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1 Introduction

E�cient decision-making in organizations relies on high-quality information, which is not al-

ways readily available and may require acquisition and sharing among organizational partic-

ipants. For instance, in multi-divisional organizations, division managers operating in local

markets can obtain local information that may be useful for other divisions supplying similar

products in di�erent markets. We investigate how such organizations should design transfers

to incentivize information acquisition and sharing.

In particular, we examine linear transfer schemes that allow for remuneration of individ-

ual division performance, team performance (joint bonuses and penalties), and relative per-

formance (tournaments).1 An organization has to consider trade-o�s when choosing which

transfer scheme to adopt. For instance, remunerating division managers based on their relative

performance fosters information acquisition but may harm incentives to share information. On

the other hand, remunerating managers as a team may facilitate communication but harm in-

dividual incentives to acquire information. Alternatively, remunerating managers solely based

on their own division performance may not be the optimal way to reduce managers' rents in

the context of correlated information.

To study the optimal incentive scheme, we develop a model that features a principal (com-

pany headquarters manager) and two agents (local division managers). Each agent takes a

decision in their division where the outcome depends both on the agent's decision and an

unobserved local state. The two local states are correlated. Prior to making their decisions,

each agent can obtain a costly private signal about their local state, and the agents can inform

each other about their signals using cheap talk communication. The pro�t of the company

is separable across the divisions' choices and increasing in how closely each agent's decision

matches their division's local state.

The principal o�ers and commits to a linear transfer scheme that remunerates each agent for

their own performance and/or the other agent's performance. The contracts do not allow for

negative transfers as the agents are protected by limited liability. We investigate the optimal

pattern of communication and signal acquisition from the principal's perspective and identify

the cheapest incentives to achieve it.

We use a cheap talk model to capture the information exchange between agents, re�ecting

the fact that managers in many organizations cannot commit to choices based on agents'

reports. However, we also allow for contracting based on the performance of local divisions,

which is often observable by headquarters management and veri�able in court. The principal

in our model has intermediate commitment power between the incomplete contracts approach,

where transfers are ruled out, and the mechanism approach, which assumes full commitment

1Multiple studies in organizational economics capture organizational design by incentive schemes that facil-
itate information acquisition and sharing. However, existing theories typically disregard transfers and instead
focus on organizing communication and assignments of decision rights. See, e.g., Aghion and Tirole (1997);
Alonso, Dessein, and Matouschek (2008, 2015); Dessein (2002); Rantakari (2008).
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power.

To explain our key results, consider an environment where a division manager j expects the

other manager i to acquire and provide information about their own market. If market char-

acteristics, such as consumer preferences, are highly correlated, then the information provided

has a signi�cant impact on manager j's decision. If manager i shirks and does not acquire in-

formation, the distortion in manager j's decision can be substantial. This distortion is greater

than the distortion for the division whose manager did not acquire information. To ensure local

information is acquired and shared, the headquarters manager optimally links each manager's

pay to the performance of the other manager.

In contrast, if the organization operates in highly heterogeneous markets where each agent's

signal has limited value for the other agent's action, then the headquarters manager optimally

remunerates each manager only for their own performance.

To understand the �rst result, suppose that local states are perfectly correlated, so that

each agent's researched information is equally valuable for both agents' decisions. Suppose

agent i shirks and does not exert e�ort in collecting information. In the principal's optimal

equilibrium, agent j exerts e�ort researching information, reports it to i, and expects i to do

the same. To ful�ll this expectation, agent i has to put together something to report to j, which

ends up being just noise since it is not based on research. Agent j takes i's report seriously

and uses it to make decisions, alongside his own costly and valuable research. Agent j would

make a better decision if he ignored agent i's report and based his decision only on his own

research. Agent i bases his decision on j's report only. The shirking agent i does more damage

to j's performance than his own, as he not only fails to provide useful information but also

biases j's decision. As a result, the most e�ective incentive to prevent agent i from shirking

information acquisition is to make his payment sensitive not to his own performance, but to

the performance of his peer j.

This �nding holds true only when the states are su�ciently correlated. When the states

are only weakly correlated, the value of the non-shirking agent's (agent j) information for

the shirking agent's (agent i) decision decreases, and the bias induced on agent j's decision

by the noise in agent i's report is also low. In such cases, if an agent i shirks information

acquisition, it harms his own performance more than agent j's performance. Therefore, the

most e�ective incentive to prevent shirking is to make each agent i's payment dependent on

their own performance.

As our second result, we show that the above characterization is not limited to the case of

low information acquisition costs. It is valid as long as the research cost is not prohibitively

high to prevent any information acquisition by the division managers. The only di�erence is

that, for such intermediate research costs, the pro�t maximizing contract is such that only

one division manager acquires and shares information. But, again, if the states are su�ciently

correlated, this is optimally achieved by making that division manager's remuneration depend

on the other agent's performance.

3



The results described so far refer to the setup in which division managers would be unwilling

to reveal that they shirked their assignments, were they to deviate and not acquire information.

However, we also studied a setup in which managers would inform each other that they shirked

if they did not acquire information.

Our third set of results shows that in this case, the optimal contract always links each

manager's remuneration only to the performance of their own division. As long as the states

are imperfectly correlated, a shirking manager who reveals himself to be uninformed does

more damage to his own division's performance than to the performance of the other division.

Therefore, the best way to prevent shirking of information acquisition is to link the manager's

remuneration to his own division's performance.

Importantly, we demonstrate that preventing reporting of shirking behavior results in higher

pro�ts for the organization as a whole compared to when the design allows managers to reveal

their lack of information. This impedes collusive o�-path behavior of shirking managers and

fosters on-path cooperation in information acquisition and sharing, to the bene�t of the entire

organization.

Our �ndings demonstrate that incentivizing information acquisition and sharing among

multiple division managers promotes joint performance remuneration, which can increase pro-

ductivity and pro�ts compared to �xed wage structures and individual performance evaluations.

Empirical evidence supports this, as studies such as Kruse (1993), Kandel and Lazear (1992),

Che and Yoo (2001) and Alonso et al. (2008) have shown productivity increases in companies

that adopt pro�t sharing plans with joint performance evaluation.

Related literature: Firstly, we relate to the literature on organizational design in the

presence of strategic communication (Alonso et al., 2008; Rantakari, 2008). In the economics

of organizations, the optimal design of incentives for a team of agents is an important topic.

The literature typically assumes that agents attach more weight to the pro�ts of their own

division relative to the other division(s). We endogenize those weights and show that a pro�t-

maximizing principal might optimally link agents' incentives to the entire organizational pro�ts

instead of just their own division.

Secondly, we relate to the literature on contract design with multiple agents, and explicitly

posit that individual e�ort is placed in costly information acquisition, and that the uncoop-

erative behavior consists of not sharing the acquired information. This setting is regarded as

signi�cant when studying cooperation in teams (Che and Yoo, 2001; Lazear, 1989).

