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Abstract

We consider a principal-agent problem where the principal wishes to be endorsed by

a sequence of agents, but cannot truthfully reveal type. In the standard "herding"

model, the agents learn from each other�s decisions, which can lead to cascades on a

given decision when later agents� private information is swamped. We augment the

standard model to allow the principal to subject herself to a test designed to provide

public information about her type. She must decide how tough a test to attempt from

a continuum of test types, which involves trading o¤ the higher probability of passing

an easier test against the greater impact from passing a tougher test. We �nd that the

principal will always choose to be tested, and will prefer a tough test to a neutral or easy

one.
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1. Introduction

When a �rm develops a new product, it will often consider where to send it for pre-launch review

or accreditation. A job applicant facing a sequence of interviews must select suitable referees. Film

studios decide who to invite to pre-launch viewings and premieres. A politician may wish to leak a new

policy to the media, and has a choice of which media outlet to target. A �rm launching an initial public

o¤ering can choose from auditors of di¤erent reputations to review its accounts. The list goes on. In

each case a principal ultimately wants to sell products, win votes, or generally be endorsed by a group

of agents, and has the option of being publicly tested before seeking endorsement. Despite the powerful

e¤ects that success or failure of such a test may have on the performance of the principal, the literature

has paid little attention to the role of such public testing, especially the decision that a principal must

make when a variety of tests are available which di¤er in their degree of toughness. The present paper

attempts to correct for this omission.

The principal is assumed to be either good or bad for agents, who need to estimate the relative

likelihood of the two types before making their endorsement decision. The agents decide in sequence

and are granted three sources of information. As in the standard �herding�model, they receive private

information, which perhaps relates to prior experience of the principal or her product or policies, and

can observe each other�s endorsement decisions in an attempt to learn something about other agents�

private information. The sequential nature of decision-making can allow cascades on a given decision to

develop when later agents�private information is swamped by the information revealed by the decisions

of earlier agents. We introduce a third source of information by allowing the principal to subject

herself to a test designed to provide public information about her type before any agent has made his

endorsement decision. She must decide how tough a test to attempt from a continuum of test types,

which involves trading o¤ the higher probability of passing an easier test against the greater impact

from passing a tougher test.

As seems reasonable in this context, a bad type of principal can costlessly duplicate the choice of test

chosen by a good principal. As a result, all of our outcomes will be pooling, and there will be no issues

of incentive compatibility or scope for a separating equilibrium. Therefore the choice of a tough test

does not have the advantage of signaling the type of principal. Without a role for signaling by choice

of test, we might assume that since an easy test is by de�nition the most likely to be passed, it must

naturally be the �rst choice for any principal. However tough tests have two innate advantages. They

generate a stronger impact on agents in the event of a pass, and they are less damaging in the event of

a fail. We �nd that the principal will always choose to be tested, and perhaps surprisingly will prefer a

tough test to a neutral or easy one despite the lack of an immediate signaling advantage through the

choice of test.
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1.1. Related Literature. The paper most closely related to ours is Lerner and Tirole�s (2004) recent

(and independently developed) paper concerning the role of technology standard setting authorities

as certi�ers.2 Along with Lerner and Tirole, our paper is the �rst to consider a principal seeking

an initial public endorsement who can choose from amongst a continuum of tests of varying bias or

toughness. Similarly to our tests, Lerner and Tirole�s certi�ers have an arbitrary bias towards the

technology sponsor which determines their endorsement rule. The model has signi�cant di¤erences to

ours. Crucially, Lerner and Tirole do not allow consumers to either receive any private information or

observe other agents�actions. Furthermore, the sponsor is not perfectly informed about quality and the

chosen certi�er discovers with certainty the quality of the technology it is asked to review. As certi�ers

cannot overwhelm bad private information or trigger cascades, Lerner and Tirole do not �nd any role

for certi�ers biased against the technology. Instead they �nd the somewhat unsurprising result that

the sponsor prefers the certi�er most biased in favor of the new technology on o¤er, subject to users

adopting following a positive decision by the certi�er.

In a model with sequential sales, Sgroi (2002) examines the use of small groups of consumers who

are encouraged to decide early, acting as �guinea pigs�and providing additional information for later

consumers. Sgroi�s paper is similar to ours in that in both cases the principal is able to manipulate

herd probabilities to her advantage. However, the method of manipulation and basic trade-o¤ in Sgroi

are quite di¤erent to the ones analyzed here. In Sgroi, there is no notion of bias or toughness. Instead,

the principal is able to manipulate the structure of agents�decision-making, trading o¤ a delay in the

start of the herd against a greater chance that the herd ends up moving in a favorable direction. In

this paper, in contrast, the sequence of agent decisions is assumed �xed, while the principal chooses a

tough public test to try to start an immediate herd on passing, trading this o¤ against a higher chance

of failing the test.

