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Abstract

Risk aversion is introduced into a traditional model of a contest where there is a prize for
the most aggressive player and where there is complete information. Players only differ
by their aversion to risk. Aggression is defined as expenditure on attempting to win the
prize. It is shown that total aggression is less the more the players are risk averse, but that
in a game with heterogeneous risk preferences, there may be an equilibrium where the
more risk averse players play more aggressively. The analysis is extended to consider a
sequence of contests, and it is argued that differences in numbers of wins in such a
sequence are reduced by risk aversion.

* An early paper containing some of these arguments was presented to the Economic
Theory Workshop in May 2003. Thanks are due to participants and to Sayantan Ghosal
for valuable suggestions. Thanks also to Alejandra Manquelef for her work in simulating
the sequence of contests in section 4.
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1.  Introduction

Games in Economics frequently have Nash equilibria only in mixed strategies. Such

MSNE either introduce or add to risk for the players in the game. This paper considers a

common version of such a game with many applications. The point of the paper is to

consider how risk aversion of the game’s players affect the equilibrium mixed strategies.

In particular, whether more risk aversion of all players leads to less aggressive equilibria,

and how players with more risk aversion fare when playing against less risk averse

opponents. The particular game considered will be of the form of a contest with complete

information: hence more aggression translates into spending more resources on winning

the contest. The risk is that if the contest is not won, then the resources have still been

spent. Thus risk is less if few resources are spent or if so many are spent that there is little

chance of not winning. If players are more risk averse, then will they be more or less

aggressive? A second question relates to when players with different attitudes to risk play

each other: then is it better to play against more risk averse opponents?

The game is of the arms race variety (each player’s strategic variable (denoted x) being

their expenditure on arms). Suitable redefinitions yield many interpretations in terms of

patent races (x as R&D), for example Dasgupta (1986), Amaldoss and Jain (2002),

Waterson and Ireland (1998); status races (x as purchase of status goods); and all-pay

auctions, both bidding and client competition (x being the bid), including procurement

auctions (Taylor, 1995) and lobbying for rents (as in Hillman and Riley, 1989). It also fits

the comparison shopping models of competition between firms (eg Wilde and Schwartz

(1979) and Burdett and Judd (1983) ), where the x can be defined as negatively related to
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the price which is offered to customers. In all these applications we are assuming a model

of complete information in the same way as Baye et al (1996), but the difference is that

the financial pay-off (denoted by a winning prize W or a losing prize L) is common to all

players and is common knowledge. While Baye et al assume players are risk neutral but

may value the winning prizes differently, we assume that players may be risk averse and

that they know the risk preferences of their opponents. Each player seeks to maximise

expected utility of his surplus in the contest. In common with Baye et al (1996),

uncertainty only arises due to the Nash equilibrium of the game being in mixed strategies.

Thus the approach differs from the more common approach to tournaments where either

complete information is tempered by exogenous shocks (for example in measurement of

worker effort) or where there is incomplete information (competitors’ preferences or

skills unknown). A further key difference compared to many models of tournaments is

that the prizes are exogenous. Thus the prizes do not depend on the level of x. To some

extent, this implies that our emphasis is on equilibrium and behaviour rather than on

efficiency and incentives. Expenditures to gain prizes have no welfare value in our

analysis; in particular there is no transfer of expenditures from loser to winner.

To make the analysis simple we assume in section 2 that there are only two players in the

contest. The form of the game is as follows. Each player simultaneously selects an action

x∈R+. Then the player has a money pay-off of W-x if her x-choice is the higher, while she

receives L-x otherwise. We look for a symmetric equilibrium if both players have the

same risk aversion (same utility function and are thus ex ante identical). We examine how

the equilibrium responds to differences in risk aversion between the players.
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In section 3 we briefly extend our analysis to the case of n players. For simplicity we

assume that there are just two types of preferences so that some players have preferences

that exhibit higher risk aversion than those of other players. In particular nA players have

utility functions UA and nB utility functions UB, and type A players are assumed to be

more risk averse than type B. We find that when the number of players is large then the

competition faced by typical players of each type is insufficiently different to

accommodate the different risk attitudes within such an equilibrium. Instead, the more

risk averse players essentially drop out of the game by playing x=0 with probability 1.

We thus have two kinds of equilibria, and at least one kind will be present in any game.

In one kind, all players have mixed strategies and the difference in their risk preferences

is accommodated by the different population of opponents each faces (since the

population of opponents excludes the player herself). In the other, only the less risk

averse players take active part, and behavior is thus specialised according to risk

aversion.

In section 4 we consider a finite sequence of repeated contests (between the same two

players). We argue that the equilibrium can be found by a simple backwards-induction

method, and that the perfect equilibrium has an important property in the case of

approximately constant relative risk aversion. If one player wins the early contests then

that player is less (absolute) risk averse in later contests and then the other player plays

more aggressively in equilibrium. This provides an automatic convergence mechanism so

that the share of wins in the total sequence is nearer ½ the more risk averse the players
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(the higher the coefficient of relative risk aversion). We provide a simulation of this

sequence.