A contract can foster competitive or cooperative behavior, or both. Tournaments are typi-

cally associated with a competitive contract structure. With risk-neutral agents, tournaments

are optimal and result in the same outcomes as piece rates (Lazear and Rosen, 1981). However,

in our model, there is no common shock in the agents' performances, so there is no role for tour-

naments in optimal contracts. The cooperation element in contracts is studied in Holmström

and Milgrom (1990); Itoh (1991); Kandel and Lazear (1992); Lazear (1989), among others. In
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those cases, rewards only contingent on individual performances or on relative performances

can harm cooperation and the principal's objectives. Our model of information acquisition

and sharing in teams of agents identi�es a precise case in which joint performance evaluations

improve workers' productivity.

Empirical studies show a strong positive relationship between the adoption of pro�t-sharing

schemes and productivity increase (Ichniowski and Shaw, 2003; Kruse, 1993). For instance,

Kruse (1993) presents evidence based on a survey of 500 U.S. companies with publicly traded

stock. He documents a productivity increase of about 4.5%-5.5% in companies that adopt

pro�t-sharing plans in the form of cash transfers. The productivity increase is more pro-

nounced in smaller �rms and under a larger pro�t-sharing plan. In the analysis of an apparel

factory by Hamilton, Nickerson, and Owan (2003), a move from individual piece rates to team

production and team-based incentive pay raised productivity substantially. Interestingly, the

high-productivity workers were the �rst to voluntarily join the newly forming teams. Several

case studies compare the e�ectiveness of di�erent incentive schemes and show the value of joint

bonuses. For example, Alonso et al. (2008) discuss the case of the management restructuring

of BPX, the oil and gas exploration division of British Petroleum, in the early '90s by the

then-head of BPX and future CEO of BP, John Browne.2

Our setting relates to a large literature studying environments with cheap talk commu-

nication (Crawford and Sobel (1982)) and endogenous information acquisition. In a setting

with a single sender and a single receiver Di Pei (2015) shows that when a sender can choose

a partitional information structure at a cost, she reveals all her acquired information to the

receiver; Argenziano, Severinov, and Squintani (2016) and Deimen and Szalay (2019) study

the implications of information acquisition on organizational design. These papers show that

communication results in better incentives to acquire signals, compared to delegation. Organi-

zational design in a multi-agent setting is studied in the context of coordinated adaptation by

Alonso et al. (2008) and Rantakari (2008) who focus on whether a multi-divisional organization

should implement decentralization with horizontal communication, or a centralized architec-

ture. In a two-agent setting where the headquarters can either choose prices or quantities,

Alonso, Matouschek, and Dessein (2010) show how di�erent headquarters' choices a�ect qual-

ity of communicated information. In these papers decision-relevant information is exogenous.

In contrast, Angelucci (2017) studies a model with two agents and endogenous acquisition of

costly information. Di�erent to our setting, in the above papers contractual transfers based on

information are absent and so the principal has to rely on di�erent instruments than monetary

2Browne decentralized BPX in the early 1990s, creating almost 50 semi-autonomous business units. Initially,
since �business unit leaders were personally accountable for their units' performance, they focused primarily on
the success of their own businesses rather than on the success of BPX as a whole.� (Hansen and Von Oetinger
(2001)) To encourage coordination between the business units, BPX established changes in the implicit and
explicit incentives of business unit leaders to reward and promote them, not just based on the success of their
own division, but also for contributing to the successes of other business units. As a result, �lone stars who
deliver outstanding business unit performance but engage in little cross-unit collaboration can survive within
BP, but their careers typically plateau.� (Hansen and Von Oetinger (2001)).� Alonso et al. (2008), page 164-165.
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transfers to incentivize her agents. Callander and Harstad (2015) show that it can be optimal

for the principal to constrain agents' actions in order to maximize informational sharing. In

our setup in contrast, the principal solves the incentive problem of information acquisition and

sharing while letting the agents choose their respective actions.

2 Model

An organization comprises a headquarters manager and two division managers. For simplicity,

we refer to the division managers as agents 1 and 2 (he/him) and to the headquarters manager

simply as the principal (she/her). Each agent i is assigned to a division, in which he chooses

an action yi ∈ [0, 1]. There are two unobserved local states, θ1 ∈ [0, 1] and θ2 ∈ [0, 1]. The

pro�t of a division i is πi(yi, θi) = π̄ − ℓi(yi, θi), where ℓi(yi, θi) = (yi − θi)
2 for each agent i.

The decision yi of each agent i generates a higher pro�t πi(yi, θi) the more precisely it matches

the local state θi. The loss ℓi(yi, θi) is expressed in a simple quadratic form that is standard

in organization design (Dessein, 2002). The principal wants to maximize the separable pro�t

function π = π1(y1, θ1)+π2(y2, θ2), which depends on the agent's performances. Since ℓi ∈ [0, 1]

for each i = 1, 2, we set π̄ = 1.

Our results generalize qualitatively to the case in which the pro�ts dependence on perfor-

mances is asymmetric: π = λ1π1(yi, θi)+λ2π2(yi, θi). Such asymmetries can arise, for example,

due to di�erent sizes of the organizational divisions (Rantakari (2008)), the leniency bias of the

principal (Bol (2011); Breuer, Nieken, and Sliwka (2013)) or the di�erent prospects of markets

where the corresponding divisions operate (Liu and Migrow (2022)).

The local states θ1, θ2 are correlated: with probability r, they are identical and randomly

drawn from the uniform distribution U [0, 1]; with probability 1 − r, each state is drawn in-

dependently from U [0, 1]. Before choosing yi, each agent i can exert a costly e�ort c > 0

that enables him to observe a private signal si ∈ {0, 1} about the local state θi, such that

Pr(si = 1|θi) = θi. If an agent exerts no e�ort, he cannot obtain an informative signal. After

the signals are received and before the decisions (y1, y2) are taken, the agents can simultane-

ously communicate with each other using cheap talk messages. We assume that each agent i

has an arbitrary large set of messages Mi with a typical element mi ∈ Mi.

The principal does not observe local states, information acquisition, and communication

choices of the agents. She observes the divisional performances. Thus, contracting is based on

the performances π1 and π2. Speci�cally, at the beginning of the game the principal o�ers (and

commits to) a linear contract of the form

ti(ℓi, ℓj) := wi − aiℓi − biℓj = wi − ai(yi − θi)
2 − bi(yj − θj)

2, (1)

where wi ∈ R, ai ∈ R, bi ∈ R, and j ̸= i denotes the other agent.

In the literature, agents are typically protected by limited liability, meaning they cannot
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be paid negative transfers: ti(ℓi, ℓj) ≥ 0 for all possible performances πi ∈ [0, 1] and πj ∈ [0, 1].

Additionally, normalizing the value of their outside option to zero, each agent i must be willing

to accept the contract ti ex-ante, before deciding whether to acquire signal si, and before

sending signal mi and making choice yi.

Linear contracts are a common tool in organizational design literature. The above linear

speci�cation allows for multiple contracts found in organizations. For instance, the contract ti is

a piece-wise linear contract composed of a �xed wage wi = w̄i−ai−bi, a bonus payment ai(1−ℓi)

that depends on agent i's performance, and a payment bi(1− ℓj) based on the other agent j's

performance, where ℓi = (yi − θi)
2 is the loss determined by agent i's imprecise matching of yi

with θi. The contract ti can also be interpreted as a mixture of relative performance evaluation

and joint performance evaluation based transfers by letting ai = (ai− bi)/2 and bi = (ai+ bi)/2

and obtaining: ti(ℓi, ℓj) = wi − ai(ℓi − ℓj)− bi(ℓi + ℓj). The parameter ai is a weighting factor

for agent i's relative performance, and bi is a weighting factor for the team performance. The

higher ai is, the more sensitive agent i's payment ti(ℓi, ℓj) is to the relative loss (ℓi − ℓj), and

the higher bi is, the more sensitive the payment is to the aggregate loss (ℓi + ℓj).

