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Abstract

This paper considers the use of neural networks to model bounded ra-

tional behaviour. The underlying theory and use of neural networks is now

a component of various forms of scientific enquiry, be it modelling artifi-

cial intelligence, developing better pattern recognition or solving complex

optimization problems. This paper surveys the recent literature in eco-

nomics on their use as a plausible model of learning by example, in which

the focus is not on improving their ability to perform to the point of zero

error, but rather examining the sorts of errors they make and comparing

these with observed bounded rational behaviour.
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I. INTRODUCTION

Neural networks can be loosely defined as artificial intelligence models in-

spired by analogy with the brain and realizable in computer programs. Simply

put, a neural network is trained by receiving a stream of data corresponding to

an input and a stream of data corresponding to an output. The network builds

an algorithm designed to find a pattern linking the input to the output, and

when a good enough algorithm is found, the network is ready to try new input

data in an attempt to predict the output.

A classic example is in signature recognition. Thousands of signatures are fed

to a new neural network, complete with the names of those responsible for the

signatures. The network develops an algorithm for linking the signatures to the

known names. This might involve finding patterns such as the curves and slopes

of certain letters. Then one of the named individuals might offer the network a

new signature, with the challenge being put to the network of discovering the

identity of the signatory, based on the pattern-recognizing algorithm the network

has developed. The neural network is trained in this way until it can consistently

get the names right a high fraction of times. When we are convinced that

the neural network has developed a good algorithm for recognizing signatures,

we can then release it into the real world to contend with thousands of new

signatures and signatories. Another example, of more use to econometrics would

be to use neural networks as a means of numerical optimization. Once again

a network is trained on observed data, and asked to predict what new input

would produce as output, in a broadly similar way to more standard methods

such as regression. In these sorts of uses the main concern is making sure the

neural network gets things right.

However, there is another, smaller literature which aims to exploit not simply

the problem-solving ability of neural networks, but the primary characteristic of

neural networks which set them apart from other forms of numerical optimiza-

tion: that they are based on a model of learning by example constructed with
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biological plausibility in mind. In this literature the aim is to keep the neural

network as biologically plausible as possible and then see what success rate such

a restricted network can achieve. To give an example, consider a neural net-

work trained to do very well at a certain game, by receiving a stream of data

revealing the correct output for given inputs. Having mastered this game the

neural network will have necessarily built up an algorithm used to transform

the inputs to the correct output. The network is then asked to use this algo-

rithm to play a completely new game. The results of this experiment provide us

with not the best possible way to play the new game, but an example of how a

model built by analogy with the human brain, having learned one game, might

play a new one. The applications of this are considerable: how would a firm

used to monopoly switch to dealing with a duopoly; how might a master chess

player function playing checkers; how might a child trained to be well-behaved

at home perform in her first day at school, etc. The important point is that

the network learns through example by being exposed to understood sets of

inputs and outputs. From these it develops a method of pattern recognition, or

algorithm, linking the inputs to outputs. Then the network faces new situations

and must try to solve them based on this method. Certainly we could improve

the network’s odds of success exogenously by adding known means of solving

problems, but the interesting question for an economist studying behaviour is

how well will such a network perform, not what we have to do to get its success

rate up to 100%.

The next section provides a formal discussion of neural networks in the con-

text of an N -player game with a non-trivial finite action space. This section

can be skipped by those with a good working knowledge of neural networks.

Section 3 attempts a non-formal characterization of the key elements of neu-

ral networks which make them suitable models for bounded rational learning.

Section 4 summarizes the literature on neural network learning in general and

more specifically how a neural network can learn how to play new games having

played similar games in the past. Section 5 surveys several interesting examples

of the use of neural networks in economic decision-making including: neural
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network learning in repeated instances of the same game especially repeated

play of the Prisoner’s Dilemma; applications to industrial organization; and

intergenerational learning. Section 6 concludes.

II. UNDERSTANDING NEURAL NETWORKS

This section provides an introduction to the functioning of feedforward neu-

ral networks, focusing on their use as possible models of bounded rational

behaviour and can be skipped by those with a working knowledge of neural

networks and backpropagation. There exist many books which provide good

overviews of neural network learning, such as White (1992) and Anthony and

Bartlett (1999), and some papers with brief primers on feedforward neural net-

works, such as Leshno et al. (2003) and Sgroi and Zizzo (2002), though the

latter is more restricted in its focus.1 Finally, Cho and Sargent (1996) pro-

vides an excellent introduction with special emphasis on a subset of feedforward

neural networks known as perceptrons, the simplest form of neural network.

In this section we fix the notion of neural network learning within a game

theoretic framework (an N -player normal form game with a non-trivial finite

action space). The major assumption which greatly simplifies matters is to

consider one unique optimal action, which corresponds to a unique pure strategy

Nash equilibrium.

II. 1 Defining a Neural Network

A neural networks typically learns by exposure to a series of examples or

training set, and adjust the strengths of the connections between its nodes. It

is then able to perform well not only on the original training set, but also when

1Sgroi and Zizzo (2002) uses a similar set of definitions though does so in the specific case
of 3 × 3 games played by 2 players, and considers a neural network with exactly 2 hidden
layers.
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facing problems never encountered before. Consider a feedforward neural net-

work, or more simply C to be a machine capable of taking on a number of

states, each representing some computable functions mapping from input space

to output space, with hidden layers of further computation between input and

output. Hidden layers can be thought of as intermediate layers of computation

between input and output. Since we see the input go in, and the output come

out, but do not directly see the activity of intermediate layers, they are conven-

tionally called hidden. The following definition formalizes what we mean by a

neural network.

