i)

Cov(zi, x2i)− Cov(zi, x1i)Cov(x1i, x2i)
Cov(x1i, εi)

Note that this bias term is of the same magnitude as in the former case where x2i was assumed

endogenous. To see this, suppose that the instrument zi generates half the variation in x2i. Then

Cov(zi, x2i) = 0.5V ar(x2i) = 0.5 and Cov(zi, x1i) = 0.5Cov(x2i, x1i) (this second equation holds

if the correlation between x2i and x1i is generated equally by the the zi part of x2i and the other

part of x2i). In this case, the 0.5’s cancel out and we get the same expression as above.

I’m not convinced that the absolute value of this bias term is necessarily increasing in Cov(zi, x1i).

As Cov(zi, x2i) −→ 1 it definitely does though. Regardless, however, this formula does seem to

indicate that if one is choosing between instruments, one does not necessarily want to pick the

instrument with the smallest Cov(zi, x1i) - the strength of the instrument, Cov(zi, x2i), is also

relevant for the bias. In any case, again, all the elements of this bias term are estimable except

for Cov(x1i, εi) (which doesn’t depend on choice of instrument). Hence one could simply estimate

the first term of the above for each instrument and pick the lowest.

As in the prior section, one can also bound the bias. The absolute value of the bias is given

by:

abs(bias) =
abs(Cov(zi, x1i))

abs(Cov(zi, x2i)− Cov(zi, x1i)Cov(x1i, x2i))
abs(Cov(x1i, εi))

which by the above

abs(bias) <
abs(Cov(zi, x1i))

abs(Cov(zi, x2i)− Cov(zi, x1i)Cov(x1i, x2i))
SD(εi)

So if SD(εi) can be bounded as above, we have a bound on abs(bias).

4.3 Bias with Additional Covariates

To this point we have considered a model with just one endogenous variable (x2, e.g. price) and

one possibly endogenous variable (x1, e.g. a product characteristic). This subsection derives the

bias formula when there are additional exogenous covariates.

Consider the following more general model model:

yi = β1x1i + β2x2i + W ′
iβW + εi
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where Wi is a R × 1 vector of additional exogenous covariates (e.g. market characteristics)

and βW measures their impact on demand for good i. Let X̃ and Z̃, the matrix of explanatory

variables and instruments, now be given by

X̃ =




x11 x21 W11 . WR1

. . . . .

. . . . .

x1N x2N W1N . WRN


 = [X W ] Z̃ =




x11 z1 W11 . WR1

. . . . .

. . . . .

x1N zN W1N . WRN


 = [Z W ]

where X and Z are as defined in the previous section and W is the N × R matrix of additional

exogenous variables.

The IV estimator is now :

βIV = (Z̃ ′X̃)−1Z̃ ′y

= β + (Z̃ ′X̃)−1Z̃ ′ε

where β ≡ (β1 β2 βW )′ is the (R + 2)× 1 vector of parameters.

The bias term is now

(Z̃ ′X̃)−1Z̃ ′ε =

[
Z ′X Z ′W

W ′X W ′W

]−1 [
Z ′ε

W ′ε

]

As earlier, we are particularly interested in the bias on β2, but now have to allow for the

additional influence of W on that bias.

To calculate the bias in the presence of W , we rely on the formula for partitioned regression

(e.g. Greene, p.33):

[
A11 A12

A21 A22

]−1

=

[
F1 −A−1

11 A12F2

−F2A21A
−1
11 F2

]−1

where F1 = (A11 − A12A
−1
22 A21)

−1 and F2 = (A22 − A21A
−1
11 A12)

−1.

Applying this to our problem and focusing on the 2 × 2 matrix in the upper left of (Z̃ ′X̃)−1

(the other elements will have no impact on the bias due to the assumption that W and ε are
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uncorrelated), we get

(Z̃ ′X̃)−1Z̃ ′ε =

[
Z ′X Z ′W

W ′X W ′W

]−1 [
Z ′ε

W ′ε

]

=

[
[(Z ′X)− Z ′W (W ′W )−1W ′Z]−1 .

. .

] [
Z ′ε

W ′ε

]

=

[
(Z ′MW X)−1 .

. .