It's worth noting that our communication protocol is the same as communication under

decentralized decision-making in Alonso et al. (2008) and Rantakari (2008). However, in Section

5, we also study decentralized sequential communication, where one agent's signal acquisition

decision happens after they receive signal-contingent information from the other agent.

The timing of our game proceeds as follows: First, nature privately chooses (θ1, θ2), and the

principal o�ers and commits to contracts (t1, t2). Second, the agents decide whether to acquire

signals (s1, s2). Then, they send simultaneous cheap talk messages mi to each other. Finally,

each agent i chooses yi, performances π1 and π2 are publicly observed, and transfers are paid

as speci�ed in the contracts. The structure of the model is common knowledge.

We note that, given the contracts (t1, t2), multiple equilibria may exist in the agents' game.

For example, there is always an equilibrium in which agents do not communicate with each

other. As customary, we only consider equilibria with meaningful �ow of information.

3 Conditional optimal transfers

We begin by analyzing subgames that follow every possible strategy pro�le by the agents, where

each agent's strategy speci�es their information acquisition and communication decision, as well

as their optimal action yi. We assume that, given the principal's choice of contracts t1 and t2,

the agents coordinate on the equilibrium preferred by the principal. This analysis enables us

to characterize the most cost-e�ective way for the principal to implement a targeted allocation.

Towards the end of this section, we also consider other equilibria and their plausibility.

Let us �rst consider the case where the principal seeks to implement full signal acquisition
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and complete sharing. The principal's optimization problem is as follows:

max
t1,t2

E[π1(ℓ1(y1(s1, s2), θ1)) + π2(ℓ2((y2(s2, s1), θ2))−
2∑

i=1

ti(ℓ1(y1(s1, s2), θ1), ℓ2(y2(s2, s1), θ2))]

where the expectation is taken with respect to the tuple (θ1, θ2, s1, s2), subject to the following

constraints. First, the contract space is de�ned by (1). Second, given information si ∈ {0, 1}
and sj ∈ {0, 1}, and the common belief that signals are exchanged truthfully, each agent i

chooses yi (si, sj) to solve:

yi (si, sj) = argmax
yi

E[ti(ℓi(yi(si, sj), θi), ℓj(yj (sj, si) , θj)|si, sj],

where the expectation is taken with respect to θi, θj (since each agent i knows his own signal

and believes that sj is known to both agents after i receives the message mj). Third, the

communication constraint speci�es that i communicates si ∈ {0, 1} truthfully to j:

E[ti(ℓi(yi(si, sj), θi), ℓj(yj (sj, si) , θj)|si] ≥ E[ti(ℓi(yi(si, sj), θi), ℓj(yj (sj, 1− si) , θj)|si],

where the expectation is taken with respect to θi, θj and sj. Fourth, the information acquisition

constraint is:

Esi,sj [Eθi,θj [ti(ℓi(yi(si, sj), θi), ℓj(yj(sj, si), θj))|si, sj]]− c ≥

Esj [Eθi,θj [ti(ℓi(yi(sj), θi), ℓj(yj(sj, ŝi), θj))|sj]]

where ŝi is arbitrary, and can take either value 0 or 1. Fifth, the exogenous limited liability

constraint speci�es that for all ℓi ∈ [0, 1], ℓj ∈ [0, 1],

ti (ℓi, ℓj) ≥ 0.

Finally, the joint feasibility constraint is:

t1 (ℓ1, ℓ2) + t2 (ℓ2, ℓ1) ≤ 2− ℓ1 − ℓ2.

We begin by noting that each agent i = 1, 2 aims to minimize the loss ℓi = (yi − θi)
2 for

any ai ≥ 0 when choosing the action yi. It is a dominant strategy for the principal to choose

ai ≥ 0, as even a small positive ai would motivate agent i to minimize ℓi. At the decision

stage, agent i matches yi to Ei(θi|si,mj), the posterior expectation of θ given his signal si and

the message mj that is presumed by i to be truthful. We observe here that the expected loss

E(ℓi|si,mj) = E[(E(θi|si,mj)− θi)
2|si,mj], for a given (si,mj), is the residual variance of the

state θi given the estimator yi(si,mj) = E(θi|si,mj).

Moving backwards, we consider the incentives for motivating agents to share acquired sig-

nals. The following lemma formalizes the result that, given ai ≥ 0 for both i = 1, 2, each agent
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i is motivated to truthfully report mi = si by setting bi ≥ 0.

Lemma 1. For the existence of an equilibrium in which each agent i = 1, 2 acquires signal si,

truthfully communicates mi = si to the other agent j, and chooses yi = E(θi|si, sj), a necessary

condition is that bi ≥ 0. This condition ensures that agent i does not deviate from truthtelling.

The result is intuitive: to incentivize truthful communication by agent i, the principal must

make i's payo� contingent on j's performance. Since aj ≥ 0, agent j chooses yj to match her

expectation of θj given her signal si and the equilibrium belief that mi = si. As communication

is costless, an arbitrarily small bi ensures that an informed agent i sends a truthful message to

agent j.

Moving on to discussing incentives for acquiring signals, let ui represent the expected equi-

librium payo� for agent i before observing signal si if they choose to acquire it. The expected

on-path payo� can be expressed as:

ui(si) = w̄i − (ai + bi)E[E(ℓi|si, sj)|si]− c, (2)

where the expectation in E[E(ℓi|si, sj)|si] is taken with respect to the signal sj of the other

agent, which is unknown to i when deciding whether to acquire signal si.

We prove in Appendix B that due to the model's symmetry across agents and signal real-

izations, E[E(ℓi|si, sj)|si] remains the same regardless of whether si is 0 or 1, and speci�cally,

E[E(ℓi|si, sj)|si] = 3−r2

6(9−r2)
. Thus, the unconditional expected loss is also E[E(ℓi|si, sj)] =

3−r2

6(9−r2)
, with the expectation taken with respect to both si and sj. Therefore, we can rewrite

the expected on-path payo� for agent i before observing si as:

ui = w̄i − (ai + bi)
3− r2

6(9− r2)
− c. (3)

As the correlation between states θ1 and θ2 decreases, sj becomes less informative about θi,

causing the decision yi(si, sj) = E(θi|si, sj) to become less precise about θi. This leads to a

larger expected loss E(ℓi|si, sj) for both sj = 0 and sj = 1.

Now suppose that agent i deviates during the signal acquisition stage and obtains no signal

about θi. Agent j is unaware of this deviation and continues to believe that i acquired si,

interpreting any message realization mi ∈ Mi as meaning that si = 0 or si = 1. Similar

to Argenziano et al. (2016), the equilibrium language is �xed by the on-path communication

strategy.