Section 5 considers some of the implications of the analysis and draws conclusions. An

underlying theme is the general principle that aggression varies with risk aversion of

competitors and dissipates funds. When contestants have more wealth, they may be less

risk averse and their competitors have to act more aggressively. Thus all players having

lower risk aversion means that all play more aggressively and financial pay-offs are

lower. If this leads to contestants becoming poorer and hence more risk averse, their

competitors will then play less aggressively and financial pay-offs become higher. An

endogenous cycle in financial pay-offs and average aggression thus occurs. In a sequence

of contests, the same effect results in reduced variance of results.

The analysis and conclusions reflect a MSNE. In terms of technicalities we will see that

we have similar non-standard comparative static results to those noted for models with

MSNE but without risk aversion. Cheng and Zhu (1992) discuss the “three inherent

difficulties” to MSNE, as reflecting the fact that the equilibrium strategy is defined to

ensure the other player’s behavior is mixed. We have the result that the more risk averse

player acts more aggressively because she faces the less risk averse competitor.

2. The Model

We will consider only two types of player. Player i is of type A or B and maximizes the
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expected value of Ui(π i) where Ui′(π i) > 0, Ui′′(π i) < 0 and Ui(0) = 0. Profit is π i defined

as

π i = (1- S) L + S W - x (1)

where S is the result of the contest (S= 1 if  player i wins and 0 if player i loses). In this

section we will assume that there are two players, 1 and 2. We assume that L>0, so that x

is in effect bounded from above by W-L (choosing higher values of x will lead to lower

pay-offs than would be achieved by setting x=0). Also it is clear that x=0 has to be played

with positive density in equilibrium. (Suppose it isn’t: then, if the lowest x played with

positive density is b then any player would do better by playing 0 rather than b.) Finally

note that any equilibrium mixed strategy will not have holes (where density is zero) since

then density would be shifted from the top of the hole to the bottom.  Nor would there be

spikes (with measurable probability of playing a particular x), since then an opponent

would have a best response of just capping that x which would make the spike an inferior

action for its player. This of course is the reason why pure strategy Nash equilibria are

not present in this game. It is also the reason why we can ignore the case where both

players play exactly the same value of x and thus have to share the prizes.

Let Fi(x) be the probability of player i winning. In the two-player contest (but of course

not more generally) this is also the probability of player i’s  opponent choosing an action

less than x. Then
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EUi(x) = Ui(L-x) + (Ui(W-x) - Ui(L-x)) Fi(x) (2)

Players are constrained by x≥0, and any x > W-L will be inferior to x=0. A MSNE will

have both players choosing x from a density function with supports [0, W-L]. A player

can obtain Ui(L) by playing x=0 or by playing x = W-L. At x = 0 or W-L the outcome is

non-stochastic since the action will surely lose or surely win. For 0<x<W-L, we have a

stochastic outcome and the evaluation of this lottery will depend on the chance of

winning (Fi(x)) and the risk preference of the player. Thus the equilibrium will imply that

for players 1 and 2 respectively:

U1(L-x) (1- F1(x)) + (U1(W-x) F1(x) = U1(L) (2)

U2(L-x) (1- F2(x)) + (U2(W-x) F2(x) = U2(L) (3)

for all x in [0, W-L].

Proposition 1 (existence). In the two player game there exists a unique equilibrium pair

of distribution functions F1(x), F2(x) of winning probabilities.

Proof: The linearity of (2) and (3) in F1 and F2, and W>L, ensures uniqueness. Also,

clearly F1(0) = F2(0) = 0, and F1(W-L) = F2(W-L) = 1. Next consider what happens to the

left-hand-side of (2) if x increases: strict concavity of U1 implies that U1(L-x) decreases

more than U1(W-x), and so the solution value for F1(x) must increase to compensate. Thus
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F1(x) is increasing in x for all x in [0, W-L]; similarly for  F2(x). Thus F1(x), F2(x) are

distribution functions.

These equations can be interpreted in the following way: L is the certainty equivalent

for player i to the lottery {W-x, L-x; Fi(x)} , i = 1,2. We immediately have the

following result.

Result: If player 1 plays a mixed strategy using the distribution function φ1(x) ≡ F2(x) and

player 2 plays a mixed strategy using the distribution function φ2(x) ≡ F1(x), then both

players are in equilibrium since neither can gain from changing strategies.

Proposition 2. If both players become more risk averse they both become less aggressive.

Proof : Suppose player 1 became more risk averse. Then the certainty equivalent for her

of any lottery would decrease. Thus, for any particular x and F1(x), L would no longer be

the certainty equivalent for player 1 to the lottery {W-x, L-x; F1(x)}. In order to restore

the equilibrium condition, the only accommodation possible (since L and W are fixed

parameters) is that F1(x) increases, so that the chance of the “good” outcome increases to

counteract the increased aversion to risk. This occurs at all x values except 0 and W-L

(where the outcome involves no risk). Thus F1(x) shifts to a new function which is first-

order stochastically dominated by the original function, and player 2 becomes less

aggressive and easier to “beat” since it adjusts to the new φ2(x) ≡ F1(x). Suppose 2 also

becomes more risk averse, then by a similar argument, F2(x) has to increase for all x in (0,

W-L), and player 1 also becomes less aggressive. Both players become less aggressive
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(and as a result both gain in terms of expected wealth since on average they spend less

but obtain the same prizes).