][
Z ′ε

W ′ε

]
(11)

where MW ≡ IR − W (W ′W )−1W ′ is the ”residual maker” for W, i.e. it yields the residual

from a projection of any variable onto W .3

Focusing on the first two elements of this matrix multiplication gives us the formulas for the

bias on β1 and β2 that are analogous to those developed in the previous section:

(Z ′MW X)−1Z ′ε =

[
1
N

X ′
1MW X1

1
N

X ′
1MW X2

1
N

Z ′MW X1
1
N

Z ′MW X2

]−1 [
1
N

X1MW ε

0

]

Inverting the matrix manually generates a bias vector of:

(Z ′MW X)−1Z ′ε =

[
Z′MW X2

(X′
1MW X1)(Z′MW X2)−(Z′MW X1)(X′

1MW X2)
(X1MW ε)

−Z′MW X1

(X′
1MW X1)(Z′MW X2)−(Z′MW X1)(X′

1MW X2)
(X1MW ε)

]

Again, we are only concerned with the second term in this bias vector, i.e.

(12) bias =
−Z ′MW X1

(X ′
1MW X1)(Z ′MW X2)− (Z ′MW X1)(X ′

1MW X2)
(X1MW ε)

This formula is analogous to what we had earlier (Equation (10)) once we partial out the

influence of W . I’m sure it could also be derived by partialling W out of y, X1, and X2 and using

the simple model if that is preferred.

4.4 Issues

1) Is the bound SD(εi) < SD(yi) able to be motivated by any of the above arguments? I think

we are ok in any case - I think the bounds can just be interpreted as a formal argument for how

to pick the most ”robust” instruments.

2) Extending to multiple x1i’s

3) Extending to multiple instruments (best combination of instruments? - given the above

result, it is not obvious that one would just want to use one instrument) - potentially with multiple

3What about the overidentified case? Do we get an equally nice formula?
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endogenous variables (e.g. nested logit model).

4) One thing that I just thought of figured I should write it down - I was once convinced that our

arguments sort of ruled out BLP/Bresnahan type instruments (because presumably the number

of nearby competitors is not independent of one’s own characteristics). This isn’t necessarily

the case - it depends on what sort of asymptotics one is thinking of. With a fixed number of

markets (asymptotics in the number of products per market), this is likely a problem. But with

the number of markets going to infinity (and a fixed number of products per market), I think these

instruments could be fine.

5) Extending the bounds to non-linear models, e.g. of the form:

δ(yi, x1i, x2i; β3) = β1x1i + β2x2i + εi

like a BLP model. It is not completely clear to me how to do this, as one cannot use the ”plim”

arguments above. For proving consistency when zi is uncorrelated with x1i recall that we used

the decomposition argument, i.e.

δ(Y,X1, X2; β3) = X1β1 + X2β2 + (PX1 + I − PX1)ε

= X1(β1 + γ) + X2β2 + (I − PX1)ε

= X1(β1 + γ) + X2β2 + ε∗

Then we set up a moment in ε∗, e.g.

E [Z ′ε∗] = 0

where Z contains both X1 plus a set of other instruments Z2 (to identify the parameters β2 and

β3) i.e.,

E

[
X ′

1ε
∗

Z ′
2ε
∗

]
= 0

By construction, X1 is uncorrelated with ε∗. If Z2 is uncorrelated with X1 (as well as ε), then it

must also be uncorrelated with ε∗. Hence, we have a consistent GMM estimator of (β1+γ, β2, β3).

But what if Z2 is correlated with X1? Restricting attention again to where both are scalars

(e.g. the model δ(yi, x2i; β2) = β1x1i + εi), the expectation of the moment condition is not 0, but:

E

[
X ′

1ε
∗

Z ′
2ε
∗

]
= E

[
0

Z ′
2(I − PX1)ε

]
= E

[
0

Z ′
2X1(X

′
1X1)

−1X ′
1ε

]
=

[
0

Cov(z2i, x1i)Cov(x1i, εi)

]

I think the last equality holds???? Anyway, if so, by the same arguments as before, it seems like

we can bound how ”wrong” the moment condition is. It seems like one should be able to translate

this into bounds on parameters. Suppose, e.g. Cov(z2i, x1i) = 0.2,and that we are willing to bound

Cov(x1i, εi) between -3 and 3. Then we know the second element of the moment condition is
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wrong by anywhere between -0.6 and 0.6. It seems like we could in theory just estimate the model

for each quantity in this range, e.g. first use the moment condition:

E

[
X ′

1ε
∗

Z ′
2ε
∗ + 0.6

]
= 0

then, e.g.

E

[
X ′

1ε
∗

Z ′
2ε
∗ + 0.59

]
= 0

and so on until 0.6. This would presumably trace out bounds on the parameters, as long as there

is some degree of smoothness relative to the step size one is using. If one could prove some sort

of monotonicity result, one could probably just check 0.6 and -0.6, though I doubt this would be

feasible in a non-linear model.