Agent i's decision is based only on the truthful message mj = sj from agent j. His optimal

decision is therefore yi(sj) = E(θi|sj), resulting in an expected loss of E[E(ℓi|sj)]. However,

agent j makes a biased decision yj(sj,mi) = E(θj|sj,mi), assuming that agent i acquired a

signal si ∈ {0, 1} and truthfully reported mi = si.
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If agent i shirks at the information acquisition stage, the resulting misled decision yj by

agent j can lead to a larger expected loss E[(E(θj|sj,mi) − θj)
2], compared to the scenario

where agent j knows that agent i did not acquire si.

In Appendix B, we show that agent i's expected o�-path payo� when shirking, is given by:

uD
i = wi − aiE[E(ℓi|sj)]− biE[(E(θj|sj,mi)− θj)

2] = wi − ai
3− r2

36
− bi

27 + r4

6(9− r2)
. (4)

Whether agent i's shirking at the information acquisition stage results in a larger or smaller

expected loss for division i than for division j, depends on the correlation r between the states θi

and θj. In Appendix B, we demonstrate that there exists a threshold r1 ∈ (0, 1) (characterized

precisely in the Appendix B), such that the expected loss is smaller for division i than for

division j if and only if r < r1. That is, when the states θ1 and θ2 are highly correlated, the

dominant e�ect of agent i not acquiring their signal si is in misleading the choice yj of agent

j, and not in choosing yi with less information.

We will now discuss the principal's cost minimization program, which is given by

min
t1,t2

E[t1(π1, π2) + t2(π2, π1)],

subject to the constraints outlined earlier. To recap, each agent i = 1, 2 selects the optimal

decision yi(si, sj) = E[θi|si, sj] only if ai ≥ 0, communicates truthfully mi = si only if bi ≥ 0,

and acquires his signal si only if ui ≥ uD
i .

We will focus on a symmetric pair of linear contracts t1 = t2. This is without loss of

generality, as the principal's cost minimization program is linear.3 By imposing symmetry

across agents, the principal's cost minimization program is reduced to the following program,

for either i = 1, 2, and j ̸= i:

min
ai,bi≥0

wi≥ai+bi

{
wi − (ai + bi)E[E(ℓi|si, sj)] = wi − (ai + bi)

3− r2

6(9− r2)

}
s.t. ui ≥ uD

i , (5)

Here, wi ≥ ai+bi comes from the limited liability constraint, and we use the result obtained

earlier that E[E(ℓi|si, sj)] = 3−r2

6(9−r2)
.

Proposition 1 (proved in Appendix B) shows that the solution to this program is such that

if the agents' states θ1 and θ2 are su�ciently uncorrelated (speci�cally, r is smaller than the

threshold r1), then each agent i is rewarded only for their own performance πi. For r > r1, each

agent i's pay is optimally based on the performance of the other agent, πj. When the states

θ1 and θ2 are su�ciently correlated, each agent i's signal si is so informative about the other

3Each agent i's constraints are linear in the maximization arguments wi, ai, and bi. Hence, the constraint
set is convex. Suppose that an asymmetric pair of linear contracts t1 ̸= t2 minimized the sum of expected
transfers to the agents. Because the model is symmetric, the antisymmetric pair of contracts t′1 = t2, t

′
2 = t1 is

also optimal. The constraint set being convex, it contains the symmetric pair of contracts obtained by averaging
these two pairs. Since the objective is linear, this symmetric pair of contracts is also optimal.
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agent's state θj that it is optimal to base agent i's remuneration mainly on the performance of

the other agent.

Proposition 1. The optimal contract t1, t2 for each agent i = 1, 2 to acquire his signal si,

truthfully transmit mi = si to the other agent j, and optimally choose yi = E(θi|si,mj) in the

principal-preferred equilibrium is as follows:4

For r < r1, every optimal contract ti is such that wi = ai > 0 and bi = 0. Each agent i's

remuneration is based only on their own performance πi.

For r > r1, the optimal contract ti is such that ai = 0 and w = bi > 0. Each agent i's

remuneration is based only on the performance of the other agent, πj.

We assume information acquisition in a standard framework, where an agent who receives

a signal forms a noisy estimate of the underlying state. We use a beta-binomial setup, which is

widely used in the literature on information acquisition due to the tractability of the summary

statistics. In Section ??, we show that Proposition 1 holds under fairly weak conditions on

the general statistical model. In essence, in a setting where the local states are su�ciently

correlated, each signal realization must contain some information about the underlying state.

An alternative way to model information acquisition, following Aghion and Tirole (1997),

allows for the possibility that agents observe entirely uninformative signals with some prob-

ability. We can show that our main result, Proposition 1, holds in a variety of models that

allow agents to receive uninformative signal realizations, as long as the probability of being

uninformed is su�ciently small. For example, consider a framework similar to ours, but where

agents may fail to observe the outcome of the trial with some probability. In the principal's pre-

ferred equilibrium, each agent either reports observing one of the trial outcomes (say, si = 0),

or they report not observing that outcome. In the latter case, the agent pools the outcome

si = 1 with the outcome of not observing si. In practice, when not observing si, agent i

pretends that si = 1.

Having determined the optimal contracts for both agents i to acquire and share signal si

with the other agent j, we now move on to characterizing the optimal contracts for the two

remaining cases where both agents acquire information. In the �rst case, only one agent shares

their information with the other agent, and in the second case, neither agent shares their

information. The principal's optimization approach for the �rst case is similar to that of the

previous case, and is stated in the proof of Proposition 2.

For an agent i who is not intended to share signal si with the other agent j, the optimal

contract ti is such that wi = ai > 0 and bi = 0 for all values of the correlation coe�cient r.

Since the principal does not want agent i to share their information with agent j, the optimal

contract is based solely on i's performance.

However, if agent i is incentivized to share signal si, the optimal contract involves a trade-o�

4The precise value of the solutions a1 and b1, the threshold r1, and the analogous solutions and thresholds
in the following results are expressed in Appendix B.
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due to information acquisition constraints. For low values of correlation among the states θ1

and θ2, the optimal contract requires that wi = ai > 0 and bi = 0. When θ1 and θ2 are highly

correlated, the optimal contract is such that ai = 0 and wi = bi > 0.

Proposition 2. To induce each agent to acquire a signal, and only one of them, say agent j, to

transmit mj = sj to the other agent −j, while ensuring that both agents choose (y1, y2) optimally

in the principal's preferred equilibrium, the optimal contract must satisfy the following:

(i) For agent j (who shares his signal), the optimal contract speci�es wj = aj > 0 and

bj = 0 for r < r2, and aj = 0, wj = bj > 0 for r > r2.

(ii) For agent −j (who does not share his signal), the optimal contract speci�es w−j =

a−j > 0 and b−j = 0 for all r.

If, instead, the principal wants to incentivize both agents to acquire their signals and not

share them, while ensuring that both agents choose their actions y1, y2 optimally, then the

optimal contract t1, t2 must satisfy wi = ai > 0 and bi = 0 for each agent i = 1, 2, for all values

of r.

This result indicates that the optimal contract, in situations where the principal wants both

agents to acquire information without sharing it, links each agent's performance to their own

output.

The next result characterizes the optimal contracts that induce a single agent i to acquire

information and either share it with agent j or not. Agent j is not required to acquire informa-

tion. The characterization in Proposition 3 is similar to the case for two agents (Propositions

1 and 2), but the optimal contract for agent j is independent of the pro�ts πi and πj. That is,

it has wj = aj = bj = 0.