Proposition 3. If player 1 is more risk averse than player 2 then player 1 is more

aggressive.

Proof: Suppose both players are equally risk averse (U1(.) ≡ U2(.)). Now let 1’s

preferences change to be more risk averse. By the argument in Proposition 2, player 2

becomes less aggressive to reflect the changed F1(x), and player 1’s aggression is

unchanged. Hence player 1, the more risk averse player, plays more aggressively.

Note that mixed strategies in games characterized by other asymmetries also give rise to

apparently perverse outcomes. Amaldoss and Jain (2002) show that a firm that values a

patent less will bid more aggressively within a MSNE. They also provide experimental

evidence to support their result. In our analysis the level of aggression is determined by

the need to keep the certainty equivalent of the opponent’s lotteries the same, and the

need is for more aggressive behavior to reduce the expected utility of high expenditure

lotteries for less risk averse opponents.

In this section considering two players, it is clear that any Nash equilibrium would

require both players choosing distribution functions which are strictly increasing on [0,

W-L]. Thus any difference between the two players’ risk preferences are accommodated

by their opponent’s mixed strategies. There could be no equilibrium with player 1 playing

L with probability 1 (for example) since then player 2 would respond by playing just
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above L with probability 1, and then player 1 would not be in equilibrium, etc. In the next

section we consider the case of n players, where other equilibria are possible.

3. The n-player game

Let there be n > 2 players, with nA players having preferences UA and nB having

preferences UB. Type A are more risk averse than type B. The equations (2) and (3) can

be re-interpreted as typical conditions for MSNE. Players 1 and 2 could be typical players

of types A and B respectively. In any “symmetric” equilibrium to this game, all players of

type A play distribution function φA and all players of type B play distribution function

φB. The re-interpretation requires that φA and φB combine (given the distribution of

opponents) to yield the same probabilities of winning and losing (same F1(x) and F2(x))

as in the 2-player case. We define an equilibrium where all players have mixed strategies

involving positive densities for all x in [0, W-L] as an accommodation equilibrium. This

term reflects the fact that the less risk averse types B makes room for the more risk averse

types A by being less aggressive. We first consider when such an accommodation

equilibrium exists, and then consider the existence and nature of some other forms of

equilibrium. If  F1(x) and F2(x) solve (2) and (3) for a particular x, and player 1 is a type

A while player 2 is a type B, then φA and φB must satisfy

F1(x) = FA(x) = H(x)/ φA(x) (4)

F2(x) = FB(x) = H(x)/ φB(x) (5)
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where

 ( ) [ ( )] [ ( )]A Bn n
A BH x x xφ φ=

is the probability that no action greater than x is played. Further the solution for φA(x) and

φB(x) must be non-decreasing in x on [0, W-L]. Solving for φA(x) and φB(x) from (4) and

(5) yields

log φA(x) = 
1

Bn
n −

 log FB(x) – 
1

1
Bn

n
−

−
 log FA(x) (6)

log φB(x) = 
1

An
n −

log FA(x) – 
1

1
An

n
−

−
 log FB(x) (7)

We see from (6) and (7) that if nA = nB = 1, then φA(x) = FB(x), φB(x) = FA(x),  as in

section 2. If the preference types are the same (and so FA(x) ≡ FB(x) = F(x)) then φA(x) =

φB(x)  = F(x) 1/(n-1). In both these cases F(x) increasing in x implies φ(x) increasing in x

and hence the functions φ(x) are indeed distribution functions and an accommodation

equilibrium exists. More generally the existence of such an equilibrium requires that the

right hand sides of (6) and (7) are non-decreasing. To see that this is not always the case,

suppose that n, nA and nB are very large. Then these right hand sides are approximately

( ) ( )
log log

1 ( ) 1 ( )
B B A B

A A

n F x n F x
and

n F x n F x
−

− −
 respectively. These cannot both be increasing in

x, and so no accommodation equilibrium can occur in this case. We can thus provide a

formal requirement for the existence of an accommodation equilibrium.
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Proposition 4 (accommodation equilibrium): A MSNE will exist with players of each type

choosing the same distribution with positive densities for all x in [0, W-L] if and only if

log ( )
1

log ( ) 1

B

B A

AB A

d F x
n ndx

d F xn n
dx

−
< <

−

No accommodation equilibrium will exist with players of the same type choosing different

mixed strategies.