Definition 1 Define the neural network as C = hΩ,X, Y, F i where Ω is a set
of states, X ⊆ Rn is a set of inputs, Y is a set of outputs and F : Ω×X 7→ Y

is a parameterized function. For any ω the function represented by state ω is

hω : X 7→ Y given by hω (x) = F (ω, x) for an input x ∈ X. The set of functions
computable by C is {hω : ω ∈ Ω}, and this is denoted by HC .

Put simply, when C is in state ω it computes the function hω, providing it

is computable. In order to reasonably produce answers which correspond to a

notion of correctness such as a Nash strategy, which explicitly chooses the best

reply to the optimal action of a rival player in a game, we need to train the

network. First we will consider the form of the network in practice, and start

by defining an activation function.

Definition 2 An activation function for node i of layer k in the neural network

C is of the logistic form

aki =
1

1− exp
³
−Pj w

k
iju

k−1
ij

´ (1)

where ukij is the output of node j in layer k−1 sent to node i in layer k, and wij
is the weight attached to this by node i in layer k. The total activation flowing

into node i,
P
j w

k
iju

k−1
ij , can be simply defined as ti.

The situation faced by the neural network is well modelled by a normal form
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game G =
­
N, {Ai, ui}i∈N

®
of full information with a unique pure strategy Nash

equilibria. Actions are given by ai ∈ Ai. Feasible action combinations are given
by A = A1 ×A2 × ...×AN . Payoffs for player i are given by ui : Ai 7→ R which

is a standard von Neumann-Morgenstern utility function. Payoffs are bounded,

so ∃Q ≥ 0 such that | ui (a) |≤ Q for all a and since we can normalize payoffs

to be drawn from a uniform [0, 1] and then revealed to the players before they

select an action, we have ∀i,a, supui (ai) = 1.

II. 2 Inputs and Outputs

Consider a set of input nodes each recording and producing as an output

a different value from the grid of normal-form payoffs expressed as an input

vector xk =
³
x1
k, x

2
k..., x

N×AN×AN

k

´
; for example in a two player game where

each player has 2 strategies this provides an input vector with 2 × 2 × 2 = 8

elements. Now consider a second set of nodes (the first hidden layer). Each node

in this second layer receives as an input the sum of the output of all input nodes

transformed by the activation function of node i in layer 2. All of the nodes

in the second layer send this output a2
i to all nodes in the second hidden layer,

which weights the inputs from all i of the first hidden layer, by the activation

function to produce a3
i , and so on. Eventually these numbers are sent to the

final layer of nodes to produce an output yk which forms a vector representing

the choice of strategy in the game. For example, the vector (1, 0, ..., 0) would

imply that the neural network player’s choice is the pure strategy embodied

by selecting the top row in a normal-form game, (0, 0, ..., 1) would imply the

penultimate row, and (0, 0, ..., 0) the bottom row. Of course there is nothing

restricting the neural network from choosing values other than 0 or 1, so it might

select (0.8, 0, ..., 0) which would suggest that it is certain it does not wish to pick

any strategies except the top row strategy or possibly the bottom row strategy

though with less confidence. The network’s output is interpreted as a probability

vector so their sum must add to 1 (the residual forming the probability placed
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on the bottom row in the normal form payoff matrix interpretation).

II. 3 Training

Training essentially revolves around finding the set of weights that is most

likely to reproduce the actual Nash equilibrium of the game faced (for example,

we might wish to train a neural network to produce an output (1, 0, ..., 0) for a

given set of inputs). During training C receives a sequence of random games

until some stopping rule determines the end of the training at some round T .

The training sample consists of M random games. If T > M , then (some or

all of) the random games in M will be presented more than once. The training

sample is a sequence of input vectors as defined above except that the elements

of each input vector must ensure a unique pure strategy Nash equilibrium. If any

xk fails to achieve this a new vector is selected and so on until this condition is

satisfied. C transforms input vector to output vector and does so M times with

a new set of inputs xk and outputs yk. Assume that each vector xk is chosen

independently according to a fixed probability distribution PT on the set X

subject to the requirement that the game has a unique Nash equilibrium. The

probability distribution is fixed for a given learning problem, but it is unknown

to C, and for our purposes will be taken to be a uniform [0, 1]. The information

presented to C during training therefore consists only of several sequences of

numbers.

Definition 3 For some positive integer m, the network is given a training sam-

ple:

xM =
³³
x1

1, x
2
1..., x

N×AN×AN
1

´
,
³
x1

2, x
2
2..., x

N×AN×AN
2

´
,

...,
³
x1
M , x

2
M ..., x

N×AN×AN

M

´´
= (x1, x2, ..., xM ) ∈ XM

The labelled examples xi are drawn independently according to the probability
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distribution PT subject to the condition that each vector xt ensures the existence

a unique Nash equilibrium in pure strategies. If this condition fails a new vector

is drawn from PT . A random training sample of length M is an element of XM

distributed according to the product probability distribution PM .

Assume that T > M . In this case, training might be sequential : after q×M
rounds (for any positive integer q s.t. q×M < T ),M is presented again, exactly

in the same order of games. If training is random without replacement, it is less

restricted to the extent that the order in which the random games are presented

each time is itself random. If training is random with replacement, in each round

the network is assigned randomly one of the random games in M , until round

T .

II. 4 Backpropagation

Having selected a sample sequence of inputs, x, and determined the unique

Nash strategy associated with each, α, we need to consider how C learns the

relationship between the two, to ensure that its output yk will approach the

Nash strategy appropriate for an input vector xk and do so for the full sample

of input vectors. The most common method used is backpropagation. First let

us define the error function and then go on to define backpropagation.