Proposition 3. To induce agent j to acquire signal sj and share it with agent −j, without agent

−j acquiring information, and to ensure that both agents choose their actions (y1, y2) optimally

in the principal's preferred equilibrium, the optimal contract must satisfy the following:

(i) For agent j (who shares his signal), the optimal contract speci�es wj = aj > 0 and

bj = 0 for r < r3 and aj = 0, wj = bj > 0 for r > r3.

(ii) For agent −j (who does not share his signal), the optimal contract speci�es w−j =

a−j = b−j = 0 for all r.

If, instead, the principal wants to incentivize only agent j to acquire and not share his

signal, and for agent −j not to acquire information, while ensuring that both agents choose

their actions (y1, y2) optimally in the principal's preferred equilibrium, then the optimal contract

must satisfy wj = aj > 0, bj = 0, and w−j = a−j = b−j = 0.

Finally, the optimal contracts t1, t2 in the case where both agents i = 1, 2 are not supposed

to acquire information are such that wi = ai = bi = 0. The only role played by contracts is to

ensure that each agent i matches yi with the state θi to the best of the shared knowledge that

θi is uniformly distributed on [0, 1]. Because neither agent i derives any (dis-)utility from the

decision yi and state θi, this objective can be achieved with any wi = ai ≥ 0 and bi = 0.
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Equilibrium selection

The preceding analysis assumes that agents coordinate on the principal's preferred equilibrium,

given the principal's choice of contracts t1 and t2. Under this assumption, if an agent i shirks

and does not acquire their signal si, they will not reveal to the other agent j that they shirked

and have no useful information. Even if such cheating is not contractually sanctioned, hiding

it is part of an equilibrium. Agent j expects i to acquire the signal si ∈ {0, 1}, and interprets

any possible message mi as either meaning that si = 0 or that si = 1. This is the equilibrium

play preferred by the principal because it makes the information acquisition constraint ui ≥ uD
i

less demanding.

We now consider an alternative equilibrium, called the �agent collusive� equilibrium, in

which agents who deviate from the equilibrium path and do not acquire their signals are

willing to reveal to each other that they shirked.

The following proposition shows that in the optimal contract resulting from the agent

collusive equilibrium, the principal links an agent's remuneration to their own performance πi,

rather than to the performance of the other agent j.

Proposition 4. Suppose that the agents i = 1, 2 play the collusive equilibrium, given the

contracts t1, t2. Then, the optimal contract to make any agent i acquire their signal si, possibly

transmit mi = si, and then play yi optimally is such that wi = ai > 0 and bi = 0. If an agent i

is not supposed to acquire their signal si, then ai = bi = wi = 0. Each agent i's remuneration

is only linked to their own performance πi.

To understand this result, note that an agent i who shirks and reveals that they did not

acquire their signal si does more damage to their own division's pro�t πi than to the pro�t of

the other division j. This is because agent j is alerted that i has no useful information, and

optimally chooses yj based on their signal sj only. Even if j is supposed to share sj with i,

the expected loss E[E(yj|sj)] of j's division is smaller than the expected loss E[E(yi|sj)] of
i's division. This is because the states θ1 and θ2 are only imperfectly correlated, and hence

signal sj is more informative about θj than about θi. (Of course, the argument holds even

more strongly in case j is not supposed to transmit sj to i.) Because i's shirking information

acquisition damages their own performance πi more than the other agent j's, the optimal

contract ti links agent i's remuneration to their own performance.

The plausibility of the principal-preferred equilibrium versus the agent collusive equilibrium

ultimately depends on the context in which they are applied. When the principal has the means

to monitor information transmission across divisions, it is clear that agents would not reveal

any shirking behavior as the messages are contractible, and the principal can sanction any

sender who admits to shirking. The agent collusive equilibrium is not a viable option in this

case due to the organization's well-designed communication channels.

However, if the agents' communications take forms that are harder or illegal to monitor, it

may seem attractive for an agent to �collude� by informing agent j that he does not possess
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any useful information for j's decision yj. Nevertheless, basic career concerns make it highly

unlikely that manager i would admit to j that he shirked his assignments. Reporting a lack

of research �ndings has signi�cant costs for the sender's career prospects, both within internal

and external markets. The latter can place a high value on the player's expertise, where a

history of information acquisition acts as a proxy for the agent's informativeness (or abilities),

and hence can have a considerable impact on the agent's wages.5

In internal labor markets, competition for better jobs or wages is likely to lead agent i to

never admit to being uninformed, even if the principal cannot contract future job opportuni-

ties based on today's performance. This is because many organizations have implicit contracts

where future wages and promotions are in�uenced by the current actions of workers (Holm-

ström, 1999).

Apart from career concerns, agent i may hesitate to confess to agent j that they did not

acquire information for another reason. Agent j, who works hard, may feel deceived by agent

i's lack of cooperation since it directly reduces agent j's expected compensation. This insight,

at least since Lazear (1989), suggests that such deceitful behavior may provoke retaliation

among colleagues.

4 Optimal contracts

The optimal information acquisition and communication choices, along with the associated

optimal contracts, depend on the values of the information acquisition cost c and state corre-

lation r parameters, as they determine the principal's expected pro�t. We show that some of

the agents' choices are dominated for all parameter values of c and r. Speci�cally, we consider

the optimal contracts that make only one agent i acquire and share his signal si with the other

agent j, while j does not acquire his signal sj. We demonstrate that these contracts lead to

a higher pro�t than the optimal contracts that make i acquire his signal si without sharing it

with j, while j does not acquire sj. For brevity, we will henceforth omit reference to the agents

i = 1, 2 choosing yi optimally given their information when describing optimal contracts.

Lemma 2. For all values of c and r, the expected pro�t Eπ11 of the optimal contracts t1, t2

that induce only one agent i to acquire si and share it with the other agent j is strictly larger

than Eπ10, the optimal pro�t obtained when only one agent i acquires si and does not share it

with j.

This result is intuitive because if the optimal contracts t1 and t2 only make one agent i

acquire his signal si, there is no reason not to make him share it with the other agent j.

Sharing the signal increases the precision of agent j's decision yj and thus improves division j's

5There is an extensive literature on players' market value in �experts markets� where they attempt to
in�uence market beliefs through cheap talk communication, signaling, or selective disclosure of biographies
(Gow, Wahid, and Yu, 2018; Meloso, Nunnari, and Ottaviani, 2018; Ottaviani and Sørensen, 2006).
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expected pro�t. Moreover, it is inexpensive to make agent i share si, as this can be achieved

with any bi ≥ 0.

However, this simple logic does not extend to the optimal contracts that make both agents

acquire information. For some c and r, it is not true that the expected pro�t Eπ22 of the

optimal contracts that make both agents i acquire si and share it with the other agent j is

larger than Eπ21, the expected pro�t of optimally inducing both agents i to acquire si but only

one of them to share it. Nor is it true that Eπ22 is larger than Eπ20, the expected pro�t of

optimally making both agents i acquire si without sharing it.