Taylor (1999) and Bose et al. (2005) �nd that high prices can be optimal in a similar way to tough

tests in this paper. In Bose et al., if an expensive good becomes successful, this conveys strong positive

information to later buyers. Taylor, concentrating on the housing market, �nds a high price to be

optimal as a failure to sell a house early can then be attributed to overpricing rather than low quality.

Our work should be contrasted with the literature on self-interested experts, who manipulate the

messages they send about the true state of the world (see chapter 10 of Chamley (2004) for a survey).

Our tests are purely mechanical: the level of toughness is �xed and commonly known. Our work is also

di¤erent from the literature on payment structures to certi�cation intermediaries, where the question

is how intermediaries a¤ect the quality chosen by the �rm (e.g., Albano and Lizzeri, 2001). In our

2Chiao et al. (2005) empirically test Lerner and Tirole�s model, while Farhi et al. (2005) extend the model to a dynamic
setting.
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model, quality is �xed. Finally, our analysis is di¤erent from Ottaviani and Prat (2001), who �nd that

a monopolist may wish to use a public signal of quality such as an outside certi�er. Our principal is

informed about her type, while in Ottaviani and Prat both the buyer and seller are uninformed, so a

public signal a¢ liated with the buyer�s private information reduces the buyer�s informational rents in a

second-degree price discrimination setting.

2. The Model

A risk-neutral principal, whose objective is to maximize the number of endorsements from a sequence

of agents, may be good or bad for the agents. The principal knows her type, but the agents do not,

and there is no easy means of truthful revelation. A stream of agents of uncertain length act in an

exogenously ordered sequence, choosing an action Ai 2 fY;Ng where Y denotes an endorsement and

N a rejection. This �endorsement�is a general concept which could, for example, encompass adopting

some new technology, voting for a candidate in an election, purchasing a product, watching a movie,

making a job o¤er etc.3 After each agent decides, the sequence of agents comes to an end with probability

1� � 2 (0; 1) ; so the expected number of agents is 1
1�� .

4 Introducing this uncertainty, as opposed to a

sequence of determinate length as in the standard Bikhchandani et al. (1992) herding model, allows us

to use a recursive solution method, greatly simplifying the analysis in the presence of the asymmetries

introduced by the choice of biased tests. The payo¤ to an agent from Y is V which has prior probability
1
2 of returning 1 or �1, depending on whether the principal is a good or bad type, while the payo¤ from

N is 0; leaving agents indi¤erent before additional information is obtained. The agents each receive a

conditionally independent signal about V de�ned asXi 2 fH;Lg for agent i. The signals are informative

but not fully revealing in the sense that:

Pr [Xi = H j V = 1] = Pr [Xi = L j V = �1] = p 2
�
1
2 ; 1
�

Pr [Xi = H j V = �1] = Pr [Xi = L j V = 1] = 1� p 2
�
0; 12

�
Before facing the stream of agents, the principal can opt to be publicly tested. We want to think of

the test as by its very nature accessing �ner information about the principal�s type than a single typical

private signal. The simplest way of modeling this is to allow the test to involve the draw of two i.i.d.

signals from the same distribution as agents. The test generates a binary decision d 2 fP; Fg whether to

3In many speci�c cases we might need to add more content to the model such as prices in an industrial organization
context, a voting rule in a political economy context, etc. We wish to leave this open, but the addition of such features is
straightforward. See Gill and Sgroi (2004) for a speci�c application to purchasing decisions with �exible prices, though in
a simultaneous sales context.
4Equivalently, the sequence is in�nite and the principal discounts at a rate �: If the principal is attempting to sell a product,
push a new technology or advance a particular policy then 1 � � may represent a measure of how quickly the principal
expects a rival product, technology or policy to be developed which will make her own obsolete.
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pass (P ) or fail (F ) the principal. Modeling an evaluation as condensing more complex information into

a simple binary decision follows for example Calvert (1985) and Sah and Stiglitz (1986).5 We consider

a continuum of test types: tests are passed with a signal draw of HH; pass with probability � 2 [0; 1]

on a draw of HL or LH and fail on a draw of LL: The value of � encapsulates the type of the test. The

lower the value of �; the tougher the test.

De�nition 1. Tests with � 2 [0; 12) are termed �tough�, those with � 2 (
1
2 ; 1] �easy�, and those with

� = 1
2 ; which pass on a coin �ip on observing a set of mixed signals, �neutral�.

The toughness of a particular test is common knowledge, perhaps generated through a known history

of pass or fail decisions, and the principal is able to choose the test type. We have left the notion of test

fairly abstract, but depending on the application, the choice of test might consist of a choice between

di¤erent reviewers, interviewers, referees, accreditation bodies and so on.

