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Abstract. In the study of farsighted coalitional behavior, a central role is played by the von
Neumann-Morgenstern (1944) stable set and its modification that incorporates farsightedness.
Such a modification was first proposed by Harsanyi (1974) and has recently been re-formulated
by Ray and Vohra (2015). The farsighted stable set is based on a notion of indirect dominance
in which an outcome can be dominated by a chain of coalitional ‘moves’ in which each coali-
tion that is involved in the sequence eventually stands to gain. However, it does not require that
each coalition make a maximal move, i.e., one that is not Pareto dominated (for the members of
the coalition in question) by another. Consequently, when there are multiple continuation paths
the farsighted stable set can yield unreasonable predictions. We restrict coalitions to hold com-
mon, history independent expectations that incorporate maximality regarding the continuation
path. This leads to two related solution concepts: the rational expectations farsighted stable set
(REFS) and the strong rational expectations farsighted stable set (SREFS). We apply these con-
cepts to simple games and to pillage games to illustrate the consequences of imposing rational
expectations for farsighted stability.
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1. INTRODUCTION

Theories of coalitional stability are based on the notion of domination or objections by coalitions.
A coalition is said to have an objection to the status-quo if it can change the outcome to one in
which all its members gain. Perhaps the most widely used solution concept in this literature is
the core: the set of outcomes to which there is no objection. The original formulation of the
theory by von Neumann and Morgenstern (1944), however, was concerned with a somewhat
more sophisticated equilibrium concept, which they referred to simply as the “solution” but
which has since become known as the vNM stable set. A vNM stable set consists of outcomes
that satisfy two properties: (1) internal stability in the sense that no stable outcome dominates
any other stable outcome; (2) external stability in the sense that every outcome not in the stable
set is dominated by some stable outcome. There is a large literature on the stable set even though
it has been notoriously difficult to work with.1

Both the core and the stable set are based on myopic, or one-shot, deviations by coalitions.
If a change made by a coalition can be followed by other coalitional moves, then clearly we
should require coalitions to be farsighted in their behavior. Each coalition should ask itself -
”if we take action a, how will other coalitions react?”. This is a direction of research that has
attracted renewed interest; see, for example, Harsanyi (1974), Aumann and Myerson (1988),
Chwe (1994), Bloch (1996), Ray and Vohra (1997, 1999), Xue (1998), Diamantoudi and Xue
(2003), Konishi and Ray (2003), Herings et al. (2004, 2009), Ray (2011), Mauleon et al. (2011),
Ray and Vohra (2014, 2015), Chander (2015), Kimya (2015). It is by no means obvious how
the classical theory should be modified to account for farsightedness, which partly explains the
diversity of approaches taken in this literature. Ray and Vohra (2014) distinguish between two
principal approaches: (a) the blocking approach, which follows traditional cooperative game
theory in abstracting away from the details of the negotiation process and relying on a coalitional
game to specify what each coalition is able to accomplish on its own, and (b) the bargaining
approach, which is based on noncooperative coalition bargaining and relies on specifying details
such as a protocol that describes the order of moves.

This paper studies farsightedness in the tradition of the blocking approach, with the underlying
model described through a coalitional (or characteristic function) game. In particular, there is
no pre-specified set of ‘terminal’ states, or a protocol specifying the order in which players or
coalitions are allowed to move. Consequently, we cannot capture farsightedness through sub-
game perfection or some other solution concept based on backward induction. We nevertheless
want to capture the idea that coalitional decision making is based not on the immediate effect
of an initial ‘move’ but the ‘final outcome’.2 This immediately raises the question of how to
determine what the ‘final outcome’ is in a sequence of coalitional moves (in a model without
the formal apparatus of an extensive form game). Suppose coalition S1 replaces x with y, and
then S2 replaces y with z. If z is the final outcome, and payoffs are realized only once, farsight-
edness would require S1 to compare the utility of z to that of x and ignore its payoff at y. But
this argument only works if z is known to be the ‘final outcome’. What is considered to be a

1See Lucas (1992) for a survey.
2In a real-time model such as in Konishi and Ray (2003), what would matter is the entire stream of (discounted)

payoffs along a sequence of moves.
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final outcome must, of course, also be stable. Thus, testing the stability of a particular outcome
against a sequence of moves requires us to know which of the other outcomes are stable. This is
precisely the kind of circularity that the stable set is very adept at handling, making it a fruitful
vehicle for incorporating farsightedness within the blocking approach.

The idea of modifying the stable set by allowing for sequences of coalitional moves, with each
coalition focused on the ‘final outcome’, goes back to Harsanyi (1974). Unfortunately, the
Harsanyi stable set, including it’s more recent reformulation by Ray and Vohra (2015), does
not fully capture the idea of optimal behavior embodied in backward induction. One difficulty
is that coalitions involved in a farsighted objection are not required to make the most profitable
moves (in a Pareto sense) that may be available to them. This is the issue of maximality. For
example, coalition S1 might move from x to y, anticipating that S2 will then move to z. If z is
a ‘final’ outcome, and all players in S1 prefer z to x, and all those in S2 prefer z to y, then this
would be considered a legitimate farsighted objection to x. But what if the move by S2 to z is
not maximal, in the sense that at y it has another available move, say to z′, also a ‘final’ outcome,
which is even better than z for all its members? It seems reasonable to require that if z and z′ are
the only moves available to S2, then both S2 and S1 should focus on z′ rather than z as the final
outcome. But the farsighted stable set does not insist on this.

Another feature of farsighted objections is that they permit coalitions to hold different beliefs
about the continuation path of coalitional moves. For instance, it is possible that x is not in
the farsighted stable set because S1 replaces it with y, anticipating a second, and final, move
to z while at the same time x′ is not stable because S2 replaces it with y expecting the next,
and final, move to be to z′ (not z). We refer to this as the issue of consistent beliefs. An
alternative interpretation of this phenomenon is that rather than being inconsistent, beliefs are
history dependent. Thus, agents may commonly believe that y will transition to z or z′ depending
on whether y was preceded by x or x′. In this paper we shall restrict beliefs to be consistent, or
history independent, in the sense that the belief about the continuation from a given state does
not depend on how the current state was reached. This corresponds to the Markovian assumption
commonly made in dynamic models such as Konishi and Ray (2013). In Sections 2 and 3 we
provide several examples to explain these issues in more depth.

The main aim of this paper is to incorporate maximality and consistency (or history indepen-
dence) of beliefs in the notion of farsighted stability while maintaining the parsimony of the
blocking approach, i.e., without the introduction of a protocol or other details of the negotiation
process.3 In order to accomplish this, the only new concept that needs to be added to the tradi-
tional framework of coalitional games is that of an expectation function, a tool we borrow from
Jordan (2006). This describes the transition from one state to another, as well as the coalition
which is supposed to effect the move. The expectation function represents the commonly held
beliefs of all agents about the sequence of coalitional moves, if any, from every state. The use
of a single expectation function immediately incorporates consistency or history independence.
Of course, the coalition expected to move from one state to another must have the power as well
as the incentive to do so. As we shall see, the explicit specification of an expectation function

3It would also be interesting to incorporate maximality while allowing for history dependence, but that is beyond
the scope of the present paper.
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makes it possible to impose appropriate restrictions on it which serve to incorporate maximality.
We consider two versions of maximality, one being stronger than another.

A state is said to be stationary if the expectation function prescribes no further move once this
state is reached. The set of such stationary states then has an inherent element of stability. This
leads us to define two related solution concepts: the rational expectations farsighted stable set
(REFS) and the strong rational expectations farsighted stable set (SREFS). These are the set of
stationary points of an expectation function satisfying one or the other notion of maximality as
well as farsighted versions of internal and external stability. A key point of the paper is to show
that although there are some cases in which farsighted stable sets, or even vNM stable sets, are
REFS or SREFS, in general imposing rational expectations can be consequential for farsighted
stability.

At some intuitive level, notions of farsightedness and maximality attempt to bring into coalitional
games considerations that are similar to backward induction in noncooperative games. This will
become clear in section 2, where we describe the framework and present a series of examples
showing that the failure to impose maximality and consistency can lead to counterintuitive pre-
dictions. Because these examples have ‘terminal nodes’, allowing for backward induction, the
connection between subgame perfection and maximality is obvious.4 The difficulty, of course,
is that coalitional games don’t typically have the structure of an extensive form that allows for
recursion.5 And our main conceptual task is to formalize these ideas within the parsimony of the
blocking approach (without introducing a protocol or other details about the negotiation process).
We do so by incorporating an expectation function into the framework of coalitional games.

Section 3 contains formal definitions of an expectation function as well as the different versions
of maximality and our solution concepts: REFS and SREFS. We show that one special but inter-
esting case in which both these solution concepts coincide with the farsighted stable set is when
the latter consists of states with a single payoff. However, this equivalence does not hold more
generally. The following two Sections apply these concepts to a couple of important economic
models, and illustrate how the imposition of rational expectations can result in predictions that
are very different from those of existing versions of stable sets with farsighted players.

Section 4 provides an application to simple games, which have proved to be very useful in study-
ing voting behavior and possess a rich literature on stable sets. We show that in this class of
games, the farsighted stable sets identified in Ray and Vohra (2015) do not meet the consistency
test. Or, if they do it is only by allowing beliefs to be history dependent. Moreover, the restriction
to rational expectations, as in REFS or SREFS, leads to sharply different predictions regarding
farsighted stability. For this class of games, the contrast between farsighted stable sets and REFS
(or SREFS) seems to arise not from the maximality issue; it hinges entirely on the consistency
issue. We also establish the existence of a SREFS in a large class of simple games.

4More generally, the connection comes out perhaps most clearly in Kimya’s (2015) concept of equilibrium coali-
tional behavior (ECB), which is defined for a model that has the advantage of being directly applicable to extensive
form games.

5Coalition proof Nash equilibrium in Bernheim, Peleg and Whinston (1987) and equilibrium binding agreements
in Ray and Vohra (1997) are able to make use of recursion by restricting attention to internal blocking, where each
coalition in a sequence of objections is a subset of the previous one.
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Section 5 studies pillage games. These are models of economies where property rights do not
exist so that the more “powerful” can capture the assets or wealth of the less powerful. Jordan
(2006) and Acemoglu et al. (2008) have studied farsighted cooperative behavior in these models.6

The application of our concepts to pillage games is complementary to the exercise in the previous
Section. Here it is the maximality issue, rather than consistency, that turns out to make a crucial
difference. In fact, in this model, the distinction between our two notions of maximality is also
important; there exist REFS that are not SREFS. This is also the case for the Acemoglu et al.
(2008) model of political power. Moreover, SREFS provides a new characterization of their
equilibrium notion, while the notions of REFS or farsighted stable sets are not strong enough to
yield precisely their solution.

2. MAXIMALITY AND CONSISTENCY

We consider a general setting, described by an abstract game, (N,X,E, ui(.)), where N is the
set of players and X is the set of outcomes or states. Let N denote the set of all subsets of N .
The effectivity correspondence, E : X×X 7→ N , specifies the coalitions that have the ability to
replace a state with another state: for x, y ∈ X , E(x, y) is the (possibly empty) set of coalitions
that can replace x with y. Finally, ui(x) is the utility of player i at state x.

The set of outcomes as well as the effectivity correspondence will depend on the structure of
the model being studied. For instance, in a coalition (or characteristic function) game, (N,V ),
there is a set of feasible utilities, V (S), for every coalition S.7 In this case, a state will gen-
erally refer to a coalition structure and a corresponding payoff allocation which is feasible and
efficient for each of the coalitions in the coalition structure. Historically, however, following
von Neumann and Morgenstern (1944), much of the literature has treated the set of states to
be the set of imputations, the Pareto efficient utility profiles in V (N), and implicitly assumed
that S ∈ E(x, y) iff yS ∈ V (S). We explain below why this turns out to be unsatisfactory for
studying farsightedness.

State y dominates x if there is S ∈ E(x, y) such that uS(y) � uS(x). In this case we also say
that (S, y) is an objection to x.