The reason for this result is as follows. Suppose that both agents i = 1, 2 are asked to

acquire their signals si by the principal. Consider an agent j, and suppose that he expects to

receive signal si from agent i. Then, the informational bene�t of acquiring signal sj is smaller

than when he does not expect to receive si. As a result, the contractual transfer needed to

make agent j acquire sj has to reward the precision of agent j's action yj more than when j

does not receive si. When the cost of information acquisition c is su�ciently high, it becomes

so expensive to simultaneously make agent i send si to agent j and agent j acquire sj that the

principal is better o� not asking agent i to share si with agent j.

Note that this intuition does not apply to the comparison between Eπ11 and Eπ10 because,

in this case, agent j is not asked to acquire sj by the principal. Further, this intuition does

not entirely invalidate the possibility of comparing expected pro�t in the three cases in which

both agents are asked to acquire their signals by the principal. It turns out that for every

information cost value c and every correlation value r, the choice of asking both agents i to

acquire si and only one of them to share si with the other agent j is either dominated by asking

both agents i to acquire and also share their signals si, or by asking both agents i to acquire

si without sharing it.

Lemma 3. For all cost c and correlation values r, the expected pro�t Eπ21 of the optimal

contracts t1, t2 inducing both agents i to acquire si and only one of them to share it with the

other agent j is (generically strictly) smaller than either Eπ22, the optimal pro�t obtained when

both agents i = 1, 2 acquire and share si, or Eπ20, the optimal pro�t obtained when both agents

i = 1, 2 acquire si without sharing it with the other agent j.

Given that both agents are asked to acquire their signals, it is either more advantageous to

incentivize both agents i to share si to improve j's decision precision or not to incentivize any

sharing. Since the players are symmetric, it cannot be optimal to ask one agent to share their

signal and the other not to.

The optimal contracts inducing the remaining four possible actions (both agents i = 1, 2

acquiring and sharing signals si, both agents i = 1, 2 acquiring si without sharing, only one

agent i acquiring and sharing si, and neither agent i = 1, 2 acquiring si) maximize the organi-

zation's pro�t in di�erent areas of the parameter space de�ned by the information acquisition

cost c and state correlation r.
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Figure 1: Optimal linear contracts for di�erent signal acquisition and sharing scenarios. Contracts

linking agent pay to co-worker performance are represented in regions with 1 or 2 shared signals

with co-worker performance evaluation; the other signal sharing regions link agent pay to their own

output. The �2 signals� region indicates two-sided signal acquisition with contracts based on agent

own performance

The complete characterization is summarized in the following proposition and depicted in

Figure 1, which identi�es the areas where optimal contracts t1, t2 reward information acquisition

and sharing by agent i by making i's remuneration dependent on the performance of the other

agent.

Proposition 5. The pro�t maximizing agents' actions achieved through the optimal linear

contracts are as follows.

1. For research cost c < c22−20(r) and correlation r < r̃, and for r > r̃ and c < c22−11(r), both

agents i = 1, 2 collect signal si and share it with the other agent j.

2. When r < r̃ and c22−20(r) < c < c20−11(r), both agents i = 1, 2 collect signal si but do not

share it with j.

3. When c22−11(r) < c < c11−00(r), for all r, only one agent i collects signal si and shares it

with j.

4. When c > c11−00(r), for all r, neither agent i collects signal si.

We conclude this section by combining Propositions 1-3 and 5 to present the main result

of our analysis. We describe the optimal contracts t1, t2 that induce agent(s) i to acquire and

share information by making i's payment depend on the performance of the other agent.

Corollary 1. If the states are su�ciently correlated (r > r′) and signal acquisition is cheap

enough (c < c(r)22−11), then ai = 0 and wi = bi > 0 for both i = 1, 2. Each agent i = 1, 2 is
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induced to collect signal si and share it with the other agent j with a reward based on the other

agent j's performance.

For su�cient state correlation (r >
√

33
67
) and intermediate signal costs (c(r)22−11 < c <

c(r)11−00), only one agent i is induced to collect si and share with j with a reward based on j's

performance. (The other agent receives a �at payment.)

For all other values of r and c, each agent i is induced to collect si (and possibly share si

with j) only with rewards based on agent i's own performance.

This section has determined the company's pro�t-maximizing contracts and has uncovered

an important role for joint performance evaluations. Making one division manager's remuner-

ation depend on the performance of the other division manager may be a very potent incentive

for information acquisition and sharing. In the extreme case in which each manager's informa-

tion is equally useful for both divisions, we have shown that such an incentive is always more

potent than remunerating the manager for their own performance.

5 Discussion and conclusions

The notion that division managers should primarily prioritize their own divisions is commonly

taken for granted. To the best of our knowledge, this paper is the �rst to propose endogeneizing

the weights that division managers should attach to the di�erent organizational divisions. We

propose that the most e�ective managerial incentives may involve entirely di�erent structures

than what is typically assumed. It could be optimal for an organization to base a division man-

ager's rewards primarily on the performance of other divisions, given that the local conditions

associated with these divisions are su�ciently interconnected.

Our analysis is relevant within the context of personnel economics as we explore the e�ec-

tiveness of di�erent incentive schemes in motivating teams of agents involved in information

acquisition. Speci�cally, we examine the impact of rewarding individual performance (piece-

meal rates), joint performance, and relative performance (tournaments). One novel conclusion

is that the optimal remuneration may require actively discouraging agents from �collusion� that

takes the form of revealing each other when they shirk information acquisition assignments.

We have kept the model simple in order to present our �ndings in the clearest possible

manner. For the sake of clarity, we have made the assumption of linear contracts. As a result,

the solution to the principal's problem of minimizing costs generically follows a "bang-bang"

pattern. This means that either the coe�cient ai is set to its lower bound and bi is set to

its upper bound, or vice versa. The former option is optimal when agent i determines that,

by abstaining from acquiring information, they would incur a higher expected loss of pro�t in

division j compared to their own division i. That is, if the agents operate in su�ciently similar

environments, it is optimal to set ai = 0 and bi > 0. This choice ensures that all of agent i's

remuneration in contract ti depends solely on the performance of their peer j, denoted as πj.
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In contrast to the clear-cut solution observed in the case of linear contracts, a general non-

linear contract scheme is expected to lack such a stark solution. However, we propose that

our main result still holds in the following manner: when the states are su�ciently correlated,

the principal will primarily connect each agent's performance to the performance of the other

division, although not exclusively. This type of arrangement would align with a team-based

remuneration system within organizations operating with multiple divisions.

In our working paper version, we explore several extensions to the baseline model. Firstly,

we consider an organization where the principal aims to maximize the pro�t function π =

λ1π1 + λ2π2, with λ1 ̸= λ2. This distinction allows for the incorporation of the principal's

idiosyncratic preferences, such as a leniency bias towards a speci�c division or an asymmetric

organization with divisions of di�erent sizes. We demonstrate that an asymmetric contract,

featuring two-sided information acquisition and one-sided communication, can be optimal even

when the costs of information acquisition are low.

Furthermore, we analyze a general statistical model characterized by symmetric distribu-

tions of the states. We establish conditions under which our main result, concerning low

information acquisition costs, extends to more general statistical models. In essence, three

conditions must be met. Firstly, both si and sj must provide information about a state θi for

each i = 1, 2. Secondly, in expectation, si should o�er more information about θi compared to

sj. The third condition is more stringent, requiring that for su�ciently correlated states, each

signal realization si should also provide information about the other state θj, in addition to

the signal sj. Essentially, there should be no signal realization believed to be uninformative.