Proof: For the first part of the Proposition, set the derivatives of (6) and (7) to be positive

and solve for the conditions on the ratio of derivatives. To prove the second part of the

Proposition, suppose that instead of symmetric behavior across all players of a certain

type, mixed strategies vary across such players. Then interpret players 1 and 2 as being of

the same type. If their mixed strategies differ then φ1(x) ≠ φ2(x) but  F1(x) ≡ F2(x), and this

is ruled out by (6) and (7) having to hold. This completes the proof.

Other kinds of equilibria would involve (some) players not playing some range of x with

positive density. To identify the nature of such equilibria we can make the following

points.

i. If any player k played x with a distribution with lower support xL > 0 then no other

player would play any x in (0, xL) since such play would always lose and hence be

inferior to playing 0. Then player k would not be in equilibrium since xL could be

reduced without penalty. Thus equilibria cannot have any player playing with a

lower support xL > 0.
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ii. Since all players have a lower support at 0, or play x=0 with positive probability,

all players have expected utility for any choice of x played with positive density

equal to Ui(L), i = A,B.

iii. Any equilibrium thus satisfies

     1 1 1 1 1
1 1

( ) ( )
( )(1 ) ( ) ( ) ( ) 0 ( ) 0

( ) ( )
H x H x

U L x U W x U L andU L if x
x x

φ
φ φ

′− − + − ≤ = >  (2’)

     2 2 2 2 2
2 2

( ) ( )
( )(1 ) ( ) ( ) ( ) 0 ( ) 0

( ) ( )
H x H x

U L x U W x U L andU L if x
x x

φ
φ φ

′− − + − ≤ = >       (3’)

for typical players 1 and 2.

iv. If there are a large number of both types of players then the only equilibrium is

for all type A to play φA(x) = 1 for all x in [0, W-L], and for all type B to play

In this equilibrium, all type A players play safe and opt for the risk-free x=0 - thus

basically not participating in the contest, while the type B players participate in a

symmetric game among themselves. Players thus specialise their behavior

according to type.

Our conclusion is that when there is a small number of players both types can play mixed

strategies, whereas only the less risk averse can play mixed strategies if there are large

numbers of each type. In the latter case players of different types cannot be faced

.)()( )1/(1 −= Bn
BB xFxφ
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simultaneously with probabilities of winning that equalise the certainty equivalent across

different values of x.1

4. A sequence of contests

Now consider a sequence of T contests between two players. Since there are only two

players we know that an accommodation equilibrium exists in each contest. Each player

wishes to maximise the expected value of utility defined by

E U(TL + ST(W-L) – XT) (8)

Where W and L are the winning and losing prizes in each contest; ST is the total number

of successes (ie number of wins) this player scores in the T contests, and XT is the

aggregate expenditure in the T contests (XT = x1 + x2 + x3 + … + xT ). We assume that the

two players have the same utility function but at any stage in the sequence the history will

be different. The successes to date and the expenditure to date are common knowledge

for the two players, and we seek a Markov perfect equilibrium. Thus at the end of the tth

contest, players A and B would have

EUA = E U(TL + St
A (W-L) – Xt

 A + (W-L) Σt<τ ≤ T Qτ A - Σt<τ ≤ T xτ
 A) (9A)

EUB = E U(TL + St
B (W-L) – Xt

 B + (W-L) Σt<τ ≤ T Qτ B - Σt<τ ≤ T xτ
 B) (9B)

                                                
1 An application to price-setting games among labor-managed firms with a similar conclusion is given in
Ireland (2003).
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where Qτ A is the binary random variable {0,1} indicating a future win or loss for A in

period τ, and xτ
 A is the future random draw for expenditure by A in period τ. St

A + St
B = t,

and Qτ A + Qτ B = 1 all τ.

We are primarily interested in the distribution function of player i ‘s expenditure xt, given

the history of the game up until contest t. From this we can see if that player, who has

been more successful (in terms of winning) up to t, will then play more or less

aggressively in t. If the latter is the case, then this behaviour would suggest that there is

an in-built tendency for players who (in terms of winning) do better (worse) early, to do

worse (better) later and thus tend to equalise winning performance overall.

Proposition 5. The Markov perfect equilibrium in the finite sequence of contests is for

each player A and B to adopt in contest t a choice from distribution functions dependent

on their opponent’s summary history of the form:

1 1 1 1
1 1

1 1 1 1

( ( ) ) ( ( ) 0 )
( , )

( ( ) ( ) ) ( ( ) 0 )

A A A A B
B B A A t t t t t

t t t t A A B A A B
t t t t t t

U TL S W L X U TL S W L X x
x S X

U TL S W L W L X x U TL S W L X x
φ − − − −

− −
− − − −

+ − − − + − + − −
=

+ − + − − − − + − + − −
(10B)

1 1 1 1
1 1

1 1 1 1

( ( ) ) ( ( ) 0 )( , )
( ( ) ( ) ) ( ( ) 0 )

B B B B A
A A B B t t t t t

t t t t B B A B B A
t t t t t t

U TL S W L X U TL S W L X xx S X
U TL S W L W L X x U TL S W L X x

φ − − − −
− −

− − − −

+ − − − + − + − −=
+ − + − − − − + − + − −

(10A)