The core is the set of all states to which there is no objection.

A set K ⊆ X is a vNM stable set if it satisfies:

(i) there do not exist x, y ∈ K such that y dominates x; internal stability.
(ii) for every x /∈ K, there exists y ∈ K such that y dominates x; external stability.

For an abstract game, we define farsighted dominance as follows:

6Piccione and Rubinstein (2007) study the analogue of an exchange economy in the “jungle”, which is similar to
a world without property rights.

7A transferable utility, or TU, coalitional game will be denoted (N, v), where V (S) = {u ∈ RS |
∑

i ui ≤ v(S)}
for all S.
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State y farsightedly dominates x (under E) if there is a sequence y0, (y1, S1), . . . , (ym, Sm),
with y0 = x and ym = y, such that for all k = 1, . . .m:

Sk ∈ E(yk−1, yk)

and
u(y)Sk � u(yk−1)Sk .

A set F ⊆ X is a farsighted stable set if:

(i) there do not exist x, y ∈ F such that y farsightedly dominates x; farsighted internal
stability.

(ii) for every x /∈ F , there exists y ∈ F such that y farsightedly dominates x; farsighted
external stability.

It is important to emphasize that the notion of effectivity is especially delicate in the context of
farsightedness. Harsanyi (1974), in defining farsighted dominance for a characteristic function
game, maintained the von Neumann-Morgenstern assumption that S ∈ E(x, y) iff yS ∈ V (S).8

This way of specifying effectivity gives coalition S complete freedom in choosing y−S , the
payoffs to outsiders (provided y is an imputation and yS ∈ V (S)). This obviously leads to
the question of why or how coalition S can dictate the payoffs of coalition N − S. However,
this questionable assumption has not received much attention until recently because it plays no
role for myopic solutions such as the core and the stable set. But in the case of farsighted
dominance this is not only conceptually questionable but can significantly alter the nature of
the farsighted stable set, as shown by Ray and Vohra (2015). They demonstrate that imposing
reasonable restrictions on the effectivity correspondence results in a farsighted stable set that is
very different from, and arguably more plausible than, that of Harsanyi (1974). We will therefore
need to be attentive to this issue when we consider specific models in Sections 4 and 5. Until
then, in order to highlight the main concerns of this paper, we shall work in the generality of an
abstract game, without any explicit restrictions on the effectivity correspondence.

The farsighted stable set is based on an optimistic view of the coalitions involved in a farsighted
objection. A state is dominated if there exists some path that leads to a better outcome. Chwe
(1994) proposed a farsighted solution concept based on conservative behavior, which is good at
identifying states that cannot possibly be considered stable. A set K ⊆ X is consistent if

K = {x ∈ X | for all y and S with S ∈ E(x, y), there exists z ∈ K such that z = y or
z farsightedly dominates y and ui(z) ≤ ui(x) for some i ∈ S}.

Thus, any potential move from a point in a consistent set is deterred by some farsighted objection
that ends in the set. Chwe shows that there exists one such set which contains all other consistent
sets, and defines this to be the largest consistent set (LCS).

In general, both of these solution concepts are unsatisfactory because optimistic or pessimistic
expectations are both ad hoc. Ideally, a solution concept should be based on optimal behavior

8In fact, Harsanyi was following the standard practice of making this part of the dominance condition rather than
presenting it through an effectivity correspondence. So it would be more precise to say that this is implicitly what
Harsanyi assumed.
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(which may of course turn out to be optimistic or pessimistic in particular examples). The fol-
lowing examples, based on similar ones in Xue (1998), Herings et al. (2004) and Ray and Vohra
(2014), illustrate this problem vividly.

EXAMPLE 1. The game is depicted in Figure 1, Player 1 is effective in moving from state a to
b, while player 2 can replace state b with either c or d, which are both ‘terminal’ states. The
numbers below each state denote the utilities to the players.

a
(1, 1)

b
(0, 0)

c
(10, 10)

{1} {2}

d
(0, 20)

{2}

FIGURE 1

Both c and d belong to the farsighted stable set since they are terminal states. Since there is a
farsighted objection from a to c, the former is not in the farsighted stable set. However, this is
based on the expectation that player 2 will choose to replace b with c rather than d even though
2 prefers d to c. If 2 is expected to move, rationally, to d, then a should be judged to be stable,
contrary to the prediction of the farsighted stable set. Note that a belongs to the LCS because of
the possibility that the final outcome is d. So in this example the LCS makes a more reasonable
prediction than the farsighted stable set.

EXAMPLE 2. This is a modification of Example 1 as shown in Figure 2.

a
(1, 1)

b
(0, 0)

c
(10, 20)

{1} {2}

d
(0, 10)

{2}

FIGURE 2

Now the optimal move for player 2 is to choose c rather than d. The LCS and farsighted stable
set remain unchanged. But now it is the LCS which provides the wrong answer because player
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1 should not fear that player 2 will (irrationally) choose d instead of c. In this example, the
farsighted stable set makes a more reasonable prediction.

As the previous two examples show, both the LCS and the farsighted stable set suffer from the
problem that they do not require coalitions (in these examples, player 2) to make moves that
are maximal among all profitable moves. (A formal definition of maximality in our framework
appears in the next Section).

Another problem that afflicts both the LCS and the farsighted stable set is that they may be
based on expectations that are inconsistent in the sense that coalitions move based on different
expectations about the continuation to follow. For the LCS this was pointed out by Konishi and
Ray (2003). Our next Example illustrates this problem for both the farsighted stable set and the
LCS.

EXAMPLE 3. This is a three-player game with five states, shown in Figure 3.

a
(1, 1, 1)

b
(1, 1, 1)

c
(0, 0, 0)

d
(0, 3, 3)

e
(3, 0, 3)

{1}

{3}

{2}

{3}

FIGURE 3

In this example, the farsighted stable set is {d, e} while the LCS is {a, b, d, e}. State a is not
in the farsighted stable set because of a farsighted objection to e, and b is not in it because of
a farsighted objection to d. However, from c player 3 can only move to either d or e. Thus,
the exclusion of both a and b from the farsighted stable set is based on inconsistent expectations
of the move from c. On the other hand, the inclusion of both a and b in the LCS is also based
on inconsistent expectations. The ‘right’ answer in this example should be that {a, d, e} and
{b, d, e} are two ‘stable sets’: the former if the expectation is that player 3 will move from c
to d and the latter if the expectation is that 3 will move from c to e. Another interpretation of
this phenomenon is that expectations under the farsighted stable set or the LCS allow for history
dependence: the continuation from c depends on the history. In this sense what we are asking
for can be seen as the joint requirement of consistency and history independence. Formally, in a
dynamic model this corresponds to the Markovian assumption, which is commonly made in the
literature, as in Konishi and Ray (2003).



8

To define optimal behavior one will need to rely on players having (rational) expectations about
the continuation path following any coalition move. In a dynamic setting, such as in Konishi and
Ray (2003) or Ray and Vohra (2014), these expectations are specified by a dynamic process of
coalitional moves. An equilibrium process of coalition formation (EPCF) is a Markovian process
in which coalitions take actions that are maximally profitable in terms of a value function.9 One
difference in these models is that Ray and Vohra (2014), unlike Konishi and Ray (2003), specify
a protocol to explicitly determine the order in which coalitions are called upon to move at each
stage. In spirit, though, in both cases the approach for incorporating consistency and rational
expectations is similar to ours, even though we seek to accomplish this more directly within the
static, blocking approach. Static models most closely related to our approach are Xue (1998) and
Kimya (2015).

Xue (1998) argued that to resolve the maximality issue we should consider a stable set defined
over paths of coalition actions rather than on outcomes. In many cases, such as Examples 1 and 2,
this can resolve the problem. However, it may push the choice between optimism and pessimism
to another level. When a path is tested against a deviation by a coalition, the deviation can itself
lead to multiple stable paths and so in evaluating these multiple paths the pessimism/optimism
choice resurfaces. This leads him to define the optimistic stable standard of behavior and the
conservative stable standard of behavior. In Example 3, the predictions of these two concepts
match the farsighted stable set and the LCS, respectively. We are able to avoid this by considering
stability in terms of a given expectation that describes transitions from every outcome. In our
framework, once a coalition makes a change, there is no further ambiguity about the continuation
path. In this respect, our approach is similar to Konishi and Ray (2003), Ray and Vohra (2014)
and Kimya (2015), even though these papers propose solution concepts that are not defined in
terms of stable sets. In these papers an ‘equilibrium path’ need not involve all coalitions doing
strictly better, whereas in our framework a sequence of coalition moves will be a farsighted
objection, involving strict improvements; see Kimya (2015) for further discussion.

We should acknowledge that one reason all the examples in this Section are so simple is because
they concern abstract games with terminal nodes. The skeptical reader might wonder whether
issues of maximality or consistency are consequential in more general models of economic in-
terest. Our analysis of simple games and pillage games in Sections 4 and 5 will demonstrate
that these issues are indeed of more general importance. But we must first turn to the task of
formally incorporating notions of maximality and consistency in a definition of farsightedness in
coalitional games.

3. FARSIGHTEDNESS WITH RATIONAL EXPECTATIONS

Jordan (2006) formulates the idea that farsighted stability can be expressed in terms of commonly
held consistent expectations regarding the ‘final outcome’ from any state. He defines an expec-
tation as a function φ : X → X such that for every x ∈ X , φ(φ(x)) = φ(x). A stationary state
of φ is x such that φ(x) = x. Given a farsighted stable set, Z, it is straightforward to construct
an expectation φ that is consistent with farsighted dominance and yields Z as the collection of

9In Example 3, therefore, the prediction would be that the stable outcomes are either {a, d, e} or {b, d, e}.
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all stationary outcomes. If x ∈ Z, let φ(x) = x. If x /∈ Z, let φ(x) = y for some y ∈ Z that
farsightedly dominates x.10

In order to deal with the issues discussed in Section 2, we modify Jordan’s approach by interpret-
ing an expectation to describe the transition from one state to another, not necessarily the final
outcome from a state. In addition, we will also find it important to keep track of the coalition
that is expected to make the transition. With this in mind, we define an expectation as a function
F : X → X × N . For a state x ∈ X , denote F (x) = (f(x), S(x)), where f(x) is the state
that is expected to follow x and S(x) ∈ E(x, f(x)) is the coalition expected to implement this
change. If f(x) = x, S(x) = ∅, signifying the fact that no coalition is expected to change x. A
stationary point of F is a state x such that f(x) = x. Given an expectation F (.) = (f(.), S(.)),
let fk denote the k-fold composition of f . In particular, f2(x) = f(f(x)). With a slight abuse
of notation, let F k(x) = F (fk−1(x)).

An expectation is said to be absorbing if for every x ∈ X there exists k such that fk(x) is
stationary. In this case, let f∗(x) = fk(x) where fk(x) is stationary.

We seek to describe a set of stable outcomes Z ⊆ X that is ‘justified’ by an expectation in
the sense that Z is the set of stationary points of an expectation F that embodies farsighted
rationality.

An absorbing expectation F is said to be a rational expectation if it has the following properties:

(I) If x is stationary, then from x no coalition is effective in making a profitable move
(consistent with F ), i.e., there does not exist T ∈ E(x, y) such that uT (f∗(y))� uT (x).

(E) If x is a nonstationary state, then F (x) must prescribe a path that is profitable for all
the coalitions that are expected to implement it, i.e., (x, F (x), F 2(x), . . . F k(x)) is a
farsighted objection where fk(x) = f∗(x).

(M) If x is a nonstationary state, then F (x) must prescribe an optimally profitable path for
coalition S(x) in the sense that there does not exist y such that S(x) ∈ E(x, y) and
uS(x)(f

∗(y))� uS(x)(f
∗(x)).

The set of stationary points, Σ(F ), of a rational expectation F is said to be a rational expectations
farsighted stable set (REFS).