Definition 4 Define the network’s root mean square error ε as the root mean

square difference between the output y and the correct answer α over the full set

of q ×M games where individual games are indexed by i, so our error function

is:

ε ≡
Ã
q×MX
i=1

(yi − αi)2
!1

2

The aim is to minimize the error function by altering the set of weights

wij of the connections between a typical node j (the sender) and node i (the
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receiver) in different layers. These weights can be adjusted to raise or lower the

importance attached to certain inputs in the activation function of a particular

node. The correct answer here is the vector associated with the unique Nash

equilibrium in pure strategies. In principle we could use any other measure,

including for example training the neural network to select the best or even

worst outcome in terms of game payoff.

Backpropagation is a form of numerical analysis similar to gradient descent

search in the space of possible weights. Following Rumelhart et al. (1986)

consider a function of the following form:

4wij = −η ∂ε
∂wij

= ηkipojp (2)

The weight of the connection between the sending node j and receiving node

i is denoted by wij . Since ε is the neural network’s error, ∂ε/∂wij measures the

sensitivity of the neural network’s error to the changes in the weight between i

and j. There is also a learning rate given by η ∈ (0, 1]: this is a parameter of the
learning algorithm and must not be chosen to be too small or learning will be

especially vulnerable to local error minima. Too high a value of η may also be

problematic as the network may not be able to settle on any stable configuration

of weights. Define ∂ε/∂wij = −kipojp where ojp is the degree of activation of
the sender node j for a given input pattern p. The higher is ojp, the more the

sending node is at fault for the erroneous output, so it is this node we wish to

correct more. kip is the error on unit i for a given input pattern p, multiplied

by the derivative of the output node’s activation function given its input. Call

gip the goal activation level of node i for a given input pattern p. Since the first

derivative f 0(tip) of the receiving node i in response to the input pattern p is

equal to oip(1− oip) for a logistic activation function, the output nodes kip can
be computed as:

kip = (gip − oip)f 0(tip) = (gip − oip)oip(1− oip) (3)
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Now assume that a network has N layers, for N ≥ 2. As above, we call layer
1 the input layer, 2 the layer which layer 1 activates (the first hidden layer),

and so on, until layer N the output layer which layer N − 1 activates. We can
now define the backpropagation learning process.

Definition 5 Using backpropagation, we first compute the error of the output

layer (layer N) using equation 3, and update the weights of the connections

between layer N and N − 1, using equation 2. We then compute the error to be
assigned to each node of layer N − 1 as a function of the sum of the errors of

the nodes of layer N that it activates. Calling i the hidden node, p the current

pattern, and β an index for each node of layer N (activated by i), we can use:

kip = f
0(tip)

X
β

kβpwβi (4)

to update the weights between layer N − 1 and N − 2, together with equation
2. We follow this procedure backwards iteratively, one layer at a time, until we

get to layer 1, the input layer. A variation on standard backpropagation would

involve replacing equation 2 with a momentum function of the form:

4wtij = −η
∂εt

∂wtij
+ µ4 wt−1

ij (5)

where µ ∈ [0, 1) and t ∈ N++ denotes the time index (so an example game,

vector x, is presented in each t during training).

Momentum makes connection changes smoother by introducing positive au-

tocorrelation in the adjustment of connection weights in consecutive periods.

C’s connection weights are updated using backpropagation until round T . T

itself can be determined exogenously by the builder of the neural network, or

it can be determined endogenously by the training process by setting a require-
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ment in terms of maximum allowable error.

II. 5 Summary

A neural network is continuously shown and reshown a set of games until

it recognizes the optimal way to play these games. Recognition comes in terms

of a simple measure of mean squared error away from the vector representation

of the pure Nash equilibrium. This is widely known in the neural network

literature as supervised learning and accords with an intuitive notion of a teacher

continuously correcting the behaviour of a student until behaviour is close to

that expected in a Nash equilibrium. When it has achieved this or close enough

to it (when it knows the best way to play in this set of games) it is shown some

different games and asked to find the Nash equilibria for these without ever

having seen these new games before. It can however use the algorithms (rules)

it has already learned in order to allow it to choose correctly the Nash equilibria

in those games which it has seen before (the training set).

The next section examines some key characteristics of neural networks and

sees where these come into play in the literature on neural network learning in

economic decision-making.

III. CHARACTERISTICS OF NEURAL NETWORKS

Consider the way in which a neural network develops. It learns by exposure

to a series of examples (a training set) and then adjusts the strengths of the

connections between its nodes. Having developed a general algorithm it is able

to do well not only on the original training set, but also potentially when facing

problems never encountered before. A feature of biological brains is that the

connections between neurons are of different strengths, and that they can either

increase or decrease the firing rate of the receiving neuron. In neural networks,

this is modelled by associating a connection weight to each connection. This

11



weights the input from the sending node to the receiving node. Since the weight

can be either positive or negative, the activation of a node will either increase

or decrease the activation of the receiving node. A typical network has an input

layer of nodes receiving stimuli from the outside (as real numbers). This input is

then transmitted to the nodes the input layer is connected to and multiplied by

the respective connection weights. Each node on the downstream layer receives

input frommany nodes. The sum is then transformed according to the activation

function and the result is transmitted to the nodes in the further downstream

layer. In such a way, the network processes the input until it reaches the output

nodes (the output layer), in the form of new real-valued numbers. The activation

level of the output nodes expresses the outcome of network processing, i.e., the

network’s decision. In other words, the network computes a complex nonlinear

transformation mapping the input (a vector of numbers) into an output (another

vector of numbers). For the various papers discussed here optimality is often

directly associated with playing Nash strategies or maximizing a utility of profit

function.