Proof: see Appendix 1.
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For purposes of analysis we can take second order expansions of both the numerator and

denominator of equations (10A) and (10B) around the respective argument values

 Πt
 B = TL + St-1

B (W-L) + 0 – Xt-1
 B – xt

A (11A)

and

Πt
 A = TL + St-1

A (W-L) + 0 – Xt-1
 A – xt

B (11B)

to obtain using (11B in  (10B)

1
2

1 1 1
2

( ) ( )
( , )

( ) ( )( )

A A BB
B B A A t t tt

t t t t A A
t t

U U xx
x S X

W L U U W L
φ − −

′ ′′Π + Π
=

′ ′′− Π + Π −
(12)

or

φt
B(xt

B) = 
1
2

1 1 1
2

( , )
( )

A BB
B B A A t tt

t t t t A
t

Rxx
x S X

W L R W L
φ − −

Π −
=

− Π − −
(13B)

while similarly

φt
A(xt

A) = 
1
2

1 1 1
2

( , )
( )

B AA
A A B B t tt

t t t t B
t

Rxx
x S X

W L R W L
φ − −

Π −
=

− Π − −
 (13A)

where R is the coefficient of relative risk aversion evaluated at Πt
 A or Πt

 B respectively.

We will assume that R is the same at both values, or more generally that utility has

constant relative risk aversion, for simplicity. We can see from (13B) how the distribution

φt
B(xt

B) shifts with the history of A’s successes. Higher St-1
A  or lower Xt-1

 A will change

φt
B(xt

B) for a fixed xt
B by the same sign as ∂φt

B(xt
B) / ∂Πt

A = ( xt
B/(W-L)) ( – ½ R)(W – L -

xt
B)/ [Πt

A  – ½ R (W-L)]2 < 0. Thus more success for A will mean more aggressive

expenditure for B as B shifts to a stochastically-dominating distribution. In exactly the

same way less success for B will mean that A will shift to a lower distribution of



16

expenditure. Hence the balance of likely success in the tth contest is shifted towards the

player with less success in the past. The fact that a player takes increased absolute risk

aversion of the other, due to a poor history, as a reason for economising on expenditure

means that there is a natural tendency to balance wins and losses in a sequence of

contests.

Simulation Exercise: the improvement and convergence of outcomes due to risk

aversion.

The sequence of contests above can be easily simulated. Given numerical values for T, L,

and W, we can see how a different R changes the distribution of outcomes. Here we

report the outcome of a sequence of 20 contests (i.e. T= 20), repeated 50 times, for when

L = 0.3, W = 1.3, and for each of a set of values of R ranging from 0.1 to 5. To remove

unnecessary sampling variation we use the same 2000 random numbers (2 players

choosing from a mixed strategy for each of 20 contests and these repeated 50 times) for

each value of R. We thus find 2000 random numbers from a uniform distribution on the

unit interval. We set S0
A = S0

B = X0
A=X0

B=0.  We then use the first pair of random

numbers as φt
A, φt

B, for t = 1. By inverting the (quadratic) definitions of the distribution

functions (13B) and (13A) using the usual formula for solving quadratics to find xt
B and

xt
A, we find the x values associated with the randomly drawn φ values. Thus we calculate,

for t=1
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xt
B = { [TL + St-1

A (W-L) – Xt-1
 A + φt

B(W-L)] – [(TL + St-1
A (W-L) – Xt-1

 A + φt
B(W-L))2 –

4(1+ R/2)(W-L) φt
B(TL + St-1

A (W-L) – Xt-1
 A – (W-L)R/2)]1/2 }/ (2+R) (14)

xt
A = { [TL + St-1

B (W-L) – Xt-1
 B + φt

A(W-L)] – [(TL + St-1
B (W-L) – Xt-1

 B + φt
A(W-L))2 –

4(1+ R/2)(W-L) φt
A(TL + St-1

B (W-L) – Xt-1
 B – (W-L)R/2)]1/2 }/ (2+R) (15)

We record the outcomes by updating the number of successes and the amount of

expenditure so far:

If xt
A > xt

B then St
A = St-1

A + 1, St
B = St-1

B

If xt
A < xt

B then St
A = St-1

A, St
B = St-1

B + 1

Xt
j = Xt-1

 j + xt
 j                          for j = A, B

Now we repeat for t = 2, etc. When t = T, we find summary outcomes: ST
j, XT

j, and profit

outcomes: TL + ST
j (W-L) - XT

j for j=A,B. We find the absolute value of the difference in

success: |ST
A - ST

B|; in aggression: |XT
A - XT

B |; and in profit outcome: |ST
A (W-L) - XT

A  -

(ST
B (W-L) - XT

B)|. We store these as results from trial 1, and repeat and store the same

outcomes for a further 49 trials. The mean and variance of all these outcomes are

presented in Table 1 for each of 5 values of R.