Conditions (I) and (E) are related but to not the same as farsighted internal and external stability
(conditions (i) and (ii) in the definition of a farsighted stable set). And the differences can be
significant enough to generate very different results, as we will see. Since Σ(F ) is a set of
stationary states, Condition (I) clearly implies that Σ(F ) satisfies myopic internal stability in the
traditional sense. It is weaker than farsighted internal stability since it requires internal stability
only with respect to those farsighted objections that are consistent with the common expectation
F .

10This bears some similarity to Harsanyi’s (1974) attempt to relate the stationary set of an equilibrium in a non-
cooperative game to a version of a (farsighted) stable set.
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Condition (E) states that to every x /∈ Σ(F ) there is a farsighted objection (terminating in Σ(F ))
consistent with the common expectation F . This is stronger than farsighted external stability
since it requires consistency with F .

Condition (M) is the maximality condition; a translation of the corresponding condition of Kon-
ishi and Ray (2003) and Ray and Vohra (2014) into our framework. It requires that if S(x) is
expected to move from x to f(x), then the final outcome resulting from this is not Pareto domi-
nated for S(x) by some other move this coalition could have made. For instance, it would require
that in Example 1 f(b) = d, and in Example 2 f(b) = c. Condition (M) is clearly a minimal
requirement of optimality. It is also a sufficient expression of optimality if one takes the view
that at a nonstationary state x, S(x) is the coalition that has the floor, which gives it the sole
option to select a transition from x.

However, one could entertain models in which, under certain conditions, some other coalition
may also have the right to intervene and change course. For instance, it may be possible for
some subset of S(x) to thwart f(x) and move elsewhere. This motivates the following notion of
strong maximality:

(M’) If x is a nonstationary state, then F (x) must prescribe an optimally profitable path in the
sense that no coalition has the power to change course and gain, i.e., there does not exist
T ∈ E(x, y) such that T ∩ S(x) 6= ∅ and uT (f∗(y))� uT (f∗(x)).

Condition (M’) strengthens (M) by allowing for the possibility that a coalition T which includes
some players from S(x) is allowed to change the transition. This is based on the idea that a move
by S(x) requires the unanimous consent of all its members, which means that another coalition
may seize the initiative if it can enlist the support of at least one player in S(x).

A expectation F satisfying (I), (E) and (M’) is a strong rational expectation. The set of stationary
points of a strong rational expectation F is said to be a strong rational expectations farsighted
stable set (SREFS).

Note that strong maximality continues to assume that a coalition disjoint from S(x) cannot inter-
fere in the expected move. An even stronger notion of maximality would drop this assumption
as well. While we do not pursue this here, see footnotes 11 and 15 below. We expect that these
differences in maximality notions would get reflected in the details of the negotiation process
embedded in any underlying noncooperative game that might explain a given notion of a far-
sighted stable set. An important direction for future work would be to carry forward the general
Nash program to the study of stable sets, by studying noncooperative games that lead to one
kind of stable set or another. Interestingly, Harsanyi (1974) can be viewed as one such exercise,
showing that a (noncooperative) “equilibrium-point interpretation of stable sets” compels us to
replace the dominance relation of von Neumann and Morgenstern with farsighted dominance.

Every SREFS is clearly a REFS. However, the converse is not true, as illustrated in the next
couple of examples.

EXAMPLE 4.
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a
(1, 1)

b
(0, 0)

c
(0, 3)

{1} {2}

d
(2, 2)

{1, 2}

FIGURE 4

For the two-player game depicted in Figure 4, consider F such that f(b) = d and S(x) = {1, 2}.
Since S(x) gains in moving from b to d, and there is only one move available to this coalition,
this is clearly a maximal move. If 1 anticipates that coalition {1, 2} will form and move to d,
then 1 will move from a to b. So, the REFS corresponding to F is {c, d}. However, the move
by {1, 2} from b to d is not strongly maximal because {2} could do even better by turning down
this move and moving to c instead. In our language, F does not satisfy strong maximality, and so
{c, d} is not a SREFS. A strongly maximal rational expectation, say F ′, must have the property
that f ′(b) = c with S(b) = {2}. This will dissuade {1} from moving from a to b, ensuring that
{a, c, d} is a SREFS, and of course also a REFS. On the other hand, {c, d} is a REFS but not a
SREFS. In Section 5 we will see a more general version of this phenomenon.

Our next example shows that condition (M’) of SREFS may be too demanding for existence,
even though a REFS may exist.

EXAMPLE 5.

a
(0, 0, 0)

b
(3, 2, 1)

d
(2, 1, 3)

{13}{12}

c
(1, 3, 2)

{23}

FIGURE 5

There are three possible rational expectation functions prescribing moves from a to one of b,
c or d. All of them satisfy maximality. Of course, for each of these expectation functions,
all three terminal states are stationary. So, in each case, {b, c, d} is a REFS. However, none
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of these expectation functions satisfies strong maximality. For instance, consider F such that
f(a) = b and S(a) = {1, 2}. This does not satisfy strong maximality since 2 can join with 3
to move to c, a terminal state. The same argument applies to the other two rational expectation
functions. So, there is no expectation function for which the set {b, c, d} is a SREFS. On the
other hand, {a, b, c, d} cannot be a SREFS because it would violate (I). So, there is no SREFS in
this example.11

In general, even the existence of a REFS is not guaranteed. One example in which this is the
case is the three-player NTU ‘roommate game’ depicted in Figure 6.

EXAMPLE 6. From every state there is one two-player coalition that gains by moving to another
state.

a
(3, 2, 1)

c
(1, 3, 2)

{2, 3}

c
(2, 1, 3)

{1, 3}{1, 2}

FIGURE 6

It is easy to see that this games possesses no vNM stable set, no farsighted stable stable and no
REFS.

Fortunately, the failure of existence seen in Examples 5 and 6 does not extend to the applications
we consider in Sections 5 and 6. There we are able to establish the existence of SREFS under
some mild conditions. Apart from showing existence, the main theme of these Sections is that
REFS or SREFS can be very different from farsighted stable sets (Section 4) and REFS can be
very different from SREFS (Section 5). However, there is one interesting case in which a SREFS
(or REFS) coincides with a farsighted stable set.

A set of states Z is a single-payoff set if u(x) = u(y) for all x, y ∈ Z.

THEOREM 1. If Z is a single-payoff REFS it is a SREFS and a farsighted stable set. Conversely,
if Z is a single-payoff farsighted stable, then it is a SREFS.

11An even stronger notion of maximality, which we will not pursue, is one adopted by Xue (1998). It allows the
expected path to be altered by any coalition, even one that is disjoint from the coalition that is expected to move. For
instance, modify Example 5 so that player 1 is effective in moving from a to b, player 2 from a to c and player 3
from a to d. Now, REFS and SREFS are the same: they consist of {b, c, d}. But the extremely strong maximality
condition, that allows any coalition to change course and prevent someone else from making a move, would result
in non-existence in this example. More general models in which it can lead to non-existence are pillage games; see
footnote 15 below.
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All proofs are provided in the Appendix.

REMARK 1. Consider a characteristic function game in which the interior of the core is non-
empty. Then, by Theorem 2 of Ray and Vohra (2015), every state with a payoff in the interior of
the core is a single-payoff farsighted stable set. By Theorem 1, all such games possess a SREFS.

4. SIMPLE GAMES

In this Section, we study the class of monotonic, proper simple games (see von Neumann and
Morgenstern (1944)). These are games that have the following properties for each coalition S

(i) Either v(S) = 1 or v(S) = 0.
(ii) If v(S) = 1, then v(T ) = 1 for all S ⊆ T .

(iii) Moreover, if v(S) = 1, then v(N − S) = 0.

The set of efficient payoff allocations, or imputations, in any such game is the nonnegative n-
dimensional unit simplex, 4. A coalition S such that v(S) = 1 is called a winning coalition.
LetW denote the set of all winning coalitions. For simplicity, assume that no i ∈ N is a dummy
player; that is each i belongs to at least one minimal winning coalition.12

A player i is called a veto player if i is a member of every winning coalition; that is, i ∈ W
for every W ∈ W . The collection of all veto players, also known as the collegium, is denoted
C = ∩S∈WS. A collegial game is one in which C 6= ∅. The collegium (and the corresponding
game) will be called oligarchic if C is itself a winning coalition. Note that in the absence of
dummy players an oligarchic game is one in which C = N ; it is a pure bargaining game, in
which the grand coalition is the only winning coalition.

In a simple game, a state x specifies a coalition structure, denoted π(x), and an associated payoff,
u(x), such that

∑
i∈W (x) ui(x) = 1, where W (x) is the winning coalition (if any) in π(x). We

use X0 to denote the set of states where no winning coalition forms and so ui = 0 for all i.
States in X0 are called zero states.

We will show that under certain conditions all such games possess a SREFS. Moreover, the
consistency of expectations underlying SREFS makes the structure of these sets very different
from the farsighted stable sets identified in Ray and Vohra (2015)

We make the following assumption regarding the effectivity correspondence.

Assumption 1. The effectivity correspondence satisfies the following restrictions:

(a) For every x ∈ X , S ⊆ N and u ∈ RS+ with
∑

i∈S ui = v(S), there is y ∈ X such that
S ∈ E(x, y) and u(y)S = u.

(b) If S ∈ E(x, y), then S ∈ π(y) and T − S ∈ π(y) for every T ∈ π(x).
(c) For all x, y ∈ X , and T ⊂ N , if (W (x) − T ) ∈ W , then T ∈ E(x, y) only if ui(y) ≥

ui(x) for all i ∈W (x)− T .

12The proof of our main result in this Section can be easily modified to accommodate the presence of dummy
players.
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Condition (a) states that every coalition can form and divide its worth in any way among its
members. Condition (b) states that when a coalition S forms it does not affect any coalition that
is disjoint from it, and if it includes some members of a coalition, then the residual remains intact.
This is a natural way to describe the immediate change in the coalition structure resulting from
the formation of a coalition. Condition (c) requires that if with the formation of T the residual
in W (x) remains winning, then the players in W (x)−T cannot lose.13 It includes the condition
that if W (x)∩ T = ∅, then u(x) = u(y). Conditions (b) and (c) should be interpreted as natural
restrictions that prevent a coalition from reorganizing the payoffs or coalition structure of those
outside it. We have mentioned earlier the pitfalls of not imposing such restrictions in the context
of farsighted solution concepts.

In an oligarchic game, any strictly positive payoff is in the interior of the core. By Remark 1,
any state with a strictly positive payoff, along with coalition N , is a SREFS. In the remainder of
this Section, therefore, we shall concentrate on non-oligarchic games.

We discuss in detail an example which illustrates one of the main themes of this section - namely
the difference between REFS or SREFS and the farsighted stable set in simple games.

4.1. An Example. Consider the following three-person example.

EXAMPLE 7. (A three-player, TU game, (N, v) with one veto player): N = {1, 2, 3}, v({1, 2}) =
v({1, 3}) = v(N) = 1 and v(S) = 0 for all other S.

Ray and Vohra (2015) show that under Assumption 1, every farsighted stable in this game assigns
a fixed payoff to the veto player, strictly between 0 and 1, while the remaining surplus can be
divided in any way among players 2 and 3. More precisely, for every a ∈ (0, 1), there is a
farsighted stable set Za with the set of payoffs: {u ∈ R3

+ | u1 = a, u2 +u3 = 1−a}; see Figure
7, where the vertices of the simplex denote states at which the entire surplus is allocation to one
of the three players.

However, no set of the form Za can be a REFS because the external stability of Za (in the
sense of a farsighted stable set) relies on inconsistent expectations. To see this, consider why the
allocation u is not in Za. There is first an objection by {2, 3}, resulting in the coalition structure
{{1}, {2, 3}} and 0 payoff to all players. Call this state x0. This is followed by a move by N
to a point in A. And u′ is not stable because there is first a move by {2, 3} to x0, followed
by a move by N to a point in B. In the first case, x0 is expected to be replaced by a point in
A, while in the second case it is expected to be replaced by a point in B. This is precisely the
kind of ‘inconsistent’ expectation that must be ruled out in a REFS or SREFS. In other words, a
farsighted stable set in this example cannot be a REFS.