If such a signal realization were to exist, a deviating agent i would be unable to negatively

impact the performance of the other division.

Lastly, we examine decentralized sequential communication, where one of the agents pos-

sesses superior knowledge about their local state compared to the other agent, when deciding

whether to engage in costly research. We demonstrate that the principal favors decentralized

simultaneous communication, akin to our baseline scenario, over the decentralized sequential

communication setup.

Our current framework o�ers multiple avenues for further extension. One potential di-

rection is to introduce skill diversity into the model. Empirical studies have demonstrated

that implementing team-based compensation in heterogeneous teams can signi�cantly enhance

organizational outcomes.6 However, the exact mechanism behind this improvement remains

an open question, and it can be explored through the lens of optimal contract design in an

environment with costless information transmission.

Finally, our analysis assumes transfers as a viable instrument for aligning incentives within

an organization. A pertinent question that can be addressed within the current framework

is how a principal should design an organization when they cannot commit to transfers. In

such cases, the principal must rely on alternative instruments. For example, if the principal

6See, e.g., Hamilton et al. (2003) and Boning, Ichniowski, and Shaw (2007).
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possesses the power to delegate decision rights, it would be interesting to examine incentives for

information acquisition and sharing within a centralized decision rights architecture. Another

approach to align incentives within an organization is to design communication structures where

the principal can choose which agents communicate with each other and possibly determine

the order of communication.

References

Aghion, P. and J. Tirole (1997): �Formal and real authority in organizations,� Journal of

Political Economy, 105, 1�29.

Alonso, R., W. Dessein, and N. Matouschek (2008): �When does coordination require

centralization?� American Economic Review, 98, 145�79.

��� (2015): �Organizing to adapt and compete,� American Economic Journal: Microeco-

nomics, 7, 158�87.

Alonso, R., N. Matouschek, and W. Dessein (2010): �Strategic communication: prices

versus quantities,� Journal of the European Economic Association, 8, 365�376.

Angelucci, C. (2017): �Motivating agents to acquire information,� Available at SSRN

2905367.

Argenziano, R., S. Severinov, and F. Squintani (2016): �Strategic information acqui-

sition and transmission,� American Economic Journal: Microeconomics, 8, 119�55.

Bol, J. C. (2011): �The determinants and performance e�ects of managers' performance

evaluation biases,� The Accounting Review, 86, 1549�1575.

Boning, B., C. Ichniowski, and K. Shaw (2007): �Opportunity counts: Teams and the

e�ectiveness of production incentives,� Journal of Labor Economics, 25, 613�650.

Breuer, K., P. Nieken, and D. Sliwka (2013): �Social ties and subjective performance

evaluations: an empirical investigation,� Review of Managerial Science, 7, 141�157.

Callander, S. and B. Harstad (2015): �Experimentation in federal systems,� The Quar-

terly Journal of Economics, 130, 951�1002.

Che, Y.-K. and S.-W. Yoo (2001): �Optimal incentives for teams,� American Economic

Review, 91, 525�541.

Crawford, V. P. and J. Sobel (1982): �Strategic information transmission,� Econometrica,

1431�1451.

19



Deimen, I. and D. Szalay (2019): �Delegated expertise, authority, and communication,�

American Economic Review, 109, 1349�74.

Dessein, W. (2002): �Authority and communication in organizations,� The Review of Eco-

nomic Studies, 69, 811�838.

Di Pei, H. (2015): �Communication with endogenous information acquisition,� Journal of

Economic Theory, 160, 132�149.

Gow, I. D., A. S. Wahid, and G. Yu (2018): �Managing reputation: Evidence from biogra-

phies of corporate directors,� Journal of Accounting and Economics, 66, 448�469.

Hamilton, B. H., J. A. Nickerson, and H. Owan (2003): �Team incentives and worker

heterogeneity: An empirical analysis of the impact of teams on productivity and participa-

tion,� Journal of Political Economy, 111, 465�497.

Hansen, M. T. and B. Von Oetinger (2001): �Introducing T-shaped managers: Knowl-

edge management's next generation,� Harvard Business Review, 79, 106�117.

Holmström, B. (1999): �Managerial incentive problems: A dynamic perspective,� The Re-

view of Economic Studies, 66, 169�182.

Holmström, B. and P. Milgrom (1990): �Regulating trade among agents,� Journal of

Institutional and Theoretical Economics, 85�105.

Ichniowski, C. and K. Shaw (2003): �Beyond incentive pay: Insiders' estimates of the

value of complementary human resource management practices,� Journal of Economic Per-

spectives, 17, 155�180.

Itoh, H. (1991): �Incentives to help in multi-agent situations,� Econometrica, 611�636.

Kandel, E. and E. P. Lazear (1992): �Peer pressure and partnerships,� Journal of Political

Economy, 100, 801�817.

Kruse, D. L. (1993): �Does pro�t sharing a�ect productivity?� Tech. rep., National Bureau

of Economic Research.

Lazear, E. P. (1989): �Pay equality and industrial politics,� Journal of Political Economy,

97, 561�580.

Lazear, E. P. and S. Rosen (1981): �Rank-order tournaments as optimum labor contracts,�

Journal of Political Economy, 89, 841�864.

20



Liu, S. and D. Migrow (2022): �When does centralization undermine adaptation?� Journal

of Economic Theory, 205, 105533.

Meloso, D., S. Nunnari, and M. Ottaviani (2018): �Looking into crystal balls: a labo-

ratory experiment on reputational cheap talk,� DP13231.

Ottaviani, M. and P. N. Sørensen (2006): �Reputational cheap talk,� The RAND Journal

of Economics, 37, 155�175.

Rantakari, H. (2008): �Governing adaptation,� The Review of Economic Studies, 75, 1257�

1285.

21



Appendix A: Beliefs Updating

It is useful to see how the players update their beliefs based on obtained signals and received messages.

Suppose, �rst, that only agent 1 obtains a signal. The posterior density of θ1 given s1 is obtained via

Bayes rule:

f(θ1|s1) =
f(θ1)f(s1|θ1)∫ 1
0 f(s1|θ1)dθ1

, f(s1|θ1) = θs11 (1− θ1)
1−s1 .

Thus, for s1 = 0 the density is f(θ1|s1) = 2(1 − θ1) with the expected value E[θ1|s1] = 1
3 and for

s1 = 1 the density is f(θ1|s1) = 2θ1 with the expected value E[θ1|s1] = 2
3 .

Next, suppose that only agent 2 obtains a signal and truthfully communicates it to agent 1. The

posterior density of agent 1 is

f(θ1|s2) =
f(θ1)f(s2|θ1)∫ 1
0 f(s2|θ1)dθ1

, f(s2|θ1) = r θs21 (1− θ1)
1−s2︸ ︷︷ ︸

Pr(s2|θ1)|θ1=θ2

+(1− r) (1/2)︸ ︷︷ ︸
Pr(s2|θ1)|θ1 ̸=θ2

.

The densities and the expected values of θ1 depending on the realization of s2 ∈ {0, 1} are

f(θ1|s2 = 0) = 1 + r(1− 2θ1), E(θ1|s2 = 0) =
3− r

6
,

f(θ1|s2 = 1) = 1− r(1− 2θ1), E(θ1|s2 = 1) =
3 + r

6
.