Agent i will observe the choice of test, the test result, the actions of his predecessors Hi�1 �

fA1; :::; Ai�1g and his private signal, and will endorse if E [V j �; d;Hi�1; Xi] > 0: Where E [V ] = 0;

the agent �ips a fair coin.6 The sequential ordering allows agents to learn from each other�s decisions

as well as from the result of the test, combining this information with their own private signals. Po-

tentially, more information may be transmitted to agents later in the sequence. However, agents may

fall into an informational cascade in the sense of Bikhchandani et al. (1992), where public information

swamps private information. Once a given agent in the sequence rationally disregards his own private

information, nothing further is revealed to later agents who will then also all disregard their private

information and copy the choice of their predecessor agent. Of course there is no reason for a principal

to stay passive in the face of such potential cascades, and by selecting a suitable test the principal can

hope to raise the chance of a cascade in her favor and diminish the chance of a cascade going against

her.

Throughout, for conciseness, we consider just the good type of principal. By standard signaling

considerations, a bad type of principal will be forced to copy the choice of the good type to avoid

immediately revealing type and so receive no endorsements. A separating equilibrium is not possible, as

the bad type would copy the choice of the good principal, and so be believed to be good and obtain the

same outcome as the good type (receiving endorsements from all agents). Thus, we restrict attention

to pooling equilibria in which the bad type of principal is forced to follow the good type�s preference.

5As Calvert puts it (p. 534): �This feature represents the basic nature of advice, a distillation of complex reality into a
simple recommendation.�
6Coin �ipping is the standard tie-break rule used in herding models. See for example Bikhchandani et al. (1992).
Equivalently each agent may be following a �xed selection rule, so long as in expectation half of indi¤erent agents endorse
the principal and half do not. Banerjee (1992) instead uses a �follow your own signal� rule, but does this speci�cally to
minimize the chance of a herd.
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Such equilibria can always be supported by the belief that any principal who deviates from the good

type�s preferences must be a bad type. Note that in such pooling equilibria, agents will be unable to

infer anything about the type of the principal from the principal�s choice of test, and so will have to

rely on observing the outcome of the test to provide additional information about the principal�s type.

All omitted proofs can be found in the Appendix.

3. Agent Learning

Observing the choice of test, the test result and the actions of his predecessors, agent i will be able

to update his prior belief that the principal is good from 1
2 to qi � Pr [V = 1 j �; d;Hi�1] : We start by

deriving two remarks, which are used implicitly throughout.

Remark 1. Given his private signal Xi and updated prior qi; agent i Bayes updates as follows:

Pr [V = 1jXi]
Pr [V = �1jXi]

=

Pr[XijV=1]Pr[V=1]
Pr[Xi]

Pr[XijV=�1] Pr[V=�1]
Pr[Xi]

=
Pr [XijV = 1] qi

Pr [XijV = �1] (1� qi)

Remark 2. When calculating beliefs, agents can cancel and ignore opposing H and L signals.

We can now determine agent i0s endorsement decision.

Lemma 1. The ith agent will respond to an updated prior as follows: (a) if qi > p then i will endorse; (b)

if qi = p; following a H signal i endorses, while following a L signal, he �ips a coin; (c) if qi 2 (1� p; p)

then i will endorse if and only if Xi = H; (d) if qi = 1 � p; following a H signal i �ips a coin, while

following a L signal he rejects; (e) if qi < 1� p then i rejects.

Where qi is strongly positive or negative, it outweighs any possible private signal agent imight receive,

leading to a cascade. Where qi > p; from Lemma 1 agent i endorses whatever the signal received. The

decision is thus uninformative, so agent i+1 also endorses, and so on. A symmetrical argument applies

where qi < 1� p:

Lemma 2. Where qi > p; we have a cascade on endorsement, i.e., agent i and all subsequent agents

endorse. Where qi < 1 � p; we have a cascade on rejection, i.e., agent i and all subsequent agents fail

to endorse.

Next, we determine how di¤erent test results impact on the �rst agent�s beliefs. The updated prior

faced by the �rst agent in the event of a pass (denoted by q1 = qP ) and a fail (denoted by q1 = qF ) will

be as follows:

qP � Pr [V = 1 j Pass] = [p2+2p(1�p)�]
[p2+2p(1�p)�]+[(1�p)2+2(1�p)p�]

= p2+2p(1�p)�
p2+(1�p)2+4p(1�p)�

qF � Pr [V = 1 j Fail] = [(1�p)2+2p(1�p)(1��)]
[(1�p)2+2p(1�p)(1��)]+[p2+2(1�p)p(1��)]