We now show that in this Example there is a SREFS, Z, consisting of a finite set of states:
Z = {(u1, π1), (u2, π2), (u3, π3)}, where for some a ∈ (0, 1) and b ≡ (1−a)

2 ,

• u1 = (a, b, b), π1 = {N}.
13Of course, this also implies that W (x) − T ∈ π(y). Condition (b) goes beyond this because it also applies to

residuals that are not winning.
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(1, 0, 0)

(0, 1, 0) (0, 0, 1)

aZ
A B

u u'

FIGURE 7. A FARSIGHTED STABLE SET, Za , IN EXAMPLE 7.

(1, 0, 0)

(0, 1, 0) (0, 0, 1)

(a, b, b)

(a+b, b, 0) (a+b, 0, b)

FIGURE 8. SREFS IN EXAMPLE 7.

• u2 = (a+ b, b, 0), π2 = {{1, 2}, {3}}.
• u3 = (a+ b, 0, b), π3 = {{1, 3}, {2}}.
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The three imputations corresponding to Z are shown in Figure 8. To sustain Z as SREFS, we
construct an expectation described by the following rules. In what follows, we write x = (u, π)
and xi = (ui, πi), i = 1, 2, 3.

(i) For each x ∈ Z, f(x) = x.
(ii) If x is such that u = (0, 0, 0), then S(x) = N and f(x) = x1.

(iii) For each x /∈ Z such that u1 ≥ a+ b, S(x) = {2, 3} and f(x) = ((0, 0, 0), π).
(iv) For each x /∈ Z such that u1 < a+ b and u2 < b, S(x) = {1, 2} and f(x) = x2.
(v) If x not covered by (i) to (iv) above and u1 < a + b and u3 < b, S(x) = {1, 3} and

f(x) = x3.
(vi) Finally, if x is not covered by (i) to (v) above and u1 < a, then S(x) = {1} and

f(x) = ((0, 0, 0), π).

This describes F for all x ∈ X .

Clearly, F satisfies (I) and (E). To check (M’), note that in all states in Z players 2 and 3 get
either b or 0. This implies strong maximality in cases (ii) and (iii). The deviations in (iv) and
(v) are strongly maximal since 1 gets a + b, her highest possible payoff in Z. In case (vi), (M’)
is satisfied because players 2 and 3 have no reason to move, which means that player 1 does not
possess a farsighted objection that could end up at x2 or x3.

This completes the demonstration that Z is a SREFS.

4.2. The Main Theorem. In more general non-oligarchic games Ray and Vohra (2015) show
that it is possible to construct a farsighted stable set in which veto players, and perhaps some
others, receive a fixed payoff while the remainder of the surplus is shared in any arbitrary way
among the remaining players. Such sets, known as discriminatory stable sets, also played an
important role in vNM stable set theory, though with the rather important difference that in vNM
stable sets it is non-veto players who received a fixed payoff. In contrast, SREFS do not seem to
have the structure of discriminatory stable sets. Instead, in most cases SREFS yield finite payoff
sets. We have of course already observed this in Example 7, but this is also the more general
conclusion that emerges from the proof of our next result.

Although the notion of a farsighted stable set does not impose maximality, in non-oligarchic
simple games this property does seem to hold. In this model, therefore, the difference between
farsighted stable sets and SREFS seems to stem from consistency and history independence.

For most simple games we have been able to constructively prove the existence of a SREFS.
There is, however, one particular case for which existence has proven to be elusive. This is the
case in which there is a three-player minimal winning coalition with precisely one veto player.
Our existence result will apply whenever there are two or more veto players or whenever the size
of a minimal winning coalition exceeds three. We do need to make the following assumption.

Assumption 2. There does not exist a three-player minimal winning coalition with precisely one
veto player.

Subject to this assumption we are able to construct a SREFS for all collegial games.
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THEOREM 2. A SREFS exists in every non-oligarchic collegial game satisfying Assumptions 1
and 2.

Can Assumption 2 can be dispensed with or will this case yield an example in which SREFS
does not exist? As of now this question remains open.

Of course, a large class of simple games do not have any veto player, the simplest example
being the majority game in which any majority of players constitutes a winning coalition. von
Neumann and Morgenstern (1944) identified a class of constant-sum games that have a vNM
stable set known as a main simple solution. Suppose there is a ∈ <N+ such that

∑
i∈S ai = 1

for every minimal winning coalition S. Define, for each minimal winning coalition S, uS to be
the imputation such that uSi = ai for all i ∈ S and uSi = 0 otherwise. If the game is a constant-
sum game, then the set of all such imputations is a vNM stable set, known as the main simple
solution. For instance, the imputation (0.5, 0.5, 0) and its permutations constitute a main simple
solution in the three-person majority game. It can be shown that the set of states corresponding
to a main simple solution is a SREFS.

Suppose U is a main simple solution with associated vector a ∈ <N+ . Let Z(U) = {x ∈
X | u(x) ∈ U}. We claim that Z(U) is a SREFS. Since U is a vNM stable set, for every
x /∈ Z(U) there is S ⊆ N and y ∈ Z(U) such that S ∈ E(x, y) and uS(y) � uS(x). For
every x /∈ Z(U) pick any (S, y) with this property and set F (x) = (y, S). If there are several
such (S, y) pick one arbitrarily. For every x ∈ Z(U), let f(x) = x. Clearly, F is an expectation
that satisfies (E). Suppose it does not satisfy (I). Then there is x ∈ Z(U) and T ∈ E(x, y) such
that uT (f∗(y)) � uT (x). Let S be the minimal winning coalition such that u(x) = uS . Since
ui(x) = ai for all i ∈ S, no i ∈ S can get a higher payoff at any other state in Z(U), which
implies that S ∩ T = ∅. Of course, S must be contained in the winning coalition at x. By
Assumption 1 (c), uS(y) = uS(x) = aS , i.e., y ∈ Z(U) and therefore f∗(y) = y. But then
uT (f∗(y))� uT (x) means that uT (y)� uT (x), with y ∈ Z(U), which contradicts the myopic
internal stability of U . Thus, F satisfies (I). It clearly satisfies strong maximality, (M’), because
if any S gains by moving from x to y ∈ Z(U), then ui(y) = ai for all i ∈ S and there is no
other y′ ∈ Z(U) such that ui(y′) > ui(y) for any i ∈ S.

5. PILLAGE GAMES

In this Section we show that in pillage games, in contrast to simple games, maximality and
strong maximality rather than consistency play a crucial role in identifying farsighted stability. In
Jordan’s (2006) model of ‘wealth is power’ we find that there is an important distinction between
REFS and SREFS, both of which can be different from the vNM stable set or the farsighted
stable set. In the Acemoglu et al. (2008) model of political power we see another interesting
illustration of the difference between REFS and SREFS. Acemoglu et al. (2008) propose the
unique ruling coalition (URC) as a solution concept and characterize it both through axioms as
well as the subgame perfect equilibrium of a noncooperative model of coalition formation. In
this model, REFS coincide with farsighted stable sets and include the URC. But they generally
include other outcomes as well. We show that SREFS provides just the refinement of REFS that
yields precisely the URC. Hence SREFS provide a new characterization of the URC.
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In a pillage game, a coalition can appropriate the resources of any other coalition that has less
power. Given a set of players N = {1, . . . , n}, the set of wealth allocations is 4, the unit
simplex in Rn. We shall consider the class of pillage games in which ‘wealth is power’: the
power of coalition S is simply its aggregate wealth. Given wealth allocations w and w′ let
L(w,w′) = {i ∈ N | w′i < wi} denote the set of players who lose in moving from w to w′. We
define the effectivity correspondence in this model as follows:14

(1)
S ∈ E(w,w′) if and only if

∑
i∈S wi >

∑
i∈L(w,w′)wi

and wi = w′i for all i /∈ S ∪ L(w,w′).

This expresses the notion that a coalition can pillage another only if its power is strictly greater
than that of the victims. Moreover, only the winners’ and losers’ wealth payoffs can be affected
through the act of pillaging. That is, if j is neither amongst those who have been pillaged
nor part of the coalition that changes w to w′, then wj = w′j . This last condition rules out a
pillaging coalition sharing its spoils with others. While this condition is of no consequence for
myopic notions of stability, it becomes important in the context of farsighted stability. As we
have remarked earlier, it makes no sense to allow a deviating coalition to affect the distribution
of the payoff of outsiders. This is illustrated in Example 8 below, where a gift can turn out to be
hazardous to the recipients – a Trojan horse. We shall therefore assume throughout this Section
that the effectivity correspondence is defined by (1).

Given the effectivity function, notions of the core, myopic and farsighted stable set, REFS,
SREFS remain unchanged.

By way of background, it will be useful to begin with Jordan’s analysis of the (myopic) vNM
stable set.

A number a ∈ [0, 1] is said to be dyadic if a = 0 or a = 2−k for some nonnegative integer k.
For every positive integer k let

Dk = {w ∈ 4 | wi is dyadic for every i and if wi > 0, then wi ≥ 2−k}.
The set of all dyadic allocations is D = ∪kDk. The set of all allocations in which one player
captures the entire surplus,D0, is the set of tyrannical allocations. Of course, all such allocations
are in the core. It is easy to see that the only other allocations in the core are ones in which two
players share the surplus equally. In other words, the core is D1.

Jordan (2006) provides the following characterization of the stable set.

THEOREM 3. (Jordan) The unique vNM stable set is D.

Jordan (2006) illustrates the issue of farsightedness by considering the three-player example in
this model, where D consists of the allocations (1, 0, 0), (0.5, 0.5, 0), (0.5, 0.25, 0.25) and all
their permutations. From the allocation (0.5, 0.25, 0.25), player 1, by pillaging 2, can achieve
the allocation (0.75, 0, 0.25). While the latter is not in the stable set, it allows player 1 to then
pillage 3 and achieve the tyrannical allocation (1, 0, 0), which is stable. In other words, (1, 0, 0)
is a farsighted objection to (0.5, 0.25, 0.25). Note that if player 3 anticipates the second step in

14Although Jordan (2006) does not explicitly define an effectivity correspondence, our formulation is consistent
with his.
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this move, she should not remain neutral when player 1 pillages 2. Jordan (2006) formalizes
this idea by explicitly introducing expectations. He shows that if otherwise neutral players act
in accordance with the expected (final) outcome, then the stable set, D, is indeed stable in a
farsighted sense.

However, Jordan’s analysis does not really conform to a framework in which the effectivity
correspondence specifies which coalition(s) are effective in changing a current state wk−1 to
wk, independently of where wk will end up. For instance, in the three-player example, whether
player 1 is effective in changing the allocation (0.5, 0.25, 0.25) to (0.75, 0, 0.25) cannot depend
on any further changes that may be expected to take place. What is the farsighted stable set if we
adopt the effectivity correspondence specified in (1)? As our next result shows, it turns out to be
identical to D1, the core.

THEOREM 4. Suppose the effectivity correspondence is defined as in (1). Then the unique far-
sighted stable set is D1, the core.

We now turn to a consideration of SREFS and REFS in this model. Dyadic allocations in which
players with positive wealth share equally will play an important role in this analysis. For every
nonnegative integer k, let Bk = {x ∈ 4 | xi = 0 or xi = 2−k,∀i} and B = ∪kBk. Note that
B0 is the set of tyrannical allocations and B0 ∪B1 = D1.

Our next Example will illustrate a crucial difference between REFS and SREFS in this model.

EXAMPLE 8. The pillage game with four players. The unique SREFS is B but there are two
REFS, B as well as B0 ∪B1.

The core, or D1 = B0 ∪ B1, in this example is the set of all permutations of allocations of
the form (1, 0, 0, 0) and (0.5, 0.5, 0, 0). Since B2 consists of the equal-division allocation, w̄ =
(0.25, 0.25, 0.25, 0.25), B = D1 ∪ {w̄}. It is easy to see, that there can be no further pillaging
from any allocation inD1. So, every REFS, and therefore every SREFS, containsD1. In fact,D1

is a REFS and so isB, but only the latter is a SREFS. Theorems 5 and 6 provide general existence
results for REFS and SREFS, respectively. But the four-player case is useful for illustrating the
difference between REFS and SREFS.