III. 1 Limits to Biological Plausibility

Generally, the optimum parameter or set of parameters for a neural network

cannot be calculated analytically when a model is nonlinear, and so we must

rely on a form of numerical optimization. Backpropagation (see Rumelhart et

al., 1986)) is the most standard method used in the neural network literature for

building practical neural networks. The basic intuition behind backpropagation

is that of psychological reinforcement: the economic decision-maker tries to

learn how to perform better in the task, and the more disappointing the outcome

(relative to the “correct” outcome), the deeper the change in connection weights

will be. In this sense it is similar to reinforcement learning mechanism discussed

in Roth and Erev (1995) and Roth and Erev (1998).

Backpropagation requires a teacher explicitly telling the correct answer dur-
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ing training, and this might appear too strong a requirement: it renders back-

propagation a more powerful algorithm than is biologically plausible. Backprop-

agation is more powerful also in another sense: it adjusts individual connection

weights using global information on how to best allocate output error which is

unlikely to occur in biological brains (see MacLeod et al., 1998). These limita-

tions, however, should not be overstated: what they suggest is that backprop-

agation might be a plausible upper bound to the learning of biological neural

networks of some given size. Conversely, stronger learning algorithms, of the

kind used by White (1992) to show learnability, are much further from biological

or cognitive plausibility (White, 1992, page 161). Hence, the non-learnability

results with backpropagation discussed in the next section cannot be easily dis-

missed as an artificial product of too weak a learning rule.

In practice, we do know that a neurotransmitter, dopamine, plays a role in

biological neural networks analogous to that of the teacher in the backprop-

agation algorithm: the activation level of dopamine neurons may work as a

behavioural adaptive critic, i.e. it tells the agent how to adapt its behaviour

to successfully deal with a task (Zizzo, 2002). Added to this is the fact that

evidence exists to demonstrate that appropriately constructed neural networks

can closely approximate the behaviour of human subjects in experimental lab-

oratories in economic situations (as in Sgroi and Zizzo, 2002, and Leshno et al.,

2003 discussed in the next two sections).

III. 2 Learning by Example

The key to the learning process is repeated exposure to examples. The

players are not assumed to have perfect access to models of the real world,

nor are any rules explicitly taught to the network; rather they are simply sub-

jected to a sequence of example games, and then asked to assimilate what gen-

eral knowledge they can from these examples to play new, never before seen,

games. Economic agents may face a large number of decisions throughout their

13



life. However, notwithstanding the role of dopamine neurons, it is unlikely that

most of them ever encounter teachers telling them explicitly what general al-

gorithm to follow in playing normal form games: rather, they implicitly learn

to generalize their decision-making ability from the examples they experience

and observe (see Zizzo, 2000). So, as in Roth and Erev (1995), the basic idea

is that of psychological reinforcement. However, here reinforcement does not

entail direct adjustments to economic behaviour. Rather, it operates on con-

nection weights, and only indirectly on behaviour. The difference may appear

subtle but is crucial. The behavioural learner learns how to behave better in

an economic situation, but will be completely naive as soon as it faces a new

one: knowing how to perform well in a coordination game tells me nothing on

how to perform optimally in, say, a Prisoner’s Dilemma. Instead, given enough

exposure to examples, the neural network learner is able to find a set of con-

nection weights that enables it to perform optimally a majority of times even

in economic situations never encountered before. In other words, it learns how

to generalize its problem-solving ability.

Most evolutionary games, or learning dynamics, are based on the assumption

that only one game is of interest. They then examine whether a player can

converge to Nash behaviour within that game. If we consider another game we

have to reset the dynamic and start again, forgetting the long process of learning

to play Nash completely, or else assume that having mastered one game the

player will simply pick a Nash equilibrium perfectly without any further need

to learn. A neural network can be used to study learning dynamics in repeated

single games as in Cho and Sargent (1996), Cho (1995) and Cho (1996), but it

can also allow the player to learn a general method for solving similar games:

the decision algorithm used by the player is formed out of a series of observed

examples, the results being a decision-rule in which the emphasis is on learning

how to play games in general as in Sgroi and Zizzo (2002). Hutchins and

Hazelhurst (1991) suggests that neural networks twinned can even be used to

provide intergenerational learning, so the experience of one generation is not
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lost to the next.

III. 3 Levels of Processing Ability

Finally, a neural network learner can be further limited by placing additional

constraints upon its structure, such as reducing the number of hidden layers,

reducing the number of nodes at any or all layers, reducing the available training

time and/or setting less restrictive limits to the errors deemed acceptable. This

provides a wide range of ways to classify the neural network. This has been used

in some papers to allow different specifications of neural network to approximate

different levels of processing ability in economics agents. The most notable

example is Rubinstein (1993) discussed in section 5. Other papers specifically

aim to find the minimally complex neural network needed to solve a specific

problem (see Cho and Li, 1999).

IV. LEARNABILITY AND BOUNDED RATIONALITY

There is a wide range of evidence from the experimental psychology and

computer science literature to support the use of neural networks as practical

models of human learning especially in the context of learning by example and

dealing with problems never encountered before.

There is certainly evidence that children learn by example as in Bandura

(1977), and are able to generalize from those examples (for instance, learn to

talk: Plunkett and Sinha (1992)). In cognitive science, neural networks have

been used to model how agents actually face pattern recognition and catego-

rization, as in Taraban and Palacios (1994), for child development, as in Elman

et al. (1996), for animal learning, as in Schmajuk (1997), and even arithmetic

learning, as in Anderson (1998). Most importantly these studies show that what

networks learn in practice is also exactly what makes neural networks useful for

psychological modelling. For example, a model of arithmetic learning that would
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predict the absence of mistakes is unlikely to be plausible when dealing with

human subjects.