= (1�p)2+2p(1�p)(1��)
(1�p)2+p2+4p(1�p)(1��)
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Note that:

dqP
d�

=
2p(1�p)[p2+(1�p)2+4p(1�p)�]�4p(1�p)[p2+2p(1�p)�]

[p2+(1�p)2+4p(1�p)�]
2 = 2p(1�p)(1�2p)

[p2+(1�p)2+4p(1�p)�]
2 < 0

dqF
d�

=
�2p(1�p)[(1�p)2+p2+4p(1�p)(1��)]+4p(1�p)[(1�p)2+2p(1�p)(1��)]

[(1�p)2+p2+4p(1�p)(1��)]
2 = 2p(1�p)(1�2p)

[(1�p)2+p2+4p(1�p)(1��)]
2 < 0

That the updated priors should be decreasing in � is perfectly natural: a pass is better news the

tougher the test, while a fail is not such bad news. Using this, we can derive:

Lemma 3. (a) qP
�
� < 1

2

�
> p; (b) qP

�
� = 1

2

�
= p; (c) qP

�
� > 1

2

�
2
�
1
2 ; p
�
; (d) qF

�
� < 1

2

�
2�

1� p; 12
�
; (e) qF

�
� = 1

2

�
= 1� p; (f) qF

�
� > 1

2

�
< 1� p:

Together with Lemma 1, Lemma 3 shows how the test determines the �rst agent�s decision.

4. Choice of Test

In the previous section, we calculated the e¤ect of di¤erent test results on q1; now we calculate the

expected number of endorsements, �, for the good type of principal 8q1: From Lemma 2, q1 > p leads

to an immediate cascade on endorsement, so �q1>p =
1
1�� , while q1 < (1 � p) leads to an immediate

cascade on rejection, so �q1<1�p = 0. The following lemma uses a recursive solution to the appropriate

decision trees. Note that in cases (ii) and (iii) � is independent of the speci�c q1 value.

Lemma 4. For a good principal,

(i) �q1= 1
2
=

p[2�(1�p)�2]
2[1�p(1�p)�2](1��)

(4.1)

(ii) �q12( 12 ;p)
= p[1+(1�p)�(1��)]

[1�p(1�p)�2](1��)
(4.2)

(iii) �q12(1�p; 12 )
= p[p+(1�p)(1��)]

[1�p(1�p)�2](1��)
(4.3)

Now suppose q1 = p: From Lemma 1 if the �rst agent gets a positive signal he endorses, while if he

gets a negative signal this exactly cancels the positive prior so he is indi¤erent and �ips a coin. We can

think of the second and subsequent agents as starting a new sequence with updated prior q2: If the �rst

agent rejects, later agents infer X1 = L; so q2 = 1
2 : If the �rst endorses, then he is more likely to have

observed H than L; sending a positive signal, thus increasing q2 above q1; so q2 > p:7 Thus,

(4.4) �q1=p =
�
p+ 1

2(1� p)
� �

1
1��

�
+ 1

2(1� p)��q1= 1
2

Suppose instead q1 = 1 � p: This case is the symmetric opposite. If the �rst agent gets a L signal,

he rejects, while if he gets a H signal, this exactly cancels the negative prior so he �ips a coin. Thus, if

7Formally, q2
1�q2 =

Pr[V=1jA1=Y ]
Pr[V=�1jA1=Y ] =

p+ 1
2
(1�p)

(1�p)+ 1
2
p

q1
1�q1 >

q1
1�q1 :
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the �rst agent endorses, later agents infer X1 = H; so q2 = 1
2 : If the �rst rejects, then he is more likely

to have observed L than H; sending a negative signal, so q2 < 1� p: Thus,

(4.5) �q1=1�p =
1
2p
�
1 + ��q1= 1

2

�
Of course, �q1>p > �q1=p > �q12( 12 ;p)

> �q1= 1
2
> �q12(1�p; 12 )

> �q1=1�p > �q1<1�p:

We now have the building blocks which allow us to easily calculate and compare the expected number

of endorsements for the principal from choosing di¤erent test types, � [�] : Suppose �rst that the test

is neutral. Then, using Lemma 3 and the fact that Pr[P ] = p2 + 2p(1 � p)� while Pr [F ] = (1 � p)2 +

2p(1� p)(1� �):

(4.6) �
�
� = 1

2

�
= Pr[P ]�q1=p + Pr [F ]�q1=1�p = p�q1=p + (1� p)�q1=1�p

With a tough test, using Lemmas 2 and 3, a pass starts an immediate cascade on endorsement with

q1 > p, while a fail leaves q1 2 (1� p; 12): Thus:

(4.7) �
�
� 2 [0; 12)

�
=
�
p2 + 2p(1� p)�

	
�q1>p +

�
(1� p)2 + 2p(1� p)(1� �)