5 Empirical Example

We demonstrate the ideas developed in this paper in an empirical example using data from the

cable television industry. The data report the number of offered Basic and Expanded Basic cable

services, and the prices, market shares, and number of cable programming networks offered on

each service for a sample of 4,447 cable systems across the United States.4

Summary statistics for each of the variables follow the appendix. We consider a simple example

based as closely as possible on the theory described above. We estimate a logit demand system

for each of the products offered by the cable system in each market [Can generalize if wanted].

The key explanatory variables are price (tp) and number of offered cable programming networks

(tx).

We consider a number of instruments for price, all based on variables that influence the marginal

cost of providing cable service. The primary marginal cost for cable systems are ”affiliate fees”,

per-subscriber fees that they must pay to television networks (e.g. ESPN) for the right to carry

that network on their cable system.

1. Homes Passed (hp). If larger cable systems have better bargaining positions with content

providers, they may receive lower affiliate fees.

2. Franchise Fee (franfee). Franchise fees are payments made by cable systems to the local

governing body in return for access to city streets to install their cable systems. Systems

facing higher franchise fees may have higher marginal costs and therefore charge higher

prices. This was the primary price instrument used in Goolsbee and Petrin.

4The data have a lot more, esp. the identity of offered networks for each bundle, demographic info in each
market, etc. Keep it simple to start.
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3. Average Affiliate Fees (tcx). Kagan Media collects information about the average (across

systems) affiliate fee charged for the vast majority of television networks offered on cable.

This variable calculates the average fee for the networks offered by each cable system in the

sample.

4. MSO Subscribers (msosubs). Multiple System Operators, or MSOs, are companies that own

and operate multiple cable systems across the country (e.g. Comcast, Cox). This variable

proxies for bargaining power of cable systems in (nationwide) negotiations with television

networks.

5. Prices in other markets (tip, tipst, tipreg). MSOs generally negotiate the affiliate fees they

will pay to television networks on behalf of all the systems in the corporate family. As such,

the marginal cost for providing cable service should be similar for cable systems within an

MSO. If demand shocks are uncorrelated across these systems, cable prices in other markets

for systems within the same MSO might be a good instrument for prices in any given market.

Hausman and Nevo have used the this strategy of finding instruments in the cereal market

and Crawford (bundling paper) has used it in cable markets. Because it relies heavily on

the lack of correlation in demand errors across markets, we construct three measures of this

instrument: the average price for each offered cable service within an MSO excluding the

current system (tip), the average price for each offered service within an MSO excluding those

systems in the current systems state (tipst), and the average price for each offered service

within an MSO excluding those systems in the current systems’ census region (tipreg).5

Here are the preliminary results. First the results of the first-stage regression of price (tp)

on all the explanatory variables and the instruments (Separate regressions for each instrument.

Include instrumenting for price with itself for completeness).6 Most of the results are of the correct

sign and of reasonable magnitude. [Only weird ones is franchise fee - higher fees are associated

with lower prices.]

----------------------------------------------------------------------------------------------

Variable | fols fivhp fivfr~e fivtcx fivms~s fivtip fivti~t fivti~g

-------------+--------------------------------------------------------------------------------

tx | 0.000 0.256 0.247 0.016 0.254 0.240 0.254 0.249

| 0.000 0.009 0.009 0.021 0.009 0.009 0.010 0.010

tp | 1.000

| 0.000

hp | -0.051

5We use the four major Census regions: NE, S, MW, and W.
6Other variables not reported in the table are dummy variables for goods 1, 2, 3, and 4 in each market as well

as dummy variables indicating for each good whether the next higher goods are also offered, i.e. ind31 = a dummy
variable in demand for good 1 indicating whether good 3 was also offered in that market.
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| 0.006

franfee | -0.273

| 0.047

tcx | 1.287

| 0.110

msosubs | -0.337

| 0.019

tip | 0.642

| 0.017

tipst | 0.487

| 0.020

tipreg | 0.454

| 0.020

----------------------------------------------------------------------------------------------

Here are the associated IV results using each instrument as the single instrument for price

(standard errors below the estimates). Also reported is the estimated impact to mean utility of

an additional cable programming network.

As expected, instrumenting for price generally yields a larger estimated price sensitivity.

----------------------------------------------------------------------------------------------

Variable | ols ivhp ivfra~e ivtcx ivmso~s ivtip ivtipst ivtip~g

-------------+--------------------------------------------------------------------------------

tp | -0.038 -0.022 -0.048 -0.024 -0.025 -0.070 -0.090 -0.078

| 0.002 0.022 0.030 0.015 0.010 0.005 0.008 0.008

tx | 0.029 0.025 0.032 0.026 0.026 0.038 0.042 0.039

| 0.002 0.005 0.007 0.004 0.003 0.002 0.003 0.003

----------------------------------------------------------------------------------------------

Here are the associated average estimated own-price elasticity (averaged across all products).7

The patterns basically mirror the estimated price sensitivities in the table above.