As yet, relatively little has been done within game theory to capitalize on

this research. This section begins the process by examining learnability results

such as Hornik et al. (1986) and Sontag and Sussmann (1989), and applications

of those results to play by a trained neural network in new games in Sgroi and

Zizzo (2002). Then in the following section we go on to examine the literature

on learning to play in specific games.

IV.1 Learnability

A set of results in the algorithm complexity and computer science literature

exist which focus on neural network learning. One of the most well-known re-

sults comes from Hornik et al. (1986). Summarizing, Hornik et al. (1986) find

that standard feedforward networks with only a single hidden layer can approx-

imate any continuous function uniformly on any compact set and any measur-

able function arbitrarily well. The main result, Theorem 2.4 from Hornik et al.

(1986) effectively concerns the existence of a set of weights which allow the per-

fect emulation of the algorithm that the neural network is attempting to learn.

There is however a major area of potential worry. The network may experience

inadequate learning, so the learning dynamic will fail to reach the global error-

minimizing algorithm. A learning algorithm takes the training sample and acts

on these to produce a function h ∈ H that, provided the sample is large enough,

is with probability at least 1 − δ within ε of the global error-minimizing algo-
rithm (the algorithm which picks out the Nash equilibrium actions). The final

function h produced by the neural network can be thought of as representing the

entire processing of the neural network’s multiple layers, taking an input vector

x and producing a vector representation of a choice of strategy. Over a long

enough time period we would hope that C will return a set of optimal weights

which will in turn produce a function which will select the Nash strategy. This
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all crucially rests on the ability of backpropagation to pick out the globally

error-minimizing algorithm for finding Nash equilibria. While backpropagation

is undoubtedly one of the most popular search algorithms currently used to train

feedforward neural networks, it is a gradient descent algorithm and, therefore

as shown in Sontag and Sussmann (1989) this approach leads only to a local

minimum of the error function. In fact, while:

“...sufficiently complex multilayer feedforward networks are capa-

ble of arbitrarily accurate approximations to arbitrary mappings...an

unresolved issue is that of “learnability”, that is whether there ex-

ist methods allowing the network weights corresponding to these

approximations to be learned from empirical observation of such

mappings.” White (1992, page 160).

White (1992, Theorem 3.1) summarizes the difficulties inherent in back-

propagation: it can get stuck at local minima or saddle points, can diverge, and

therefore cannot be guaranteed to get close to a global minimum. The prob-

lem is exacerbated in the case of our neural network C as the space of possible

weights is so large. Furthermore, Fukumizu and Amari (2000) show that local

minima will always exist in problems of this type and Auer et al. (1996) show

that the number of local minima for this class of networks can be exponentially

large in the number of network parameters. The upper bound for the number

of such local minima is calculable, but it is unfortunately not tight enough to

lessen the problem (Sontag, 1995). In fact, as the probability of finding the ab-

solute minimizing algorithm (the Nash algorithm) is likely to be exponentially

small, the learning problem faced by C falls into a class of problems known in

algorithm complexity theory as NP -hard.2 Though gradient descent algorithms

2The hardness of finding Nash strategies is the subject of a small literature on the complex-
ity of computing an automaton to play best response strategies in repeated games, see Gilboa
(1988) and Ben-Porath (1990). It was this earlier literature that established the hardness
of computing Nash strategies under certain conditions, though automata rather than neural
networks are used to model bounded rationality. Both of these papers and subsequent work
have drawn attention to the fact that we need to focus on whether best responses are simply
to hard to find in certain situations, and if so we need to find an alternative.
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attempt to search for the minimum of an error function, and backpropagation is

no exception, given the prevalence of local minima, the neural network cannot

consistently find an absolute minimum. The basins of attraction surrounding a

local minimum are simply too strong for a simple gradient descent algorithm to

escape.3 Sgroi and Zizzo (2002) completes this by arguing that a neural network

will therefore find a decision-making algorithm that will retain some error even

at the limit, so we may have to be content with an algorithm which is effective in

only a subclass of games, optimizing network parameters only in a small subset

of the total space of parameters.

IV.2 Bounded Rationality

Given that backpropagation will find a local minimum, but will not readily

find an absolute minimizing algorithm in polynomial time, we are left with the

question, what is the best our neural network player can hope to achieve? In

terms of players in a game, we have what looks like bounded-rational learning

or satisficing behaviour: the player will learn until satisfied that he will choose

a Nash equilibrium strategy sufficiently many times to ensure a high payoff.

Sgroi and Zizzo (2002) call this a local error-minimizing algorithm, which can

be interpreted as a case of rules of thumb that a bounded-rational agent is

likely to employ in the spirit of Simon (1955) or Simon (1959). They differ from

traditionally conceived rules of thumb in two ways. First, they do select the

best choice in some subset of games likely to be faced by the learner. Second,

they are learned endogenously by the learner in an attempt to maximize the

probability of selecting the best outcome. The best outcome can be determined

in terms of utility or profit maximization or a reference point, such as the Nash

3Other far less biologically plausible methods involving processor hungry guess and verify
techniques, can produce better results. If we were to supplement the algorithm with a guessing
stage, i.e. add something akin to grid search, or a subtle application of the theory of sieves,
then we could hope to find the absolute minimum in polynomial time (White, 1992). However,
White (1992), page 161 argues that such methods “... lay no claim to biological or cognitive
plausibility”, and are therefore not desirable additions to the modelling of decision-making.
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equilibrium.4