	
�q12(1�p; 12 )

Note that
d(�[�2[0; 12 )])

d� > 0 as �q1>p and �q12(1�p; 12 )
are constant in �, �q1>p > �q12(1�p; 12 )

and dPr[P ]
d� =

�dPr[F ]
d� > 0:

Finally, we consider an easy test. This case is the symmetric opposite of the tough test case. Using

Lemmas 2 and 3, a fail starts an immediate cascade on rejection as q1 < 1 � p; while a pass sends a

positive signal weaker than the one sent out when a neutral test is passed, so q1 2 (12 ; p); giving:

(4.8) �
�
� 2 (12 ; 1]

�
=
�
p2 + 2p(1� p)�

	
�q12( 12 ;p)

Comparing the di¤erent expected number of endorsements, we �nd the following proposition.

Proposition 1. For any choice of three test types � 2
�
�T ;

1
2 ; �E

	
such that �T 2 [0; 12) and �E 2

(12 ; 1]; the good type of principal strictly prefers the tough test �T to the neutral test � =
1
2 and to the

easy test �E :

Despite the fact that tough tests are less likely to be passed, the good principal prefers any tough test

to any neutral or easy one. She prefers tough tests because of the strong impact on agents�decisions

from a pass, which leads to a cascade on endorsement, while a fail in a tough test is not too costly as

the test is known to be tough, diluting the impact of failure on agents�beliefs.

Next we de�ne the concept of �-optimization.
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De�nition 2. To �-optimize � over a range of � values, 
 � [0; 1]; means to select a � 2 
 such that

� > sup
�2


�� �:

The following lemma follows from the fact that
d(�[�2[0; 12 )])

d� > 0, so sup
�< 1

2

� = p�q1>p+(1�p)�q12(1�p; 12 ).

Lemma 5. For any � > 0 the principal can �-optimize over � 2 [0; 12) by selecting � su¢ ciently close

to 1
2 , thus achieving � > sup

�< 1
2

�� �:

Informally, the lemma says that the optimal tough test is one whose toughness is arbitrarily mild

(i.e., with � strictly below but arbitrarily close to 1
2).

Proposition 1 tells us that any tough type of test beats the neutral test or any easy type of test,

which implies that sup
�2[0;1]

� = sup
�< 1

2

�. Together with Lemma 5 this gives:

Proposition 2. For any � > 0 the principal can �-optimize over � 2 [0; 1] by selecting � su¢ ciently

close to but below 1
2 , thus achieving � > sup

�2[0;1]
�� �:

Informally, the optimal test type is a tough test which has arbitrarily mild toughness. A pass in any

tough type of test leads to an immediate cascade on endorsement, so the principal prefers a tough test

that is as close as possible to the neutral test type so as to maximize the probability of a pass.8

Finally, we �nd that the neutral test is strictly preferred to no test at all. The signal arising from the

neutral test allows some information transmission through the sequence of agents which, in expectation,

is valuable to the good type of principal.

Proposition 3. The choice of taking no test is strictly worse than taking the neutral type of test � = 1
2

and a fortiori strictly worse than a tough test type.

8For analytical tractability, we have chosen a simple binary signal structure. Though beyond the scope of this paper,
one might wonder to what extent our results carry over to a richer signal space. Our model crucially depends on the
possibility of cascades, which are manipulated by the principal. As is well understood in the herding literature (see Smith
and Sorensen, 2000), cascades require that the strength of private signals be bounded. With unbounded signals, any public
belief can be overwhelmed by a strong enough signal, so herds can always be broken and beliefs must eventually converge
to the truth. Thus, our results would not extend to Gaussian continuous signals (see Chamley, 2004, p. 27). However, we
conjecture that our main intuition that tough tests are best would hold under a richer discrete bounded signal space, as
the principal should still want to risk a tough test to try to get an early favorable cascade started. The principal could
then choose a test just tougher than that required to make an agent with the worst possible signal indi¤erent conditional
on the test being passed. However, if such extreme signals are su¢ ciently unlikely, we conjecture that the principal will
instead choose a somewhat weaker tough test to give a high, but not certain, chance of an immediate favorable cascade
in the event of a pass. The fact that a pass by a test � tougher than a fair one outweighs the worst possible signal is
speci�c to the simple binary signal case. More generally the principal will still be �-optimizing in that for whichever signal
is targeted as the endorse threshold conditional on a pass, the test needs to be � tougher than the one giving indi¤erence
with that signal. With a continuum of bounded signals, the property of �-optimization will disappear, unless the principal
targets the worst possible signal.
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The following two �gures illustrate the size of the increase in the expected number of endorsements

from opting to face a tough test. Figure 1 shows the percentage increase in the expected number of

endorsements from taking the toughest test over a neutral test, which peaks at 25%, while Figure 2

shows the percentage increase from using the tough test type which is almost neutral, which peaks at

50%.