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

elastols | 5807 -.4299353 .2106194 -2.730194 -.0107715

elastivhp | 5807 -.2394281 .1100084 -1.507058 -.0075227

elastivfra~e | 5807 -.5390264 .2733753 -3.458999 -.011781

elastivtcx | 5807 -.267501 .1240874 -1.686831 -.0081377

7Because cable services are cumulative, it is technically cleaner to look just at the highest-quality good offered
in each market. Doing so yields qualitatively similar results.
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elastivmso~s | 5807 -.2776902 .1292619 -1.752155 -.0083485

-------------+--------------------------------------------------------

elastivtip | 5807 -.8115802 .4374062 -5.397118 -.013089

elastivtipst | 5807 -1.072409 .6106484 -7.184474 -.0122947

elastivtip~g | 5807 -.9204701 .5036151 -6.105941 -.0131605

Here is an estimate of the relationship between each included instruments and the number of

offered cable networks (tx). Note is statistically significant for all variables except the price of

cable service at other systems within the same MSO (tip).

----------------------------------------------------------------------------------------------

Variable | xols xhp xfran~e xtcx xmsos~s xtip xtipst xtipreg

-------------+--------------------------------------------------------------------------------

tp | 0.428

| 0.017

hp | 0.157

| 0.008

franfee | 0.935

| 0.064

tcx | 4.698

| 0.030

msosubs | 0.217

| 0.027

tip | -0.024

| 0.027

tipst | -0.213

| 0.030

tipreg | -0.169

| 0.029

----------------------------------------------------------------------------------------------

legend: b/se

If we calculate an estimate of the upper bound on the absolute value of the bias using Equation

(12) imposing the assumption 1
N

X1MW ε <
√

1
N

X1MW X1

√
1
N

yMW y for each set of instruments,

we get the following results.

. scalar list txtp vtx vy sdtx sdy biasnum2 ;

txtp = 106516.91

vtx = 448973.67

vy = 7301.383
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sdtx = 670.05497

sdy = 85.44813

biasnum2 = 57254.945

. scalar list txtp tptp biasnumtp biasnum2 biasdenomtp biastp;

txtp = 106516.91

tptp = 249100.49

biasnumtp = 106516.91

biasnum2 = 57254.945

biasdenomtp = 1.005e+11

biastp = .06068658

. scalar list txhp tphp biasnumhp biasnum2 biasdenomhp biashp;

txhp = 163200.41

tphp = -10795.385

biasnumhp = 163200.41

biasnum2 = 57254.945

biasdenomhp = -2.223e+10

biashp = -.42032582

. scalar list txfranfee tpfranfee biasnum2 biasnumfranfee biasdenomfranfee biasfranfee;

txfranfee = 16825.949

tpfranfee = -750.34934

biasnum2 = 57254.945

biasnumfranfee = 16825.949

biasdenomfranfee = -2.129e+09

biasfranfee = -.45246954

. scalar list txtcx tptcx biasnumtcx biasnum2 biasdenomtcx biastcx;

txtcx = 77317.13

tptcx = 22386.574

biasnumtcx = 77317.13

biasnum2 = 57254.945

biasdenomtcx = 1.815e+09

biastcx = 2.4384633

. scalar list txmsosubs tpmsosubs biasnum2 biasnummsosubs biasdenommsosubs biasmsosubs;

txmsosubs = 22107.897
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tpmsosubs = -28744.127

biasnum2 = 57254.945

biasnummsosubs = 22107.897

biasdenommsosubs = -1.526e+10

biasmsosubs = -.0829468

. scalar list txtip tptip biasnumtip biasnum2 biasdenomtip biastip;

txtip = -2506.1517

tptip = 67100.422

biasnumtip = -2506.1517

biasnum2 = 57254.945

biasdenomtip = 3.039e+10

biastip = -.0047211

. scalar list txtipst tptipst biasnumtipst biasnum2 biasdenomtipst biastipst;

txtipst = -17627.905

tptipst = 35886.024

biasnumtipst = -17627.905

biasnum2 = 57254.945

biasdenomtipst = 1.799e+10

biastipst = -.05610395

. scalar list txtipreg tptipreg biasnumtipreg biasnum2 biasdenomtipreg biastipreg;

txtipreg = -14663.474

tptipreg = 35725.872

biasnumtipreg = -14663.474

biasnum2 = 57254.945

biasdenomtipreg = 1.760e+10

biastipreg = -.04769696

Collecting just the overall bias terms, we get

. scalar list biastp biashp biasfranfee biastcx biasmsosubs biastip biastipst biastipreg ;

biastp = .06068658

biashp = -.42032582

biasfranfee = -.45246954

biastcx = 2.4384633

biasmsosubs = -.0829468

biastip = -.0047211
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biastipst = -.05610395

biastipreg = -.04769696
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6 Appendix