IV.3 Learning a Method of Playing New Games

Sgroi and Zizzo (2002) presents a neural network model that plays (up to)

3× 3 games, the simplest set of games in which iterated deletion of dominated
strategies is anything but trivial. A neural network is constructed and trained

on learning the correct best reply for a large number of test games, which

corresponds to learning how to select the unique Nash strategy from the three

strategies available. Having achieved a high degree of success at recognizing

the correct Nash actions to play on this training sample, the constructed neural

network complete with its game-solving algorithm is released to play a large

number of completely new games. The results in Sgroi and Zizzo (2002) suggest

a figure of around 60% success on games never encountered before based on

the constructed neural network, as compared with 33% as the random success

benchmark. 5 This compares well with the 59.6% experimental figure from

Stahl and Wilson (1994).6

Solution concepts other than Nash and based on payoff dominance (similar to

those methods discussed in Costa-Gomes et al., 2001) get closer to explaining the

simulated network’s actual behaviour, and provide something close to a local-

minimizing algorithm for the neural network. The neural network displays some

strategic awareness, but this is not unbounded, and is decreasing in the levels

of iterated deletion of dominated strategies required. The network goes for high

payoff values. It takes into account potential trembles due to the temptation of

the other player of deviating from Nash. It plays better in higher stakes games,

particularly if there is more conflict of interests between itself and the other

4The finite automata literature has a different view of bounded rationality, focusing on
complexity in terms of the cost of computing strategies. For example, see Rubinstein (1986)
or Abreu and Rubinstein (1988).

5Earlier results using the same neural network model are detailed in Zizzo and Sgroi (2000)
which also developed the econometric methods later used in Sgroi and Zizzo (2002).

6See also Stahl and Wilson (1995).
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player. The trained network’s behavioral heuristics carry over to a relevant

degree when it faces not just new games, but new classes of games, namely

games with multiple and zero pure Nash equilibria. Moreover, networks trained

on different games with a unique pure Nash equilibrium are able to coordinate

on the same focal solution, when encountering games with multiple equilibria.

The key conclusions from the literature on the learnability of patterns of

play are that we cannot expect a neural network to achieve 100% success in new

games though we can expect it to learn an algorithm capable of performing to a

similar standard to observed experimental laboratory subjects. The algorithm

itself is likely to based on concepts linked to iterated dominance which are

strategically much easier to compute, and this will be produced endogenously

during the neural network’s training.

V. APPLICATIONS TO DECISION-MAKING IN ECONOMICS

This section explores the various uses within economics and especially game

theory to which neural networks have been applied directly. Unlike in Sgroi

and Zizzo (2002) where the aim of neural network learning was to develop a

general method for playing a new game, the following papers usually focus on

the neural networks ability to improve when playing a single game such as:

repeated instances of the Prisoner’s Dilemma in Cho and Sargent (1996), Cho

(1995) and Macy (1996) and games of moral hazard in Cho and Sargent (1996),

Cho (1994) and Cho (1996); heterogenous consumers in a model of monopoly

in Rubinstein (1993); market entry with bounded rational firms in Leshno et

al. (2003) and Cournot oligopoly in Barr and Saraceno (2003); and finally

intergenerational learning in Hutchins and Hazelhurst (1991).

V.1 The Prisoner’s Dilemma and Games of Moral Hazard

Various papers directly explore the outcome of allocating neural networks
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the task of playing repeated instances of the Prisoner’s Dilemma.7

Cho and Sargent (1996) provides a primer on the capabilities of simple per-

ceptrons showcasing their application to various problems in economics and

game theory, beginning with two-armed bandit problems and repeated play

of the Prisoner’s Dilemma, and eventually building a full-scale application to

moral hazard problems in a model of stochastic growth.8 Focusing on the find-

ings linked to the Prisoner’s Dilemma, Cho and Sargent (1996) and Cho (1995)

show that a simple perceptron can find the optimal strictly dominant action in

the Prisoner’s Dilemma, since that game is solvable through linear programming

methods.9 This is in line with the finding in Sgroi and Zizzo (2002) which shows

that a neural networks can learn strict dominance and variations on dominance

as a solution concept which is all that is required to solve a Prisoner’s Dilemma

game.

Macy (1996) simulated a population playing an iterated Prisoner’s Dilemma

with bilateral payoffs of 3 and 1 for cooperate and defect, and unilateral payoffs

of 0 and 5 for cooperate and defect (the same payoffs as in Axelrod, 1987). Each

generation consisted of 50 rounds of play with random partner selection from

a population of 100. The players knew the previous two moves and whether

their opponents were strangers. Simulations were run from the start and from

a “state of war” for 105 generations. While the main aim of the simulations in

7Rubinstein (1986) and Abreu and Rubinstein (1988) also offer an attempt to model
bounded rational play of repeated games, especially the Prisoner’s Dilemma, but instead
use finite automata. Their focus is on the high computational cost of more complex strategies
and so they suggest that using simple finite automata to model repeated strategies captures
a player’s desire to keep this cost down.

8Perceptrons are simpler than more general feedforward neural networks (of which they
are a subset). They calculate the empirical frequency of outcomes in a given history and then
classify the history according to linear functions of the calculated empirical frequency. They
are often described as “classifiers” because their output is based upon whether some function
of the inputs exceed a given threshold on the real number line. In this way a perceptron is
capable of offering a binary yes or no decision, and is therefore especially useful for solving
linear programming problems. An alternative way of visualizing feedforward neural networks
is as a system of perceptrons working in parallel producing finer and finer classifications. See
Cho and Sargent (1996).