There are two implications of the theory developed in the last section. One is that if

players are more risk averse (higher R) then they will bid from a “lower” distribution and

hence be less aggressive. Since aggression is mutually destructive this will increase the

average profits earned by the players. This is clearly shown by the first 6 columns of the
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Table: as R increases, expenditure (aggression) over a contest sequence is less and profit

is more. When R is very small profit is near 6 (just LT). When R is large profit is much

higher: profits will have increased by about a third if R is 5.

The second implication is that a player who has been doing badly in his sequence will

become more (absolute) risk averse since her expected end-sequence wealth has

decreased. This asymmetry is enhanced by the opposite result for the other player. The

effect of this asymmetry is that the successful player will reduce aggression and the

unsuccessful player will increase aggression. This will lead to higher bids on average by

the player who has won fewer contests so far, and the impact of this is that the outcomes

at the end of the sequence of contests will be less divergent on average. To see this

important effect, consider the last 3 columns of Table 1. The absolute differences in

outcomes (expenditure, success and profits) have been calculated since it is immaterial

which of the ex ante identical players is the more successful. The mean absolute

difference in number of successes is seen to reduce from 3.2 when R=0.1 to less than 2.4

when R=5. There are similar reductions in the difference in aggression, since early

success will reflect relatively high aggression and will be followed by a relative reduction

in aggression if the opponent is risk averse. Also the outcomes in terms of profits are

appreciably less diverse.

The simulation has thus confirmed two characteristics of a sequence of contests when the

players are risk averse. First, aggression is lower and profits are higher when risk

aversion is present.  Second the difference between winners and losers is less when risk
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aversion is present. The results also show that these effects are small when risk aversion

is small (R less that 1) but considerable when risk aversion is high (R>2). Of course the

size of the effect depends on the impact of early outcomes on expected end-sequence

wealth, since this determines local risk aversion. If the parameters change over the

sequence (for example R is not a constant) the results change to reflect risk preference

changes at different wealth levels.

Table 1: Simulations of sequence of 20 contests – average of 50 simulations ; players

A and B.

Expenditure Success Profits Absolute Differences (A-B)

R 0.1 A B A B A B Exp Success Profits

Mean 9.995715 10.18458 9.8 10.2 5.804285 6.015417 1.270285 3.2 2.56845
SD 1.397112 1.116738 2.05 2.049 1.902862 1.774582 1.01989 2.592 1.81267

R 0.5 A B A B A B Exp Success Profits

Mean 9.85996 10.05239 9.76 10.24 5.90004 6.187609 1.255832 3.12 2.46388
SD 1.380631 1.096348 2.03 2.025 1.866943 1.737472 1.000203 2.628 1.84960

R 1 A B A B A B Exp Success Profits

Mean 9.678522 9.875885 9.78 10.22 6.101478 6.344115 1.239113 3.08 2.46313
SD 1.356299 1.068079 2.02 2.023 1.851135 1.760422 0.966115 2.66 1.89371

R 2 A B A B A B Exp Success Profits

Mean 9.286498 9.475962 9.74 10.26 6.453502 6.784038 1.181949 2.84 2.17073
SD 1.299016 0.999031 1.9 1.895 1.749562 1.672423 0.895536 2.564 1.99315

R 5 A B A B A B Exp Succ Profits

Mean 7.798564 7.997237 9.76 10.24 7.961436 8.242763 1.045092 2.4 1.87227
SD 1.103726 0.810441 1.54 1.544 1.532539 1.280456 0.754859 2 1.57209
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5. Welfare and Conclusions

The full information games we have used imply mixed strategy equilibria. In such

equilibria in a risk-aversion setting it is the opponent’s risk aversion which determines the

distribution that randomizes your choice. The more risk averse the opponent, the lower

the equilibrium distribution of aggression that you apply. Profits (as distinct from

utilities) are thus higher when contests take place between players who are more risk

averse. Aggression is also higher for the more risk-averse player in an asymmetric

contest. One consequence is that a sequence of contests tends to turn out more evenly

when players are risk averse, as well as yielding a larger cash profit. A possible

application of such results relates to the business cycle. If business is considered to

consist of (broadly) a series of contests, then we might think that players are less risk

averse in the upswing of the cycle than the downswing. Then aggression is high in the

upswing, and aggression is low in the downswing. One manifestation of aggression could

be low prices set by competing suppliers, and then prices would move counter-cyclically.

Further, the tendency for profits to be high in good times when many contest

opportunities were present would be offset increasingly by high aggression reducing the

profit from individual contests. A cycle is suggested composed of high profits leading to

low risk aversion, high aggression and then low profits, in turn followed by high risk

aversion, low aggression and then back to high profits again. Clearly, at this level of

abstraction such applications of the analysis are merely suggestive. However, if x is

interpreted as aggressive promotion of a firm’s products then high x would be associated

with low prices, and then prices would be observed to move in a counter-cyclical pattern
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relative to the business cycle. Obviously there are many supply side reasons for prices to

vary pro-cyclically, including rising costs as inputs become scarce. The argument here

might therefore be thought to explain some of the mixed evidence on the relationship of

prices and the business cycle. Certainly in some classes of product and oligopoly

structures prices do move counter-cyclically.2

The basis for our analysis has been that the expenditure to win prizes forms a prisoners’

dilemma game: if the opponents could agree to limit their expenditure and take turns at

winning, both would be better off. We have assumed that no such commitment is possible

and so the Nash equilibrium of the game (Markov perfect equilibrium in the finite

sequence of games) is the relevant model. “Second prizes” of value L provide the

incentive for participation; on average gains from winning are competed away by the

aggressive levels of expenditure.