Figure 1:
�[�=0]��[�= 1

2 ]
�[�= 1

2 ]
Figure 2:
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5. Conclusion

Within the model presented in which test toughness is tightly de�ned, as are the available sources

of information for agents, we �nd that a principal of type unknown to a sequence of agents should seek

to face a public test if this is possible. Furthermore, that principal should seek out the mildest form of

tough test available. If there are only very tough tests, then those are the ones that should be selected.

Tests that are relatively easy are not optimal, as they provide too damaging a signal in the event of a

fail, and too little gain in the event of a pass. Converting these results into practical normative advice,

job applicants might consider resisting the temptation to approach relatively soft referees. Firms should

avoid �yes men�reviewers for their products. A politician should consider opting to select where to be

interviewed, or where to leak new policies, based on the simple premise of �rst ruling out optimistic or

positively biased journalists and then selecting the mildest of those who are intrinsically biased against

the politician and his policies. At a descriptive level, we have an explanation for the existence of tough

tests, biased newspapers, tough referees, etc. that have a well known harsh or overly critical style, and

yet are regularly chosen. When selecting a test to take, a reviewer to observe your product, a referee

to provide a letter of recommendation or an interviewer to face, the old Roman proverb is perhaps the

best summary of our �ndings: fortune favors the brave.
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Appendix

Proof of Remark 2. Suppose the agent starts with a prior z and observes or infers an information set

Ii: Now suppose that instead of Ii; the agent infers I+i ; which we de�ne as the set Ii plus a further H

and then a L signal. Then, using Remark 1 (replacing qi with z),
Pr[V=1jI+i ]
Pr[V=�1jI+i ]

=
Pr[I+i jV=1]z

Pr[I+i jV=�1](1�z)
=

Pr[IijV=1]p(1�p)z
Pr[IijV=�1](1�p)p(1�z) =

Pr[V=1jIi]
Pr[V=�1jIi] : �

Proof of Lemma 1. Where qi > p; the ith agent will endorse. Agent i is least likely to endorse if Xi = L.

Taking this case, we have an odds ratio Pr[V=1jL]
Pr[V=�1jL] =

(1�p)qi
p(1�qi) =

qi�pqi
p�pqi > 1 since qi > p. A symmetrical

argument shows that where qi < 1 � p; agent i will reject. Where qi 2 (1 � p; p); following a H signal
Pr[V=1jH]
Pr[V=�1jH] =

pqi
(1�p)(1�qi) > 1 as qi > (1�p), so i endorses. Following a L signal

Pr[V=1jL]
Pr[V=�1jL] =

(1�p)qi
p(1�qi) < 1

as qi < p; so i rejects. Where qi = p; following a L signal,
Pr[V=1jL]
Pr[V=�1jL] =

(1�p)qi
p(1�qi) = 1 as qi = p; so the agent

is indi¤erent and �ips a coin. A H signal is more positive, so the agent endorses. By symmetry, where

qi = 1� p; following a H signal the agent �ips a coin, while following a L signal the agent rejects. �

Proof of Lemma 3. With a neutral test, so setting � = 1
2 ; we have:

qP
�
� = 1

2

�
= p2+p(1�p)

p2+(1�p)2+2p(1�p) = p

qF
�
� = 1

2

�
= (1�p)2+p(1�p)

(1�p)2+p2+2p(1�p) = 1� p

As qP and qF are both strictly decreasing in �; this immediately implies that qP
�
� < 1

2

�
> p;

qP
�
� > 1

2

�
< p; qF

�
� < 1

2

�
> 1 � p and qF

�
� > 1

2

�
< 1 � p. Furthermore, qP (� = 1) > 1

2 and

qF (� = 0) <
1
2 :

qP (� = 1) = p2+2p(1�p)
p2+(1�p)2+4p(1�p) >

1
2 , p2 > (1� p)2

qF (� = 0) = (1�p)2+2p(1�p)
(1�p)2+p2+4p(1�p) <

1
2 , (1� p)2 < p2

Using the fact that qP and qF are both strictly decreasing in �; it follows that qP > 1
2 and qF <

1
2

8�: �

Proof of Lemma 4. (i) q1 = 1
2 : The �rst agent will follow his signal, i.e., will endorse i¤X1 = H: Suppose

the �rst agent endorses. This reveals his signal to be H to the second agent. If the second agent also

gets a H signal, he therefore also endorses, but if he gets a L signal the H and L signals cancel, so he

is indi¤erent and �ips a coin. If the third agent observes two endorse decisions, a cascade on endorse

starts. If he gets X3 = L; his signal and that of the �rst agent cancel, but because the second agent

endorsed, he is more likely to have observed X2 = H than X2 = L: Formally, for the third agent
Pr[V=1jA2=Y ]
Pr[V=�1jA2=Y ] =

p+ 1
2
(1�p)

(1�p)+ 1
2
p
> 1. Thus the third agent endorses if he receives a bad signal, and a fortiori

endorses with a good signal, so a cascade on endorse has started.
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Suppose instead that the �rst agent endorses, but the second agent rejects. Then the third agent can

infer fX1 = H; X2 = Lg: These two signals cancel, so the third agent is in exactly the same situation

as the �rst agent before he received a signal.