9Cho and Sargent (1996) also shows that in the presence of imperfect monitoring (and the
moral hazard problems which this implies) linear proxies can overstate the hidden variables.
Cho and Sargent solved this problem only through the use of a strong law of large numbers
to avoid overestimation of variable values.
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Macy (1996) were to test the viability of cooperation in the repeated Prisoner’s

Dilemma, the paper also aimed to show the differential impact of hardwired

rules (which are fixed for a given player and can only be changed with a new

player in the next generation via natural selection or reproduction and were

modelled using genetic algorithms) and softwired (which can be changed for the

same player through social learning or reinforcement and were modelled using

neural networks). Reproduction alters the frequency distribution of strategies

with in the population of players, whereas reinforcement alters the probabil-

ity distribution of strategies within the repertoire of each player. Hardwiring

produced “Win-Stay, Lose-Shift” as the winning strategy with punctuated equi-

libria (long sequences of cooperate with sudden collapses swiftly replaced with

more cooperate). Adding softwiring eliminated punctuated equilibria but re-

tained high levels of cooperation. Increased strategic complexity reduced the

prospects for cooperation under neural network learning though far less so under

hardwiring since they found that latent cooperative genes could be protected

from selection pressures until the rules were sufficiently widespread so they could

emerge in safety. Uncertainty also hampered neural network learning, but less

so hardwired genetic algorithms. Errors actually helped natural selection weed

out naive cooperators. Macy also allowed direct instruction combined with im-

itation between players in what he describes as a process of “social influence”.

He found that this provided an antidote to uncertainty by increasing the prob-

ability of bilateral choices relative to unilateral ones, but produced a risk of

bilateral defectors trapping each other. However, the costs of mutual defection

biased the result toward coordination on both cooperate.

Macy’s simulations confirm that neural network learning can produce coop-

eration in a repeated Prisoner’s Dilemma, though uncertainty made cooperation

harder. In that sense Macy (1996) supports the theoretical findings in Cho and

Sargent (1996) and Cho (1995).

These papers demonstrate that when examining repeated instances of the

Prisoner’s Dilemma a neural network (even a simple perceptron) is quite up

to the task of finding the Nash equilibria and we can even produce something
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akin to a folk theorem. For more general games the results in Cho (1994) and

Cho (1996) show that a more general feedforward network, along the lines of

section 2, can be sufficient unless we add complexities such as discounting and

uncertainty in combination.10 The final conclusion from these papers should

be that even quite simple neural networks can handle lengthy repetitions of the

same well-specified and well-understood game.

V.2 Limited Consumer Processing Ability

Rubinstein (1993) uses neural networks to capture the notion of a limit to

consumer processing ability by consumers in a model of monopolistic compe-

tition. In particular this paper unlike those discussed earlier allows consumers

to differ in their ability to process information and so examines the impact of

differential levels of bounded rationality.

The consumers wish to purchase a single indivisible good from a monopolistic

firm. The seller announces a price policy (a specification of a different lottery of

prices for each of the states of nature) to which he is committed. The state of

nature and the price is then determined. Finally, consumers are informed about

the realization of the price lottery and decide whether to accept or reject the

offer. This can be seen as a slight variation on the Stackelberg leader-followers

model with the monopoly seller as leader and the consumers as follower. To this

Rubinstein adds imperfection in consumers’ calculations and the monopoly’s

ability to offer not just a simple price, but several price components. The

example given is for a stereo where component prices, taxes and various service

fees are all offered. Rubinstein then allows consumers to differ in their ability to

interpret this information. Each consumer’s ability to process this information

is modelled in terms of a perceptron. The neural network receives some of

10In a two-person repeated game Cho (1994) shows how to recover the folk theorem for
a finite perceptron with a single linear classifier without discounting, and Cho (1996) shows
that perceptrons with three linear classifiers can be sufficient even under imperfect monitoring
(where each player is allowed to monitor the other by computing the ordinary least-square
estimator of the opponent’s expected payoff).
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the components of the price vector as its input and produces a real number

as output, with complexity measured by the number of price vectors in the

domain of the neural network. Consumers are divided into two types based

on the complexity of the neural networks operating their ability to compare

prices. The monopoly is shown to be able to exploit this variation in type

and bounded processing power to gain additional profit. Rubinstein explains

that consumers with low processing ability (using simpler neural networks) are

incapable of inferring the true state of nature from the observed pricing strategy

of the monopolist and will often fail to identify when it is profitable to purchase

the product at a high price.

While Rubinstein does not offer any direct empirical support for his model

he does offer a more general conclusion which fits casual empirical findings:

sellers will aim to offer complex pricing schemes precisely to exploit bounded

rational agents. Whether modelled as neural networks or not, this has the seeds

of a testable hypothesis, and seems very reasonable in some complex markets.

What is of greatest interest is perhaps not the conclusions of the paper but

rather the fact that Rubinstein chose neural networks to model bounded rational

consumers. His rationale may come from the fact that, just as in Sgroi and Zizzo

(2002), it is Herbert Simon to whom Rubinstein looks for a clear definition of

bounded rationality as one in terms of processing ability, and it is here that

neural networks stand out.

V.3 Bounded Rational Firms

Leshno et al. (2003) focus on a market entry game with a well defined Nash

equilibrium and find that simulations involving feedforward neural networks ex-

hibit results which are very similar to empirically validated human behaviour

in similar circumstances. One of the paper’s key strengths is the importance

placed on validating the results produced by neural network learning in com-

parison with empirical data.
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Their model requires that N symmetric players decide in every time period

whether or not to enter the market. Before deciding in each time period they

are told the capacity, c, of the market. Payoffs are given as k for staying out of

the market and k + r (c−m) for entry, with m as the number of entrants and

r as a publicly known scaling factor. Cost of entry is zero and the motivation

for entry decreases in m.