For the four-player game, consider an expectation function F such that Σ(F ) is a SREFS. As we
have already observed, D1 ⊆ Σ(F ). We will now argue that this inclusion is strict by showing
that w̄ ∈ Σ(F ). Observe that if w is such that only two players have positive worth, unless they
are equal, F must specify that the more powerful pillage the weaker one to end up at a tyrannical
allocation. Now consider w such that three players have positive wealth and one has zero wealth.
Without loss of generality, suppose w1 ≥ w2 ≥ w3 > 0 and w4 = 0. We now describe why
w /∈ Σ(F ). There are two distinct cases:

Case 1. Suppose w = (1/3, 1/3, 1/3, 0). Any two of the first three players can pillage the
remaining player with positive wealth to provide 0.5 to each member of the coalition, which is
stable. Since the only possible act of pillage at w must come from a two-player coalition, any
such move satisfies strong maximality. Thus f(w) must be of the form, fi(w) = fj(w) = 0.5
for i, j ∈ {1, 2, 3}.
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Case 2. Suppose w1 ≥ w2 > w3 > w4 = 0. If 1 pillages 3 he becomes more powerful than
2 and we know that F must then predict the tyrannical allocation (1, 0, 0, 0). Since 1 ends up
with the entire surplus, the move by 1 to pillage 3 is strongly maximal. This establishes that
w /∈ Σ(F ) and that S(w) = {1} is one possibility for the coalition that is expected to move at
w. If w1 = w2, or if w1 = 0.5 and w2 > w3, then S(w) = {2} would be another possibility.
But, and this will be crucial for our arguments to follow, a strongly maximal F rules out the
possibility that S(w) = {1, 2}. While {1, 2} can pillage 3, maximality demands that there be
no further change. Otherwise one of the two players in {1, 2} would not have made a profitable
move in the first place. Thus S(w) = {1, 2} must mean that f(w) = (0.5, 0.5, 0, 0). While
this would be maximal for {1, 2}, it would violate strong maximality since player 1 would have
done even better by pillaging player 3 on her own to move to (w1 + w3, w2, 0, 0) and then to
(1, 0, 0, 0). (We saw a similar phenomenon in Example 4). Thus, strong maximality implies that
either S(w) = {1} or S(w) = {2}.15 For concreteness, consider w = (0.375, 0.375, 0.25, 0).
It is a maximal move for {1, 2} to pillage 3 and move to (0.5, 0.5, 0, 0). But this is not strongly
maximal. For F to satisfy strong maximality one of the stronger players must pillage 3 on her
own and end up with the entire surplus.

It is now easy to see that w̄ ∈ Σ(F ). The only possible acts of pillage at w̄ are for a three-player
coalition to pillage the fourth player or for a two-player coalition to pillage one of the remaining
players. The former cannot be consistent with F because we have already shown that if only
three players have positive wealth there must be a further act of pillage, resulting in one of the
three players in the original move to eventually lose. The latter is also ruled out because, as we
have shown in the previous paragraph, strong maximality will lead to a tyrannical outcome; one
of the two players will eventually lose. This completes the proof that w̄ ∈ Σ(F ) and Σ(F ) 6= D1.

To complete the proof that B = Σ(F ), consider any allocation w 6= w̄ such that all 4 players
have positive wealth. Without loss of generality, let w1 ≥ w2 ≥ w3 ≥ w4 > 0 , with w1 > w4.
It follows that w1 + w2 > 0.5. It is sufficient to show that w cannot be stationary under F . If
w1 < 0.5, then w2 < 0.5 as well, and {1, 2} can pillage players 3 and 4 to arrive at the stable
allocation (0.5, 0.5, 0, 0). By internal stability, this implies that w /∈ Σ(F ). If w1 ≥ 0.5, since
w1 > w4 > 0, player 1 can pillage player 4 to move to (w1+w4, w2, w3, 0), wherew1+w4 > 0.5
and w1 +w4 > w2. Now it is easy to see that f∗(w1 +w4, w2, w3, 0) = (1, 0, 0, 0). This means
that 1’s move to pillage 4 is strongly maximal. By internal stability, this must again imply that
w /∈ Σ(F ).

Matters are quite different as far as REFS are concerned. It is possible to construct a rational
expectations function F such that Σ(F ) = D1 is a REFS. The construction of F (see the proof
of Theorem 5 for details) has the property that from every unequal allocation the most power-
ful pillages a least powerful player, and this leads sequentially to a tyrannical allocation. The
only remaining issue is to define F in such a way that w̄ = (0.25, 0.25, 0.25, 0.25) is rendered
unstable. This can be done by defining F such that:

15Note that if w1 = w2, either case is possible but it would then be impossible for F to satisfy the even stronger
maximality condition described in footnote 11. If S(x) = {1}, then {2} would like to disrupt this move and become
the coalition that pillages 3, and vice versa if S(x) = {2}.
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(i) f(w̄) = (0.375, 0.375, 0.25, 0) ≡ w′ with S(w̄) = {1, 2}. That is, players 1 and 2
jointly pillage player 4 and divide w̄4 equally.

(ii) f(w′) = f∗(w′) = (0.5, 0.5, 0, 0) with S(w′) = {1, 2}. Here, players 1 and 2 pillage
player 3 and share w′3 equally.

Note that at w̄ orw′ if {1, 2} did not divide their gains equally, at the next stage the more powerful
of the two will pillage the remaining player(s) and obtain her tyrannical allocation. Thus, the less
powerful of the two would not have joined in the act of pillage. This means that f(w̄) and f(w′)
describe a maximal move by {1, 2} in the sense of Condition (M). It is now easy to see that D1

is a REFS. But as we’ve already seen, it cannot be a SREFS.

We now turn to existence for the general case of an arbitrary number of players. For any positive
integer n, let k(n) be the largest integer such that 2k ≤ n.

THEOREM 5. For any positive integer k∗ ≤ k(n), ∪k∗0 Bk is a REFS.

Recall that B = ∪k(n)
0 Bk and is therefore the largest REFS identified by Theorem 5. And

there are many others, including the unique farsighted stable set: B0 ∪B1 = D1. In this model,
therefore, unlike simple games, the farsighted stable set can be justified on the basis of consistent
and rational expectations. It does not, however, meet the strong maximality test, as shown by
Example 8. In other words, Theorem 5 cannot be strengthened to assert that ∪k∗0 Bk is a SREFS
for all k > 0. However, as our next result shows (formalizing the message from Example 8), one
of the REFS identified in Theorem 5 is a SREFS.

THEOREM 6. Suppose the effectivity correspondence is as in (1). Then B is a SREFS.

We close this section with a discussion of Acemoglu et al. (2008). They study a model of
political coalition formation in which the power of each player is exogenously given. For each
i ∈ N , γi > 0 denotes i’s political power. The power of coalition S is γS =

∑
i∈S γi. Coalition

S ⊆ T is winning in T if γS > αγT , where α ∈ [0.5, 1). Denote by W(T ) the set of subsets
of T that are winning in T . If such a coalition exercises its power, it captures the entire surplus
and becomes the ruling coalition. The other players are eliminated and play no further role.
However, the ruling coalition may itself be subject to a new round of power grab from within.

The distribution of wealth is determined through an exogenous rule that depends only on the
identity of the ruling coalition. Assume that for every player it is better to be in a ruling coalition
than not. Moreover, it is better to be in a ruling coalition with lower aggregate power. As
Acemoglu et al. (2008) point out, a particular example of such a rule, which we adopt for the
sake of simplicity, is the following:

wi(S) =

{
γi/γS if i ∈ S
0 otherwise

A state can now be defined as the ruling coalition: at state S, the ruling coalition is S and the
wealth distribution is w(S). The set of states is therefore N . Winning coalitions are the ones
effective in changing a state:

(2) S ∈ E(T, S) if and only if S is winning in T .
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This means that if a change occurs, the new ruling coalition is smaller. If such a change is
expected to lead to a further change, then a winning coalition will choose not to exercise its
power. This is a result of the fact that any further change must leave some member(s) of the
original winning coalition with a payoff of 0. In other words, if there is a farsighted objection
S, S1, . . . Sm leading from S to Sm it must be the case that m = 1; farsighted dominance is
equivalent to dominance.16 Harsanyi (1974) refers to a farsighted dominance relation with this
property as trivial and points out that if this property holds for every farsighted dominance of
one state over another, then the vNM stable set is equivalent to the farsighted stable set.

Another feature of this model that makes it very tractable is that objections can only come from
subsets of the ruling coalition (internal blocking). This makes it possible to construct a stable
set recursively. Of particular interest in these models is the stability of N , or the stable state(s)
starting from N . We illustrate this through the following example.

EXAMPLE 9. (Four-player example of the Acemoglu et al. (2008) model). Suppose N =
{1, 2, 3, 4}, γ = (2, 4, 6, 8) and α = 0.5.

A vNM stable set can be constructed as follows. Any ruling coalition consisting of one individual
clearly belongs to the stable set (it is in the core). Any ruling coalition consisting of two players
is not in the stable set because the more powerful player will eliminate the weaker one; there is
an objection leading to a stable state. Next, consider the three-player coalitions. The coalition
{1, 2, 4} is not stable because player 4 has enough power to eliminate the other two. Let the
collection of the other three-player coalitions be denoted S = {{1, 3, 4}, {2, 3, 4}, {1, 2, 3}}. It
is easy to see that no coalition in S is threatened by a single powerful player. In each instance,
two of the players have enough power to eliminate the third, but the resulting outcome is not
stable, as we have just noted. This means that all coalitions in S are stable, and N is not; it will
be replaced by one of these three-player coalitions. Thus, the stable set consists of singletons
and the collection S. In fact, this is also a farsighted stable set because farsighted dominance is
equivalent to myopic dominance in this model. To verify this directly in this Example, it is only
necessary to establish the farsighted internal stability for states in S. While two players could
eliminate a third, this cannot result in a farsighted objection ending in a stable state because the
weaker of the two will get eliminated at the next stage. We conclude that N is not stable and will
replaced be one of the coalitions in S.17

Recall that farsighted internal stability is stronger than Condition (I) of REFS and myopic exter-
nal stability is stronger than Condition (E) of REFS. Consequently, the equivalence of farsighted
dominance and myopic dominance also yields equivalence with REFS. More precisely, consider
a set of states Z that is a stable set as well as a farsighted stable set. For every state S ∈ Z,
let F (S) = S. (Because X = N , we abuse notation slightly to consider F as a function from
N → N ). For S /∈ Z define F (S) to be a subcoalition of S that dominates it (myopically)
and belongs to Z. If there are several such coalitions, pick one arbitrarily. By construction, F
satisfies (E). It satisfies (I) because Z is farsighted stable set. Finally, it satisfies (M) because for

16Recall that in Jordan’s pillage game a farsighted objection could last several steps, although at each step it would
be the same coalition making the change. This difference stems from the fact that in the Acemoglu et al. model only
the winning coalition survives to the next stage; there are no neutral players.

17The singletons are also stable, but none of those states are reachable from N .
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every nonstationary state, S, it prescribes a move by coalition F (S) that ends with F (S). Since
this is the only profitable move available to F (S) it is trivially maximal.