The case where the �rst agent rejects is the symmetric opposite. If the second agent also rejects, a

cascade on reject starts. If the second agent endorses, then the third agent is back to exactly the same

situation as the �rst agent. All this can be illustrated in the following decision tree:9

2nd Agent Rejects: {H} or {L}

(1/2).p + (1­p)

1st Agent Rejects: {L}

3rd Agent Like 1st

2nd Agent Endorses: {H}

Cascade on Reject

(1/2).p

1st Agent Endorses: {H}

2nd Agent Endorses: {H} or {L}

Cascade on Endorse

2nd Agent Rejects: {L}

3rd Agent Like 1st

p + (1/2).(1­p) (1/2).(1­p)

p

1­p

2nd Agent Rejects: {H} or {L}

(1/2).p + (1­p)

1st Agent Rejects: {L}

3rd Agent Like 1st

2nd Agent Endorses: {H}

Cascade on Reject

(1/2).p

1st Agent Endorses: {H}

2nd Agent Endorses: {H} or {L}

Cascade on Endorse

2nd Agent Rejects: {L}

3rd Agent Like 1st

p + (1/2).(1­p) (1/2).(1­p)

p

1­p

p

1­p

We can use this tree to calculate the expected number of endorsements for the principal in this case by

�nding the expected endorsements down various branches of the tree and multiplying by the probability

of the relevant branch. Note that we have a recursive structure, whereby the expected number of

endorsements from various points further down the tree are equivalent to those from points higher up

in the tree. Letting �q1= 1
2
be the expected number of endorsements at the beginning of the tree, we get:

�q1= 1
2
= p

�
p+ 1

2(1� p)
� �

1
1��

�
+ p

�
1
2(1� p)

� �
1 + �2�q1= 1

2

�
+ (1� p)(12p)

�
� + �2�q1= 1

2

�
which solves to give the value for �q1= 1

2
in the lemma.

(ii) q1 2 (12 ; p): From Lemma 1 the �rst agent will endorse i¤X1 = H: Following endorsement by the

�rst agent, a cascade on endorse starts. The second agent can infer that the �rst one got a H signal.

Thus, q2 =
pq1

pq1+(1�p)(1�q1) > p as q1 > pq1 + 1� p� q1 + pq1 i¤ 2q1(1� p) > 1� p or q1 >
1
2 ; which of

course we have assumed. Hence by Lemma 2 a cascade on endorse starts.

9Remember that the principal knows it is a good type. The branch probabilities are predicated upon this assumption.
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If the �rst agent rejects, then the second agent endorses i¤ X2 = H: The second agent can infer

X1 = L; so if X2 = H; the two signals cancel, and hence the second agent endorses as q1 > 1
2 . If

X2 = L, then the agent has e¤ectively seen two negative signals, and so rejects given the �rst agent

with a single negative signal does so.

Following rejection by the �rst agent, and an endorsement by the second, the third agent can infer

a L and a H signal, which cancel leaving him in exactly the same position as the �rst agent before he

received a signal.

Following rejection by the �rst two agents, a cascade on reject starts. If the third agent receives a H

signal, this cancels one of the two inferred L signals, so the agent is left with just one L signal which,

just as for the �rst agent with L; leads to rejection. A fortiori, he also rejects if he receives a L signal.

All this information can be summarized in the following decision tree, with branch probabilities

conditional on the principal being the good type.

1st Agent Endorses: {H} 1st Agent Rejects: {L}

2nd Agent Endorses: {H} 2nd Agent Rejects: {L}

Cascade on Reject

Cascade on Endorse

3rd Agent Like 1st

p 1­p

p 1­p

1st Agent Endorses: {H} 1st Agent Rejects: {L}

2nd Agent Endorses: {H} 2nd Agent Rejects: {L}

Cascade on Reject

Cascade on EndorseCascade on Endorse

3rd Agent Like 1st3rd Agent Like 1st

p 1­p

p 1­p

Thus, for any speci�c q1 2 (12 ; p); we can �nd expected number of endorsements for the good type of

principal,

�q12( 12 ;p)
= p

�
1
1��

�
+ (1� p)p

h
� + �2�q12( 12 ;p)

i
which solves to give the value for �q12( 12 ;p)

in the lemma.