A general feedforward neural network was used, with a finite number of

units in the hidden layer. Leshno et al. (2003) changed the number of units

in the hidden layer to roughly capture the idea of differing processor power

between experimental subjects, and set about training the neural networks to

forecast the number of entrants, m, given c. The results indicate that the neural

networks can very closely approximate the performance of the human subjects

in Sundali et al. (1995), which in turn closely approximates the Nash equilibria

of this game. The authors chose to emphasize the relative simplicity of neural

networks as compared with human decision-making and therefore argue that

it is all the more surprising that a simple neural network can get so close to

observed human performance.

Finally, using similar simulation methods, Barr and Saraceno (2003) show

that firms modelled as neural networks are able to converge to the unique Nash

equilibrium of a Cournot game when facing a linear demand function with

stochastic parameters, and they also estimate the optimal industry structure

for different environmental variables.

To summarize, in Leshno et al. (2003) and Barr and Saraceno (2003) neural

networks perform extremely well when facing repetitions of the same market-

based game. As with Sgroi and Zizzo (2002) the results in Leshno et al. (2003)

are shown to be similar to observed laboratory behaviour by human subjects,

though both neural networks and laboratory subjects perform better under re-

peated instances of the same game (as in Leshno et al., 2003) rather than when
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facing a series of new games (as in Sgroi and Zizzo, 2002).

V.4 Intergenerational Learning with Neural Networks

A final quite different application comes from Hutchins and Hazelhurst

(1991), which takes the novel approach of implementing intergenerational learn-

ing using neural networks to model society’s use of culture as a means of transfer-

ring information across generations. Culture is seen as “a process that permits

the learning of prior generations to have more direct effects on the learning

of subsequent generations.” Hence Hutchins and Hazelhurst (1991) argue that

culture enables a population over many generations to be able to learn what a

single individual cannot learn in a lifetime (such as a useful regularity in the

environment). Parts of solutions may be learned by one generation and trans-

mitted to the next. One means of transmission is to represent what has been

learned in a form readily usable by later generations through the development

certain elements of culture such as myths, tools, beliefs, practices, artifacts,

understandings, practices, classifications, and crucially, language, which they

group together as “artifactual media”.

Hutchins and Hazelhurst (1991) demonstrate this with a set of computer

simulations of feedforward neural networks (two “language” neural networks

and one “task” neural network) designed to show how a population can learn

the relationship between the phases of the moon to tide states. This they cite as

important for an early population wishing to correctly decide whether or when

to relocate near the ocean in order to benefit from the easy fishing of shellfish

at low tide. They first simulate the learning of a language, then direct learning

from the environment and finally mediated learning which transforms encoded

symbolic descriptions gained through language into vicarious experience of the

events for which they stand.

They find that the system does learn, with individuals in later generations

using the same learning protocol able to perform much better at predicting
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environmental regularity than those in earlier generations, concluding:

“In later generations virtually all of the individuals are able to

predict the environmental regularity almost perfectly even though

the individuals in later generations have no greater innate learning

abilities than those in earlier generations. Clearly this phenomenon

results from the retention of “successful” knowledge in the artifactual

media.”

They also find that unlucky choices of artifacts to transfer information be-

tween generations can slow down learning. They conclude that their neural

network model displays considerable similarities to observed patterns of cul-

tural intergenerational learning as motivated by their tidal phase example.

Relating this back to the other papers various features remain the same,

such as the neural networks good ability to improve its play in an unchanging

environment (a single game), but rather than specify an arbitrarily large number

of training sessions Hutchins and Hazelhurst (1991) instead attempt to capture

a lifetime’s worth of learning and then pass this to the next generation. Clearly

the biological plausibility of neural network learning is of paramount importance

for their work.

VI. CONCLUSION

Neural networks are artificial intelligence models using methods analogous to

those employed by the human brain. They possess strengths and weakness, and

those weaknesses can be highlighted as a benefit not a liability, since they may

correspond to the natural limits of bounded rational behaviour. We may know

the right answer to a problem and by suitably adding further levels of biological

implausibility to a neural network model, we can force it to get things right a

very high percentage of the time. However, the fact that a neural network can

mimic the imperfect problem-solving ability of economic agents, and does so en-

dogenously, is exactly what makes it so appealing to anyone wanting to model
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bounded rational decision-making. In particular in well-understood problems

which are often repeated a neural network can become arbitrarily good at pro-

ducing optimal solutions, especially where the optimal solution can be found

using linear methods or through dominance arguments. When the problem is

to find a general method applicable to all manner of new problems success rates

are more limited, just as we would expect with human subjects.

Various papers have used neural networks to model decision-making.11 This

paper summarizes the learnability results distributed across several papers such

as Hornik et al. (1986) and Sontag and Sussmann (1989), and applications of

those results to play by a trained neural network in new games in Sgroi and Zizzo

(2002). It also reviews various direct applications, such as: repeated play of the

Prisoner’s Dilemma in Cho and Sargent (1996), Cho (1995) and Macy (1996)

and games of moral hazard in Cho and Sargent (1996), Cho (1995) and Cho

(1996); heterogenous consumers in a model of monopoly in Rubinstein (1993);

bounded rational firms considering market entry in Leshno et al. (2003) and

Cournot oligopoly in Barr and Saraceno (2003); and intergenerational learning

in Hutchins and Hazelhurst (1991). What each of these papers delivers is an

alternative to standard game theoretic methods of modelling human behaviour,

with a direct focus on the computational limitations of economic agents and the

endogenous development of bounded rationality.
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