Acemoglu et al. (2008) provide an axiomatic characterization of a solution to this model, which
they refer to as the unique ruling coalition (URC), and also show that it coincides with the
subgame perfect equilibria of a noncooperative model of coalition formation. The URC is a
refinement of REFS, or the stable set. This difference turns out to hinge on the difference between
REFS and SREFS. In fact, in this model SREFS refines REFS precisely to the URC.18 This can
be illustrated through Example 9. As explained above, in constructing a rational expectation F
we have the freedom to choose F (N) to be any one of the three coalitions in S. In particular, we
could define F (N) = {2, 3, 4}. But players 3 and 4 could do better by forming {1, 3, 4}; recall
that the payoff to a player is higher in a coalition with lower aggregate power. In other words, F
does not satisfy (M’). In fact, strong maximality in this model, not just in Example 9, reduces to
the condition that if S is not a stationary state, then F (S) has the lowest aggregate power among
all stable coalitions that are winning in S:

If S /∈ Σ(F ), then F (S) ∈ argminT∈Σ(F )∩W∗(S)γT , whereW∗(S) denotesW(S)− S.

If γ is generic in the sense that γS 6= γT for any S, T , S 6= T , then clearly F (S) is unique for
every S. And the unique strong rational expectation can be computed recursively as follows. Of
course, F (S) = S if |S| = 1. Suppose F (S) has been defined for all S such that |S| < k. Then
for S with |S| = k,

F (S) =

{
argminT∈Σ(F )∩W∗(S)γT if Σ(F ) ∩W∗(S) 6= ∅
S otherwise

F (S) is the same as φ(S), the Acemoglu et al. (2008) notion of the URC for player set S. Thus
we have yet another characterization of the URC: it is the unique SREFS. In this model, the
farsighted stable set or REFS generally yields a set of outcomes that strictly includes the URC.
Strong maximality refines it precisely to the URC.

6. CONCLUDING REMARKS

This paper provides a framework for the analysis of cooperative solution concepts that combines
farsightedness with the principles underlying the von Neumann-Morgenstern stable sets. We go
beyond the recent work of Ray and Vohra (2015) by restricting coalitional moves to be maximal.
We do so under the assumption that all coalitions hold common or consistent beliefs about the
continuation path of future coalitional moves. Another interpretation of consistency is history
independence - future moves from any state are independent of previous moves culminating in
the current state. An interesting avenue for future research would be to incorporate maximality
without assuming history independence.

We model consistency through the use of an expectation function, which describes the transition
from one state to another as well as the coalition which makes the move. Analogs of internal

18Ray and Vohra (2014) show that their notion of an EPCF yields the same predictions as REFS, but an appropri-
ately chosen protocol is needed to sharpen the equilibria to coincide with the URC. See also Kimya (2015).
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and external stability that define a stable set are easily incorporated in this framework. These,
and two versions of maximality then give rise to two different solution concepts - the rational
expectations farsighted stable set (REFS) and the strong rational expectations farsighted stable
set (SREFS).

In a series of examples, we show that these solution concepts lead to predictions which are
intuitively more appealing than the Chwe largest consistent set or the Ray-Vohra farsighted stable
set. However, Theorem 1 identifies one situation where SREFS, REFS and the farsighted stable
set coincide. This is the case in which there is a unique payoff at all states in the farsighted stable
set. As shown in Ray and Vohra (2015), any payoff in the interior of the core of a characteristic
function game can be identified as such a farsighted stable set. According to Theorem 1 it is also
a SREFS.

We apply our solution concepts to two broad classes of games. The first is the class of proper
simple games. We prove constructively that under a mild assumption all game with veto players
have a non-empty SREFS. SREFS turns out to be quite different from the farsighted stable set
identified by Ray and Vohra (2015), the main driving for the difference being consistency. Our
second application is for the class of pillage games, first studied by Jordan (2006) to analyze
cooperative situations without well defined property rights over resources. We show that both
REFS and SREFS exist for all such games. Again, these solution concepts turn out to make
predictions which are quite different from that made by the farsighted stable set. In this case,
the main driving force for the difference is maximality. In this model there is also an important
difference between REFS and SREFS.

Finally, we show that SREFS provides another characterization of the ultimate ruling coalition,
a solution concept advanced by Acemoglu et al. (2008) in their analysis of political coalition
formation.
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APPENDIX

Proof of Theorem 1.

Suppose Z is a single-payoff REFS. Since all stationary states have the same payoff, Z is clearly
also a SREFS and satisfies farsighted internal stability in the definition of a farsighted stable
set. Moreover, Condition (E) implies farsighted external stability in the definition of a farsighted
stable set. Thus Z is a farsighted stable set.

To prove the second part of the Theorem, consider a single-payoff farsighted stable set X0.
Define X1 to be the set of states from which there is a farsighted objection to some state in X0

in a single step. More precisely:

X1 = {x ∈ X −X0 | ∃x0 ∈ X0, S ∈ E(x, x0) with uS(x0)� uS(x)}.
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SinceX0 is a farsighted stable set, from every x ∈ X−X0, there is a farsighted objection leading
to some x0 ∈ X0: x, (x1, S1), . . . , (x′, S′), (xm, Sm). Clearly x′ ∈ X1, which establishes
the nonemptiness of X1. We shall now recursively define subsets of X from which there are
farsighted objections leading to X0 in a minimal number of steps. All of these sets will be
disjoint and will cover X . The construction is as follows.

Suppose Xj have been defined for all j = 1, . . . , k. Define Xk+1 to be the set of all other states
from which there is a farsighted objection leading to X0 such that the first step is a state in Xk:

Xk+1 = {x ∈ X − ∪kj=0X
j | there is a farsighted objection x, (x1, S1), . . . , (xm, Sm),

with x1 ∈ Xk and xm ∈ X0}.

Note that if Xk+1 = ∅, then ∪kj=0X
k = X . To complete the proof we will construct a function

F : X → X × N where F (x) = (f(x), S(x)) such that f(x0) = x0 for every x0 ∈ X0,
and for every x ∈ Xk+1, f(x) ∈ Xk. We know that from x ∈ Xk+1 there is a farsighted
objection leading to some state in X0 which proceeds by first moving to a point in Xk. We
will choose f(x) as one such point along with a unique coalition that initiates such a farsighted
objection. The function F is constructed recursively. For x ∈ X1, define f(x) = x0 ∈ X0

and S(x) to be a coalition that has a one step objection from x to x0. If there are multiple such
coalitions, choose one arbitrarily. This describes a unique transition from X1 to X0. Having
defined F : Xj 7→ Xj−1 × N for all j = 1, . . . k, if Xk+1 6= ∅, for x ∈ Xk+1 let S1 be a
coalition that has a farsighted objection from x to xm ∈ X0, denoted x, (x1, S1), . . . , (xm, Sm),
such that x1 ∈ Xk. Let F (x) = (x1, S1). Note that there may be multiple such farsighted
objections. In that case, pick F (x) to be the first element of any such sequence. Proceeding in
this way, we have constructed a function F : X → X×N withX0 as its set of stationary points.
It remains to be shown that F is a strong rational expectation.

Since the stationary points of F have the same payoff vector, it trivially satisfies Condition (I) in
the definition of a rational expectation.

To prove Condition (E), consider x ∈ X − X0. Of course, there is some k ≥ 0 such that
x ∈ Xk+1. From the construction of F we know that there exists a farsighted objection
from x to xm ∈ X0, say, x, (x1, S1), (x2, S2), . . . , (xm, Sm), such that F (x) = (x1, S1).
(There is no presumption that (x2, S2) = F 2(x), or that m = k). Let u0 denote the (com-
mon) payoff corresponding to each of the (single-payoff) states in X0. Obviously, uS1(xm) =
u0
S1 � uS1(x). Since fk(x) ∈ X0, u(fk(x)) = u0, which implies that S1 gains in moving

along the path (x, F (x), F 2(x), . . . , F k(x)). By the same reasoning, S2 also gains by mov-
ing from f(x) along the path (F 2(x), . . . , F k(x)), and so on for all Sj , j = 1, . . . Sk. Thus,
(x, F (x), F 2(x), . . . , F k(x)) is a farsighted objection from x to fk(x) ∈ X0.

To see that Condition (M’) is satisfied note that no player, and therefore no coalition, can gain
by deviating from the path prescribed by F because any deviation leads to the same payoff
vector, u0. This establishes Condition (M’) and completes the proof that F is a strong rational
expectation with Σ(F ) = Z.

The proof of Theorem 2 will make use of the following lemma.
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LEMMA 1. There exists a positive number d < 1/|C|, a vector b ∈ RN−C+ and a non-empty
collection of coalitions J in N − C such that:

(1) For every J ∈ J ,C∪J is a minimal winning coalition, bJ � 0 and
∑

j∈J bj = ε ≡ 1−d|C|.

(2) There does not exist a winning coalition C ∪ T ′ such that
∑

j∈T ′ bj < ε.

(3) 1 >
∑

j∈N−C bj > ε.

Proof. Let J ′ = {J ⊂ N − C | C ∪ J is a minimal winning coalition}. Without loss of
generality, assume that the coalitions in J ′ = {J1, . . . , JK} are ranked in non-decreasing order
of cardinality, so |Jk| ≤ |Jk+1| for all k = 1, . . . ,K − 1.

Choose ε ∈ (0, 1) such that ε < |J1|
|N−C| and let d ≡ 1−ε

|C| . We will now construct an algorithm
which will yield b and J ⊆ J ′ satisfying the desired properties.

Let Jf , f > 1, be the first coalition in J ′ which has a non-empty intersection with some Jk,
k < f . If no such f exists, then set f = K + 1, and JK+1 = ∅.

Step 1: For all k < f let bi = ε
|Jk| for all i ∈ Jk. Note that for all k, k′ < f , Jk ∩ Jk′ = ∅,

so this construction is well-defined. Clearly, b and Jk satisfy Condition (1) of the Lemma for all
k < f . Moreover, since the coalitions in J ′ are in non-decreasing order of cardinality:

(L.1) for any k < k′ < f , i ∈ Jk and j ∈ Jk′ , we have b̄ = ε
|J1| ≥ bi ≥ bj > 0.

Define A1 = ∪f−1
k=1J

k. Then, for every i ∈ A1, bi as defined above will be the “terminal“ value.
For i /∈ A1 we will construct bi iteratively.

For every k ≥ f , we will recursively define non-negative numbers t1i for all i ∈ Jk − A1 as
follows. Suppose t1j have been defined for all j ∈ Gk ≡ ∪k−1

j=1J
j −A1. If Jk − (Gk ∪A1) 6= ∅,

for every i ∈ Jk − (Gk ∪A1) let

t1i = max

[
0,
ε−

∑
j∈Jk∩A1 bj −

∑
j∈Jk∩Gk t1j

|Jk − (Gk ∪A1)|

]

Since there are no dummy players, every i ∈ N − C belongs to at least one coalition in J ′, and
has therefore been assigned a non-negative number, bi or t1i . It follows from (L.1) that for all
i /∈ A1, t1i ≤ b̄.

Let J 1 = {J ∈ J ′|
∑

i∈J∩A1 bi +
∑

i∈J−A1 t1i < ε}.

If J 1 = ∅, terminate the algorithm, set bi = t1i for all i /∈ A1 and go to Step 3.

Suppose J 1 6= ∅. Since J ∈ J 1 implies that |J | ≥ |Jk| for all k < f and J ∈ J 1, it follows
from (L.1) that for every J ∈ J 1, J − A1 6= ∅. Let Jk1 be a coalition in J 1 which maximizes
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ε−
∑

j∈Jk∩A1 bj

|Jk−A1| , ties being broken arbitrarily. For each i ∈ Jk1 −A1, set

bi =
ε−

∑
j∈Jk1∩A1 bj

|Jk1 −A1|

Since Jk1 −A1 6= ∅, A2 ≡ A1 ∪ Jk1 is a strict superset of A1.

Step 2: Since some of the components of the t vector have been increased, the remaining com-
ponents may not be feasible. So, now repeat step 1 with A2 replacing A1.