One variation of the model would be to reject the MSNE concept as an appropriate

equilibrium strategy. For example, it might be thought that the information content

required is just too high. In this case, we might turn to an equilibrium based on bounded

rationality such as the evolutionarily stable strategy (ESS). However it is well known that

                                                
2 See for instance the summary paper by Domowitz in Norman and La Manna (ed) (1992). Chadha et al
(2000) claim that UK consumer prices have become countercyclical post 1945.
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such equilibria are “spiteful”, and they would be likely to lead to still lower profits than

are present in the MSNE case.3

                                                
3 See Cheng and Zhu (1995) and Holler (1990) for discussions of the arguments for replacing MSNE in
general, and Leininger (2002) for the application of ESS in contests.
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Appendix 1: Proof of Proposition 5

We will approach the problem by first considering the Tth contest distributions

(essentially already discussed in the one-period model). Then we consider the (T-1)th

contest distributions, and hence then infer all contest distributions conditional on the

(summary) history of outcomes.

At the end of the (T-1)th contest we have random utility for player A of

U(TL + ST-1
A (W-L) – XT-1

 A + (W-L) QT A – xT
A)

Now xT
A and xT

B will have well-defined distribution functions φT
A(xT

A), φT
B(xT

B), and

these will have positive derivatives for all 0 ≤ xT
A ≤ W-L. φT

B(xT
B) must be such as to

make player A indifferent among all the xT
A possibilities, including xT

A=0. Thus:

E U(TL + ST-1
A (W-L) – XT-1

 A + (W-L) QT A – xT
A) = U(TL + ST-1

A (W-L) – XT-1
 A ) for all 0

≤ xT
A ≤ W-L. (A1)

Given that the higher xT wins the contest, we can describe the expected utility in terms of

B’s mixed strategy:

U(TL + ST-1
A (W-L) – XT-1

 A + (W-L)– xT
A) φT

B(xT
A) + U(TL + ST-1

A (W-L) – XT-1
 A – xT

A) (1

- φT
B(xT

A)) = U(TL + ST-1
A (W-L) – XT-1

 A ) (A2)
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φT
B(xT

A) is the probability that a choice of xT
A by A will beat xT

B and hence the

distribution function φT
B(xT

B) takes the form, directly from (A2):

φT
B(xT

B) = [U(TL + ST-1
A (W-L) – XT-1

 A ) - U(TL + ST-1
A (W-L) – XT-1

 A – xT
B)] / [U(TL +

ST-1
A (W-L) – XT-1

 A + (W-L)– xT
B) - U(TL + ST-1

A (W-L) – XT-1
 A – xT

B)] (A3)

Notice that φT
B will depend on the summary of the history: ST-1

A and XT-1
 A. Thus the T

subscript will determine the distribution and be interpreted as φT
B(xT

B | ST-1
A , XT-1

 A), and

the function φT
B will generally differ for differences in A’s history. Similarly the

distribution function φT
A(xT

A) is found as

φT
A(xT

A | ST-1
B , XT-1

 B) = [U(TL + ST-1
B (W-L) – XT-1

 B ) - U(TL + ST-1
B (W-L) – XT-1

 B– xT
A)]

/ [U(TL + ST-1
B (W-L) – XT-1

 B + (W-L)– xT
A) - U(TL + ST-1

B (W-L) – XT-1
 B – xT

A)]

(A4)

Now consider the (T-1)th contest. Here QT-1 A, QT A and xT
A are all random variables.

Conditional on a choice xT-1
A we have

E UT-2
A(xT-1

A) = E U(TL + ST-2
A (W-L) – XT-2

 A + (W-L) QT-1 A +(W-L) QT A – xT-1
A - xT

A) =

U(TL + ST-2
A (W-L) – XT-2

 A + (W-L) +(W-L)– xT-1
A - xT

A) [ φT-1
B(xT-1

A | ST-2
A , XT-2

 A)

φT
B(xT

A | ST-2
A + 1 , XT-2

 A + xT-1
A) ] +
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U(TL + ST-2
A (W-L) – XT-2

 A + (W-L) + 0 – xT-1
A - xT

A) [φT-1
B(xT-1

A | ST-2
A , XT-2

 A)(1 -

φT
B(xT

A | ST-2
A + 1 , XT-2

 A + xT-1
A)) + (1 - φT-1

B(xT-1
A | ST-2

A , XT-2
 A)(  φT

B(xT
A | ST-2

A  , XT-2
 A

+ xT-1
A))] +

U(TL + ST-2
A (W-L) – XT-2

 A + 0 + 0 – xT-1
A - xT

A)[(1 -  φT-1
B(xT-1

A | ST-2
A , XT-2

 A) (1 -

φT
B(xT

A | ST-2
A  , XT-2

 A + xT-1
A)] (A5)