(iii) q1 2 (1� p; 12): The shape of the decision tree, which is determined by agents who do not know

the type of principal, will be the symmetric opposite of the one in case (ii). A L signal starts a cascade

on reject, just like before a H signal started a cascade on endorse, while two H signals start a cascade

on endorse, just like before two L signals started a cascade on reject. If the �rst agent endorses but the

second does not, the inferred signals cancel. Thus, for any speci�c q1 2 (1� p; 12);

�q12(1�p; 12 )
= p2

�
1
1��

�
+ p(1� p)

h
1 + �2�q12(1�p; 12 )

i
which solves to give the value for �q12( 12 ;p)

in the lemma. �
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Proof of Proposition 1. To show that any �T 2 [0; 12) gives a larger number of expected endorsements

than � = 1
2 we simply need to show that � [� = 0] > �

�
� = 1

2

�
; given

d(�[�2[0; 12 )])
d� > 0. Using (4.7),

(4.3) and Lemma 2, � [� = 0] = p2
�

1
1��

�
+
�
1� p2

� p[p+(1�p)(1��)]
[1�p(1�p)�2](1��)

; which simpli�es to:

(A.1) � [� = 0] =
p[1+p(1�p)+p2(1�p)�(1��)�(1�p)�]

[1�p(1�p)�2](1��)

From (4.6), �
�
� = 1

2

�
= p�q1=p + (1� p)�q1=1�p: Thus, using (4.4), (4.5) and (4.1):

�
�
� = 1

2

�
= p

�
p+ 1

2(1� p)
� �

1
1��

�
+ p12(1� p)�

p[2�(1�p)�2]
2[1�p(1�p)�2](1��)

+ (1� p)12p
�
1 + �

p[2�(1�p)�2]
2[1�p(1�p)�2](1��)

�
which simpli�es to

(A.2) �
�
� = 1

2

�
= p[2+2p(1�p)�(1��)�(1�p)�]

2[1�p(1�p)�2](1��)

From (A.1) and (A.2),

� [� = 0]��
�
� = 1

2

�
= p[2+2p(1�p)+2p2(1�p)�(1��)�2(1�p)�]�p[2+2p(1�p)�(1��)�(1�p)�]

2[1�p(1�p)�2](1��)

) � [� = 0]��
�
� = 1

2

�
=

p(1�p)[2p+2p2�(1��)���2p�(1��)]
2[1�p(1�p)�2](1��)

The denominator is strictly positive, as is p(1 � p); so to show � [� = 0] > �
�
� = 1

2

�
we just need to

show that 2p+2p2� (1� �)���2p�(1��) > 0. Thus, a su¢ cient condition is that 2p���2p�(1��) > 0:

This hold i¤ 2p [1� �(1� �)] > �: But 2p > 1; so a further su¢ cient condition is that 1� �(1� �) > �;

or (� � 1)2 > 0; which is clearly true.

Our �nal task is to show that �T 2 [0; 12) gives a larger number of expected endorsements than

�E 2 (12 ; 1]: From (4.8), �
�
� 2 (12 ; 1]

�
=
�
p2 + 2p(1� p)�

	
�q12( 12 ;p)

: Now,
d(�[�2( 12 ;1]])

d� > 0 as Pr[P ] =�
p2 + 2p(1� p)�

	
is strictly increasing in � and from (4.2), �q12( 12 ;p)

is constant in �: Thus, we simply

need to show that � [� = 0] > � [� = 1] : Using (4.2):

(A.3) � [� = 1] =
�
p2 + 2p(1� p)

� p[1+(1�p)�(1��)]
[1�p(1�p)�2](1��)

Using (A.1) and (A.3), we can derive

� [� = 0]�� [� = 1] = p(1�p)(1��)[1�2p(1�p)�]
[1�p(1�p)�2](1��)

The denominator is strictly positive, as is p(1 � p)(1 � �); so the sign of � [� = 0] � � [� = 1] and

1 � 2p(1 � p)� must be the same. Now, since p > 1
2 , it must be that p(1 � p) <

1
4 , so 2p(1 � p)� must

always remain smaller than a half. Thus, 1� 2p(1� p)� > 0: �
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Proof of Proposition 3. With no test, the �rst agent�s q1 equals the prior belief 12 : Therefore, � [No Test]

= �q1= 1
2
: Thus, using (4.1) and (A.2), �

�
� = 1

2

�
> � [No Test] i¤:

2 + 2p(1� p)�(1� �)� (1� p)� > 2� (1� p)�2 , 2p(1� �)� 1 > �� , (2p� 1)(1� �) > 0

which holds. �
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