For k ≥ f , k 6= k1, we will recursively define t2i recursively as follows. Suppose t2i have been
defined for all j ∈ G′k ≡ ∪k−1

j=1J
j −A2. If Jk− (G′k−A2) 6= ∅, for every i ∈ Jk− (G′k ∪A2)

let

t2i = max

[
0,
ε−

∑
j∈Jk∩A2 bj −

∑
j∈Jk∩G′k t

2
j

|Jk −A2|

]
As in Step 1, it follows from (L.1) that t2i ≤ b̄ for all i /∈ A2. Let J 2 = {J ∈ J |

∑
i∈J∩A2 bi +∑

i∈(J−A2) t
2
i < ε}. By construction, Jk1 /∈ J 2. If J 2 is empty, terminate the algorithm with

bi = t2i for all i ∈ N − (C ∪A2) and move to Step 3. Otherwise, choose the coalition Jk2 which

maximizes
ε−

∑
j∈Jk∩A2 bj

|Jk−A2| in this set. For each i ∈ Jk2 −A2, set

bi =
ε−

∑
j∈Jk2∩A2 bj

|Jk2 −A2|

Claim: Jk2 −A2 is non-empty.

Suppose not. Since Jk2 ∈ J 2, and by hypothesis, Jk2 ⊆ A2,
∑

i∈Jk2∩A2 bi =
∑

i∈Jk2∩A1 bi +∑
i∈S t

1
i < ε. Recall that for i ∈ S ⊆ Jk1 −A1, t1i =

ε−
∑

i∈A1∩Jk1
bi

|Jk1−A1| . But this means that

ε−
∑

i∈Jk2∩A1 bi

|S|
>
ε−

∑
i∈Jk1∩A1 bi

|Jk1 −A1|
,

which contradicts the choice of Jk1 . Hence the claim is true, and A3 ≡ A2 ∪ Jk2 is a strict
superset of A2.

Since the sets Ak are strictly increasing over stages, the algorithm terminates.

Step 3. At this stage we have constructed b such that bi ≤ b̄ for all i ∈ N − C, and for
all J ∈ J ′, d|C| +

∑
i∈J bj ≥ 1. Clearly, then Condition (2) of the Lemma holds. Define

J = {J ∈ J ′ | bJ � 0 and
∑

i∈J bi = ε}, which is non-empty because Jk ∈ J for all k < f .
Of course, J satisfies Condition (1).

Since bi ≤ b̄ for all i ∈ N − C,
∑

i∈N−C bi ≤ |N − C|b̄ = |N − C| ε|J1| < 1. To establish
Condition (3) of the Lemma it remains to be shown that

∑
j∈N−C bj > ε. Recall that for every

J ∈ J ,
∑

i∈J bi = ε, which implies that this condition clearly holds if f > 2. Suppose f = 2,
i.e., J1 ∩ J2 6= ∅. Since J1 and J2 are minimal winning coalitions, neither is a subset of the
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other. By construction, bi > 0 for all i ∈ J1 ∪ J2. This together with the fact that
∑

i∈J1 b1 = ε
implies that

∑
i∈N−C bi ≥

∑
i∈J1∪J2 bi > ε.

Proof of Theorem 2.

We will construct a SREFS for two distinct cases. The first is the case, as in Example 7, where
minimal winning coalitions consist of C and any one of the non-veto players. For the second
case, in which there is at least one minimal winning coalition with two or more non-veto players,
our construction will rely on Lemma 1 and Assumption 2.

Case 1: C ∪ {j} ∈ W for all j /∈ C.

Let a > 0 and b > 0 be such that |C|a+ |N − C|b = 1. Define x̂ so that π(x̂) = N and

ui(x̂) =

{
a if i ∈ C
b if i /∈ C

For every j /∈ C, let Xj be the set of all states x in which the winning coalition contains C ∪{j}
and the payoff vector has the property that ui(x) ≥ a for all i ∈ C, uj(x) = b and uk(x) = 0
for all k /∈ C ∪ {j}.

We claim that Z = ∪j /∈CXj ∪ {x̂} is a SREFS: it is the set of stationary points of a strong
rational expectation F satisfying the following properties.19

(1.1) For x ∈ Z, f(x) = x.

(1.2) For x ∈ X0, S(x) = N and f(x) = x̂.

The remainder of the rules for F relate to x ∈ X − Z −X0:

(1.3) For x such that uj(x) < b for all j ∈ N − C, S(x) = N − C and f(x) ∈ X0.

(1.4) For x such that uj(x) ≥ b for all j ∈ N − C, since x /∈ Z, there must be a veto player i
for whom ui(x) < a. Let {i′} be the lowest indexed player of this kind. In this case we have
S(x) = {i′} and f(x) ∈ X0.

(1.5) For x such that uj(x) ≥ b for some non-veto player but not all, let j′ be the lowest indexed
non-veto player such that uj′(x) < b. There are now two distinct cases for describing F .

(1.5.a) Suppose s(x) ≡ 1− b−
∑

i∈C max{a, ui(x)} > 0, then S(x) = C ∪ {j′}, ui(f(x)) =

max{a, ui(x)}+ s
|C| and uj′(f(x)) = b. Note that f(x) ∈ Xj′ .

(1.5.b) Suppose s(x) ≤ 0. In this case, unlike the previous one, it is not possible to construct an
objection that leads to Z in one step. However, it must be the case that there is a veto player i for
whom ui(x) < a. Otherwise, s(x) = 0, which contradicts the supposition that x /∈ Z. In this
case, as in (4), S(x) = {i′} and f(x) ∈ X0.

19In what follows it will be understood that π(f(x)) is the immediate change in π(x) resulting from the formation
of S(x), as formalized in Assumption 1 (b).
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For x /∈ Z, f∗(x) = x̂ in all cases except (1.5.a). It is easy to see that in every instance all the
players in S(x) prefer f∗(x) to x which means that F satisfies (E).

Since all non-veto players weakly prefer x̂ to any other state in Z, and a winning coalition
coalition must include at least one such player, it follows that (M’) is satisfied in case (1.2). The
same reasoning applies to case (1.3). In case (1.4) player i′ cannot construct another farsighted
objection as none of the non-veto players are interested in moving, which implies that this move
is strongly maximal. In case (1.5.a) there is no state in Z that all the veto players prefer to f(x)
and so (M’) holds. Finally, in case (1.5.b) it is clear that player i′ cannot construct an objection
leading to any other state in Z. Thus, in all cases (M’) is satisfied.

To see that F satisfies (I), consider a possible farsighted move from x̂ that ends at some x ∈ Xj .
Since all non-veto players weakly prefer x̂ to x, none of them can be part of the first move from
x̂. But then the first move must lead to a state inX0, which only results in returning to x̂, making
it impossible for the initiating coalition to gain. Next, consider a move from x ∈ Xj that ends up
at x̂. Since all players in C ∪ {j} weakly prefer x to x̂, the first move must come from non-veto
players other than j. But then Assumption 1 (c) on the effectivity correspondence implies that
the payoff remains u(x) through the entire sequence of moves, contradicting the supposition that
the state eventually becomes x̂. Finally, consider the possibility of a farsighted move that leads
from xj ∈ Xj to some xk ∈ Xk, k 6= j. Again, by Assumption 1 (c), the first coalition in such a
move cannot be from a coalition that is disjoint from C ∪{j}. Moreover, such a coalition cannot
include j, since j prefers xj to xk. It cannot include C since it’s impossible for all i ∈ C to gain
in moving from xj to xk. The only remaining possibility is that includes some strict subset of C.
But that leads to a state in X0, from which the final outcome is x̂, not xk.

This completes the the proof of Case 1.

Case 2: There exists a minimal winning coalition C ∪ J such that J ⊂ N − C and |J | ≥ 2.

Let d, b and J be as in Lemma 1. Define a ≡ 1−
∑

i∈N−C bi
|C| . By Condition (3) of lemma 1,

a ∈ (0, d).

Let S∗ = ∪J∈J J , and let N∗ = C ∪ S∗. Since C ∪ J is a winning coalition for every J ∈ J ,
clearly N∗ is a winning coalition.

Define X̂ to consist of all states x such that W (x) ⊇ N∗ and

ui(x) =

{
a if i ∈ C
bi if i /∈ C

Corresponding to each Jk ∈ J , define Xk as the set of states in which the winning coalition
contains C ∪ Jk and the payoff vector corresponding to xk ∈ Xk is

ui(x
k) =


d if i ∈ C
bi if i ∈ Jk
0 otherwise
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Let X̄ be the set of all (nonzero) states x such that

ui(x) =

 d if i ∈ C
bi if i ∈W (x)− C
0 otherwise

Of course, corresponding to every Jk ∈ J , Xk ⊆ X̄ . However, X̄ may also include a state x
with W (x) = C ∪K and K /∈ J because bK is not strictly positive.

We claim that Z = X̄ ∪ X̂ is a SREFS.

To prove this we will construct a rational expectations function F with the following properties:
(a) f(x) = x for all x ∈ Z, (b) for x ∈ X−Z−X0, f(x) ∈ X0, and (c) for x ∈ X0, f(x) ∈ Z,
depending on the nature of π(x).

Let T = {i ∈ N − C | C ∪ {i} ∈ W}. Note that if i ∈ T , then {i} ∈ A1 as constructed in
the proof of Lemma 1. Moreover, given that we are considering Case 2, A1 also includes at least
one coalition J such that |J | ≥ 2. This means that T is a strict subset of S∗. It is also easy to see
from the proof of Lemma 1 that J includes at least two distinct coalitions, which implies that
|S∗| ≥ 3.

To describe the transition from zero states, we partition X0 into three disjoint sets. X0
1 is the

set of all zero states in which the coalition structure contains precisely one two-player coalition
consisting of one player from C and the other from S∗. X0

2 is the set of zero states containing
precisely two two-player coalitions: {i, j} and {i′, k} such that i, i′ ∈ C, j ∈ T ⊂ S∗ and
k ∈ S∗ − T . The set of all other zero states is denoted X0

3 .

For each k ∈ S∗ pick a unique J(k) ∈ J that contains k. The existence of such J(k) follows
from Condition (1) of Lemma 1. With some abuse of notation, let Xk refer to the set of states in
which the winning coalition is C ∪ J(k), the payoff is d for all i ∈ C and bj for all j ∈ J(k).

We now provide a complete description of F .

(2.1) For x ∈ Z, f(x) = x.

(2.2) For x ∈ X0
3 , S(x) = N∗ and f(x) ∈ X̂ .

(2.3) For x ∈ X0
1 , let (i, k) with i ∈ C and k ∈ S∗ be the unique two-player coalition of this

form in π(x). Let S(x) = C ∪ J(k), and f(x) ∈ Xk.

(2.4) For x ∈ X0
2 , let (i, k) with i ∈ C and k ∈ S∗ − T be the unique pair of this form in π(x).

Let S(x) = C ∪ J(k) and f(x) ∈ Xk.

The remainder of the rules for F relate to x ∈ X − Z −X0.

(2.5) There is k ∈ S∗ such that uk(x) < bk and i ∈ C such that ui(x) < d.

There are three subcases to consider:

(2.5.1) Either |C| 6= 2 or W (x) = C ∪ J where |J | ≥ 3.
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Let H be the two-player coalition consisting of the lowest indexed player i ∈ C with ui(x) < d
and the lowest indexed player k ∈ S∗ such that uk(x) < bk. Define S(x) = H . If H is a
winning coalition, let f(x) ∈ Xk. Otherwise, x′ = f(x) ∈ X0. Now, since |C| 6= 2 or |J | ≥ 3,
invoking Assumption 1 (b), H is the unique coalition in π(x′) consisting of one player from
C and another from S∗. Thus, x′ ∈ X0

1 and f(x′) ∈ Xk with ui(f(x′)) = d > ui(x) and
uk(f(x′)) = bk > uk(x). Thus, H has a farsighted objection to x that leads to a state in Xk.

(2.5.2) |C| = 2 and W (x) = C ∪ J where |J | = 2.

Since |S∗| ≥ 3 and |J | = 2, there exists k ∈ S∗− J . Since k /∈W (x), uk(x) = 0. Without loss
of generality, let k be the lowest indexed player in S∗ − J . Let S(x) = H = {i, k}. Clearly,
for x′ = f(x), H is the unique coalition in π(x′) with one player from C and another from S∗.
Thus, x′ ∈ X0

1 and, as in the previous paragraph, f∗(x) ∈ Xk.