Rearranging terms gives:

= φT-1
B(xT-1

A | ST-2
A , XT-2

 A) [U(TL + ST-2
A (W-L) – XT-2

 A + (W-L) +(W-L)– xT-1
A - xT

A)

φT
B(xT

A | ST-2
A + 1 , XT-2

 A + xT-1
A) + U(TL + ST-2

A (W-L) – XT-2
 A + (W-L) + 0 – xT-1

A - xT
A)

(1 -  φT
B(xT

A | ST-2
A + 1 , XT-2

 A + xT-1
A))] +

(1 - φT-1
B(xT-1

A | ST-2
A , XT-2

 A)[ U(TL + ST-2
A (W-L) – XT-2

 A + (W-L) + 0 – xT-1
A - xT

A)

 (  φT
B(xT

A | ST-2
A  , XT-2

 A + xT-1
A)) + U(TL + ST-2

A (W-L) – XT-2
 A + 0 + 0 – xT-1

A - xT
A) (1 -

φT
B(xT

A | ST-2
A  , XT-2

 A + xT-1
A)]

= φT-1
B(xT-1

A | ST-2
A , XT-2

 A) U(TL + ST-2
A (W-L) – XT-2

 A +  (W-L) + 0 – xT-1
A) +

 (1 - φT-1
B(xT-1

A | ST-2
A , XT-2

 A) U(TL + ST-2
A (W-L) – XT-2

 A + 0 + 0 – xT-1
A) (A6)

using the result (A2) for the Tth contest. This must be the same for all xT-1
A in [0, W-L].

When xT-1
A = 0 and since φT-1

B(0 | ST-2
A , XT-2

 A) = 0, we have that

E UT-2
A = U(TL + ST-2

A (W-L) – XT-2
 A + 0 + 0) = U(TL + ST-2

A (W-L) – XT-2
 A) (A7)
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Thus

φT-1
B(xT-1

A | ST-2
A , XT-2

 A) = [U(TL + ST-2
A (W-L) – XT-2

 A ) - U(TL + ST-2
A (W-L) – XT-2

 A –

xT-1
A)] /

 [U(TL + ST-2
A (W-L) – XT-2

 A + (W-L)– xT-1
A) – U(TL + ST-2

A (W-L) – XT-2
 A – xT-1

A)]

so that φT-1
B(xT-1

B | ST-2
A , XT-2

 A) is defined as

φT-1
B(xT-1

B | ST-2
A , XT-2

 A) = [U(TL + ST-2
A (W-L) – XT-2

 A ) - U(TL + ST-2
A (W-L) – XT-2

 A –

xT-1
B)] / [U(TL + ST-2

A (W-L) – XT-2
 A + (W-L)– xT-1

B) - U(TL + ST-2
A (W-L) – XT-2

 A – xT-1
B)]

(A8)

We now see that we can work backwards to find the general result. We know that

E UT-2
 A = U(TL + ST-3

A (W-L) +(W-L) – XT-3
 A – xt-2

 A) φT-2
B(xT-2

A | ST-3
A , XT-3

 A) + U(TL +

ST-3
A (W-L) + 0 – XT-3

 A – xt-2
A) (1 - φT-2

B(xT-2
A | ST-3

A , XT-3
 A))

But this must have the same value for any xt-2
A in [0, W-L], including for xt-2

A = 0. In this

case

E UT-2 A = U(TL + ST-3
A (W-L) +(W-L) – XT-3

 A – xT-2
A) φT-2

B(xT-2
A | ST-3

A , XT-3
 A) + U(TL +

ST-3
A (W-L) + 0 – XT-3

 A – xT-2
A) (1 - φT-2

B(xT-2
A | ST-3

A , XT-3
 A)) =

U(TL + ST-3
A (W-L) – XT-3

A)
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And in general:

E Ut A = U(TL + St-1
A (W-L) +(W-L) – Xt-1

 A – xt
A) φt

B(xt
A | St-1

A , Xt-1
 A) + U(TL + St-1

A (W-

L) + 0 – Xt-1
 A – xt

A) (1 - φt
B(xt

A | St-1
A , Xt-1

 A)) = U(TL + St-1
A (W-L)  – Xt-1

 A) (A9)

We then have

φt
B(xt

A | St-1
A , Xt-1

 A) = [U(TL + St-1
A (W-L)  – Xt-1

 A) - U(TL + St-1
A (W-L) + 0 – Xt-1

 A –

xt
A)]/[ U(TL + St-1

A (W-L) +(W-L) – Xt-1
 A – xt

A) - U(TL + St-1
A (W-L) + 0 – Xt-1

 A – xt
A)]

which implies the distribution functions (10A) and (10B).
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