Consider the case when zp
i has more than one element, e.g. zp

i = (zp
i1, ...., z

p
iK). In this situation,

we can do the above inversion sequentially, i.e.

zp
i1 = F−1

1 (zp2
i1 |I td

i ) = h1(z
p2
i1 , I td

i )

zp
i2 = F−1

2 (zp2
i2 |I td

i , zp2
i1 ) = h2(z

p2
i2 , I td

i , zp2
i1 )

.

.

zp
iK = F−1

2 (zp2
iK |I td

i ,
{
zp2

ik

}k−1

k=1
) = hK(zp2

iK , I td

i ,
{
zp2

ik

}k−1

k=1
)

In this case, the variables zp2
i = (zp2

i1 , ...., zp2
iK) represent a set of components of zp

i that are inde-

pendent of I td

i . With this decomposition, we can think of the firms information sets at the two

points in time as:.

td - information set I td

i = {mi, µi, z
d
i , z

p1
i }

t - information set I t
i = {mi, µi, z

d
i , z

p
i } = {mi, µi, z

d
i , z

p1
i , zp2

i }

where zp2
i is independent of the other elements of the information set.
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7 Appendix

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

origcid | 5807 3196.54 1874.354 1 6481

year | 5807 2002 0 2002 2002

nprod | 5807 1.535905 .6809579 1 4

prod | 5807 1.267952 .5175304 1 4

y98 | 5807 0 0 0 0

-------------+--------------------------------------------------------

y99 | 5807 0 0 0 0

y00 | 5807 0 0 0 0

y01 | 5807 0 0 0 0

y02 | 5807 1 0 1 1

chancap | 5807 46.1307 20.93914 4 150

-------------+--------------------------------------------------------

hp | 5807 5.204854 13.50131 .018 418.2

franfee | 5807 1.480799 1.819802 0 8

msosystems | 5807 551.5468 513.5846 0 1353

msosubs | 5807 3.863265 4.528929 0 13.75

msopaysubs | 5807 3096293 4116557 0 1.34e+07

-------------+--------------------------------------------------------

logsrat | 5807 -.0968512 1.507517 -6.587178 7.090035

s | 5807 .4618122 .2740264 .0006661 .9972565

tp | 5807 22.46918 8.197811 .95 80.85001

tip | 5459 23.62627 6.728524 7.5 56.33334

tipst | 4832 23.70755 6.706235 9.59 51.78333

-------------+--------------------------------------------------------

tipreg | 4548 23.5211 6.652446 10.95 51.06667

tind1 | 5807 1 0 1 1

tind2 | 5807 .2342001 .4235343 0 1

tind3 | 5807 .0316859 .1751776 0 1

tind4 | 5807 .0020665 .0454154 0 1

-------------+--------------------------------------------------------

tind21 | 5807 .4367143 .4960215 0 1

tind31 | 5807 .0909247 .2875268 0 1

tind41 | 5807 .0082659 .0905482 0 1

tind32 | 5807 .0613053 .2399102 0 1
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tind42 | 5807 .0061994 .0784987 0 1

-------------+--------------------------------------------------------

tind43 | 5807 .0041329 .0641605 0 1

ind1 | 5807 .7657999 .4235343 0 1

ind2 | 5807 .2025142 .401908 0 1

ind3 | 5807 .0296194 .1695496 0 1

ind4 | 5807 .0020665 .0454154 0 1

-------------+--------------------------------------------------------

ind21 | 5807 .2025142 .401908 0 1

ind31 | 5807 .0296194 .1695496 0 1

ind41 | 5807 .0020665 .0454154 0 1

ind32 | 5807 .0296194 .1695496 0 1

ind42 | 5807 .0020665 .0454154 0 1

-------------+--------------------------------------------------------

ind43 | 5807 .0020665 .0454154 0 1

indtop | 5807 .7657999 .4235343 0 1

tx | 5807 17.44946 10.61949 0 64

tcx | 5807 4.573625 2.422858 0 10.52
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