(2.5.3) |C| = 2 and W (x) = C ∪ {j} for some j ∈ T .

Recall that T is a strict subset of S∗, i.e., there exists k ∈ S∗− T . Of course k 6= j and uk(x) =
0 < bk. Let i be the lowest indexed player in C such that ui(x) < d and let S(x) = H = {i, k}.
Note that x′ = f(x) ∈ X0

2 , with H as the unique two-player coalition in π(x′) with one player
from C and another from S∗ − T . This means that f(x′) ∈ Xk.

(2.6) Suppose x /∈ Z is such that there is k ∈ S∗ with uk(x) < bk and ui(x) ≥ d for all i ∈ C.
We now define S(x) to ensure that f(x) ∈ X0

3 .

Since ui(x) ≥ d for all i ∈ C, we must have R ≡ {j ∈ W (x) − C | uj(x) < bj} 6= ∅.
Otherwise, by (2) of Lemma 1, ui(x) = d for all i ∈ C and uj(x) = bj for all j ∈ W (x) − C,
which means that x ∈ X̄ , a contradiction to the hypothesis that x /∈ Z. Let R′ be a minimal
subset of R such that W (x)−R′ is not winning; i.e., W (x)−R′ is not winning but the addition
of any single player, j, from R′ would make W (x) − (R′ − {j}) a winning coalition. By
Assumption 2, this winning coalition cannot be of the form {i, j, k} where i is a veto player
and j and k are non-veto players. This must mean that W (x) − R′ cannot consist of precisely
one veto player and one non-veto player. Moreover, since W (x) − R′ /∈ W , with S(x) = R′,
f(x) ∈ X0

3 .

(2.7) If x is such that uj(x) ≥ bj for all j ∈ S∗, since x /∈ Z, there must be a veto player i for
whom ui(x) < a. Let {i′} be the lowest indexed player of this kind and S(x) = {i′}. Since
|S∗| ≥ 3, by Assumption 1 (b), f(x) ∈ X0

3 .

This completes the description of F . Note that in each case that x /∈ Z, the expectation leads
in at most two steps to a state in Z. It is also easy to see that all players in S(x) strictly gain in
moving from x to f∗(x). Thus F satisfies (E).

To show that F satisfies (M’) it is useful to note that a non-veto player j ∈ N − C receives
either bj or 0 in Z while a veto player i receives either a or d > a. In cases (2.3), (2.4) and (2.5),
the move from x is initiated by a coalition of the form {i, k} with i ∈ C and k /∈ C leading
either directly or in two-steps to a state in Xk. Since neither i nor k prefer any other state in
Z, strong maximality holds in all these cases. In case (2.2), S(x) includes all non-veto players
and every such j receives bj at f∗(x) = f(x). Thus, none of them can do better as part of
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some other objecting coalition, implying that (M’) is satisfied. The same argument also applies
to case (2.6). In case (2.5), non-veto players have no reason to join any deviating coalition, and
so any objection coalition must be a subset of C. Since |S∗| ≥ 3, Assumption 1 (b) implies
that non-veto players can only move to X0

3 (and then to X̂). Thus, the move by {i′} is strongly
maximal.

Finally, we show that F satisfies (I).

Take any x̄ ∈ X̄ and x̂ ∈ X̂ . Then, all i ∈ W (x̄) weakly prefer x̄ to x̂. So, if there is a
farsighted objection from x̄ to x̂, and K is the first coalition to move, then K ⊆ N −W (x̄).
From Assumption 1 (c) it follows that if K ∈ E(x̄, x), then ui(x) ≥ ui(x̄) for all i ∈ W (x̄).
Repeated application of this argument rules out any farsighted objection. Notice that an identical
argument ensures that there cannot be a farsighted objection from a state in X̄ to another state
in X̄ . Obviously there cannot be a farsighted objection from a state in X̂ to another state in X̂
since the payoff vector for all states in X̂ is unique.

Finally, consider the possibility of a farsighted objection from x̂ to x̄, where x̂ ∈ X̂ and x̄ ∈ X̄ .
All members of N −C weakly prefer x̂ to x̄. So, the first deviation must come from some subset
of C. Since |S∗| ≥ 3, Assumption 1 (b) implies that this leads to a state x in X0

3 , and f(x) = x̂.
This establishes that Z satisfies (I) and completes the proof that Z is a SREFS.

Proof of Theorem 4.

Suppose Z is a farsighted stable set. It is obvious that no players have the power to beneficially
change a tyrannical allocation since one player has already captured the entire surplus. It must
therefore belong to every farsighted stable set (as well as to every REFS). It is easy to see that
allocations where two players get 0.5 are also stable in this sense. Thus, D1 ⊆ Z.20

To complete the proof, we will now show that for every w /∈ D1 there is a farsighted objection
that terminates in D1. There are two cases:

(i) w /∈ D1 is such that wi = wj for all i, j such that wi > 0, wj > 0. This means that there are
k players who receive 1/k, where k ≥ 3. Suppose two such players, say i and j, pillage a third
and share the spoils equally. This increases the power of i and j. If there are any other players
remaining with 1/k, then i and j pillage one such player in the next step. This process continues
until we arrive at an allocation in D1 where i and j get 0.5 each. This is clearly a farsighted
objection.

(ii) There are i and j such that wi > wj > 0. Let i′ be a player such that wi′ ≥ wi for all i.
Of course, i′ can pillage a player with lower wealth. This results in i′ becoming more powerful,
and she can now pillage any other player j, with wj > 0, if there is any. Through this process of
sequential pillaging, i′ can achieve the tyrannical allocation in which she has the entire wealth.
This describes a farsighted objection, leading from w to a tyrannical allocation in D1.

Proof of Theorem 5.

20The fact that the core is a subset of the farsighted core is a feature of pillage games. In general, it is possible
that the core is disjoint from every farsighted stable set or REFS; recall Example 7.
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We construct an expectation F as follows:

(i) Suppose w is such that wi > wj > 0 for some i, j. Let i′ be the lowest indexed player such
that wi′ ≥ wi for all i, and let j′ be the lowest indexed player such that wj′ < wi′ . Then the
expectation is that i′ will pillage j′: f(w) = w′ where w′i′ = wi′ + wj′ , w′j′ = 0 and wk = w′k
for all k 6= i′, j′, and S(w) = {i′}. Note that f∗(w) is the tyrannical allocation where i′ gets the
entire wealth.

(ii) Suppose w is such that all players with positive wealth have the same wealth but this is not
2−k for any integer k. In other words, m players get 1/m but m 6= 2k for any integer k. Let k̂
be the largest k such that 2k < m. Then f(w) ∈ Bk̂, and S(w) is the coalition consisting of the

lowest indexed 2k̂ players getting 1/m at w. Note that S(w) has the power to make this move

since the total wealth of this coalition at w is 2k̂

m = 1
2

2k̂+1

m > 1
2 .

(iii) For w ∈ B, f(w) = w.

We have constructed F such that Σ(F ) = B. It remains to be shown that F satisfies Conditions
(I), (E) and (M’).

Suppose F does not satisfy (I). Then there exists w ∈ Bk and S ∈ E(w,w′) such that f∗(w′) =
w′′ ∈ Bk′ and w′′S � wS . The last inequality implies that k′ < k.

First, suppose that w′ is such that w′i > w′j for some pair i, j. Then, w′′ is a tyrannical allocation,
so that |S| = 1. But, then S /∈ E(w,w′) since wi = wj if wi, wj > 0.

So, w′ must satisfy w′i = w′j if w′i, w
′
j > 0. Also, since E satisfies equation (1), S = {i|w′i >

wi}. Putting these together, we must have w′ = w′′. That is, w′ ∈ Bk′ .

Since w′i > 0 implies that w′i = 2−k
′

and wi > 0 implies that wi = 2−k, this means that
w′i ≥ 2wi for i ∈ S - those with positive wealth at w′ must have at least twice as much as they
did at w. Since the added wealth must have been pillaged, those who were pillaged must have
had at least as much wealth at w as the pillagers. So,∑

{i∈S}

wi ≤
∑

{i:w′i=0}

wi.

This implies that S /∈ E(w,w′).

To see that (E) is satisfied, consider w /∈ B. If w is covered by Case (i), the only coalition
that moves at each step is the singleton consisting of the lowest indexed player with the highest
wealth at w. And, at each step, this coalition does better by eventually attaining the tyrannical
allocation. Thus (E) holds for w in Case (i). For w covered by Case (ii), S(w) moves in one step
to a stationary allocation which is an improvement since it involves equal sharing in a smaller
coalition, and Condition (E) is therefore satisfied.

We now turn to Condition (M’). For w in Case (i) maximality is trivially satisfied since the
singleton that moves ultimately achieves the tyrannical allocation. Suppose w is covered by
Case (ii) and (M’) is not satisfied. This means that there is a coalition T with T ∩ S(w) 6= ∅
that does better than f(w). Since all stationary allocations satisfy equal division among players
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with positive wealth, |T | < |S(w)|. Recall that |S(w)| = 2k̂, which implies that if |T | = 2k
′

for
some integer k′ < k̂, T does not have the power to change w. Thus, T 6= 2−k for some positive
integer k, in which case the final outcome according to F will result in a smaller coalition and
some player in T will get 0. This contradicts the supposition that T can do better than f(w).

Proof of Theorem 6.

Choose any positive integer k∗ ≤ k(n), and define B(k∗) ≡ ∪k∗0 Bk.

For any w, define H(w) = {i ∈ N : wi ≥ wj ∀j ∈ N}, and let H̄(w) be the subset of H(w)

consisting of the 2k-lowest indexed players inH(w), where k is the largest integer not exceeding
k∗ with 2k ≤ |H(w)|.

Given k∗, F is defined as follows.

(i) If w ∈ B(k∗), then f(w) = w.

(ii) If w /∈ B(k∗) and |H(w)| ≥ 2k
∗
, let j′ be the lowest indexed agent not in H̄(w) with

wj′ > 0. Such j′ must exist since w /∈ B(k∗). Then, S(w) = H̄(w) and f(w) = w′ where

w′i =


wi +

wj′

|H̄(w)| , if i ∈ H̄(w)

wi, if i /∈ H̄(w) ∪ {j′}
0, if i = j′

(iii) If w /∈ B(k∗), |H(w)| < 2k
∗

and there is a pair i, j with wi > wj > 0, then the lowest
indexed agent i∗ ∈ H(w) pillages the lowest indexed agent j∗ /∈ H(w). So, S(w) = {i∗} and
f(w) = w′ where

w′i =


wi + wj∗ , if i = i∗

wi, if i 6= i∗, j∗

0, if i = j∗

(iv) If w /∈ B(k∗), |H(w)| < 2k
∗

and if H(w) = {i|wi > 0}, then S(w) = H̄(w) and
f(w) = w′ where

w′i =

{
1

|H̄(w)| , if i ∈ H̄(w)

0, if i /∈ H̄(w)

We note that in (iv) above, |H̄(w)| > |(H(w) − H̄(w))| and so H̄(w) can pillage the rest, and
hence f is well-defined.

The proof that F satisfies (I) is virtually identical to that in Theorem 5, and we only give a very
short sketch of the proof. Again, suppose w ∈ Bk with k ≤ k∗ and some S has a farsighted
objection ending in Bk′ where k′ < k. Then, |S| ≥ 2 since no singleton has the power to pillage
anyone at w. But, then the first move from w must be to some w′ which is an equal allocation
- any unequal allocation terminates in a tyrannical allocation. Just as before, w′ itself must be a
stationary allocation, and then S cannot have the power to pillage the remaining players.
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We now check (M). In cases (ii) and (iv), each i ∈ H̄(w) ends up getting 1
|H̄(w)| . There cannot

be a better deviation. In case (iii), the agent initiating the deviation ends getting 1. Hence, (M)
is satisfied.

Finally, it is easy to check that (E) is satisfied. In each of cases (ii) to (iv), S(w) has a farsighted
objection culminating in some allocation in B(k∗).