Naturally, if r = 0 then the posterior f(θ1|s2) is equal to the prior. For r > 0 and s2 = 0 (s2 = 1) the

posterior puts a larger mass to the left (right) of 1
2 . As r increases, the expected value converges to 1

3

(23).

The conditional distributions that agent 1 assigns to the signal realization of agent 2 are

Pr(s2 = 1|s1 = 1) = rPr(s2 = 1|s1 = 1, θ1 = θ2) + (1− r)Pr(s2 = 1|s1 = 1, θ1 ̸= θ2)

= r
2

3
+ (1− r)

1

2
=

3 + r

6
,

Pr(s2 = 0|s1 = 1) = r
1

3
+ (1− r)

1

2
=

3− r

6
.

Suppose that both agents acquire and truthfully communicate their signals. We consider θ1, the

case for θ2 is symmetric. The density of θ1 after obtaining s1 and receiving m2 = s2 is

f(θ1|s1, s2) =
f(θ1, s1, s2)

f(s1, s2)
=

f(s1, s2|θ1)f(θ1)∫ 1
0 f(s1, s2|θ1)f(θ1)dθ1

.

To derive f(s1, s2|θ1) notice that the following. First, the ex ante probability of s1 + s2 = 0 and

s1 + s2 = 2 (it means when s1 = s2) is
1
3 each, whereas the ex ante probability of both signals being

di�erent is 1
6 . To see this notice that Pr(l|n = 2) =

∫ 1
0 Pr(l|θ1, n = 2)dθ1 = 1

n+1 and that conditional

on a particular l all sequences of signals which result in the same sum of signals l are equiprobable.

1



Second, if both states are correlated which happens with probability r, the probability of l = s1 + s2

is n!
l!(n−l)!θ

l
1(1− θ1)

n−l. With the converse probability 1− r the probability of s1 is θ
s1
1 (1− θ1)

1−s1 and

the realization of s2 is independent of θ1 (and so of s1) and E[s2|s1] is equal to 1
2 .

Therefore, for s1 + s2 = l ∈ {0, 2} we have

f(s1, s2|θ1) = r [θl1(1− θ1)
2−l]︸ ︷︷ ︸

Pr(s1,s2|(θ1,θ1=θ2))

+(1− r) [θs11 (1− θ1)
1−s1 ]

1

2︸ ︷︷ ︸
Pr(s1,s2|(θ1,θ1 ̸=θ2))

and for s1 + s2 = 1 we have

f(s1, s2|θ1) = r
1

2
[2θ1(1− θ1)]︸ ︷︷ ︸

Pr(s1,s2|(θ1,θ1=θ2))

+(1− r) [θs11 (1− θ1)
1−s1 ]

1

2︸ ︷︷ ︸
Pr(s1,s2|(θ1,θ1 ̸=θ2))

The corresponding densities of the posterior are, for s1 + s2 = l ∈ {0, 2}

f(θ1|s1, s2) =
rθl1(1− θ1)

2−l + (1− r)θs11 (1− θ1)
1−s1 1

2∫ 1
0 rθl1(1− θ1)2−l + (1− r)θs11 (1− θ1)1−s1 1

2dθ1

f(θ1|s1, s2) =
r 1
22θ1(1− θ1) + (1− r)θs11 (1− θ1)

1−s1 1
2∫ 1

0 [r
1
22θ1(1− θ1) + (1− r)θs11 (1− θ1)1−s1 1

2 ]dθ1
.

The calculations for θ2 are symmetric.

Assume two e�orts and truthful communication. The corresponding posteriors, and the expected

values for agent 1 (the analysis for agent 2 is analogous) are:

f(θ1|s1 = s2 = 0) =
r[ 2!

0!(2−0)!θ
0
1(1− θ1)

2−0] + (1− r)[ 1!
0!(1−0)!θ

0
1(1− θ1)

1−0]12
3+r
12

=
6(1− θ1)(1 + r − 2rθ1)

3 + r
,

E(θ1|s1 = s2 = 0) =

∫ 1

0
θ1

6(1− θ1)(1 + r − r2θ1)

3 + r
dθ1 =

1

3 + r
.

Further,

f(θ1|s1 = 0, s2 = 1) =
6(1− θ1)(1− r + r2θ1)

3− r
, E(θ1|s1 = 0, s2 = 1) =

1

3− r
.

f(θ1|s1 = 1, s2 = 0) =
6θ1(1 + r − 2rθ1)

3− r
, E(θ1|s1 = 1, s2 = 0) =

2− r

3− r
.

f(θ1|s1 = s2 = 1) =
6θ1(1− r + 2rθ1)

3 + r
, E(θ1|s1 = s2 = 1) =

2 + r

3 + r
.
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Appendix B: Proofs

Proof of Lemma 1 and Derivation of Equation 3 Recall that under a1 ≥ 0, a2 ≥ 0, the optimal

actions are yi(si, sj) = E(θi|si, sj). Given the optimal choices (y1, y2) consider the incentives of agent

i = 1, 2 at the communication stage if he holds a signal si. For a common belief that both agents are

truthful each agent i chooses an action that matches his posterior of θi, given his own private signal

si and the message from agent j, mj . The expected payo� is then

ui(si) = wi − ai
∑

sj=0,1

Pr(sj |si)E[(E(θi|si, sj)− θi)
2|si, sj ]

−bi
∑

sj=0,1

Pr(sj |si)E[(E(θj |sj , si)− θj)
2|si, sj ]− c,

where the expected losses are conditioned on truthful communication. Because of the symmetry across

the agents, E(ℓj |si, sj) = E[(E(θj |si, sj) − θj)
2|si, sj ] = E[(E(θi|si, sj) − θi)

2|si, sj ] when si = sj .

Adding symmetry across signal realizations, it is also the case that E[(E(θj |sj , si) − θj)
2|sj , si] =

E[(E(θi|si, sj)− θi)
2|si, sj ] when si ̸= sj . By letting

E[E(ℓi|si, sj)|si] =
∑

sj=0,1

Pr(sj |si)E(ℓi|si, sj)

we obtain Equation 3.

We now calculate E[E(ℓi|si, sj)|si], taking the case si = 0. The case si = 1 is symmetric. We

begin by calculating E(ℓi|si, sj), for sj = 0, 1. As shown in Appendix A,

E(θi|si = 0, sj = 0) =
1

3 + r
, f(θi|si = 0, sj = 0) =

6(1− θi)(1 + r − 2rθi)

3 + r
,

E(θi|si = 0, sj = 1) =
1

3− r
, f(θi|si = 0, sj = 1) =

6(1− θi)(1 + r − 2rθi)

3− r
.

Substituting in the expected losses de�nitions and simplifying, we obtain,

E(ℓi|si = 0, sj = 0) =

∫ 1

0
(E(θi|si = 0, sj = 0)− θi)

2f(θi|si = 0, sj = 0)dθi =
5 + 2r − r2

10(3 + r)2

E(ℓi|si = 0, sj = 1) =
5− 2r − r2

10(3− r)2
.

Substituting the expected losses into the agent's payo� function, together with the conditional poste-

riors assigned to signal sj (see Appendix A),

Pr(sj = 1|si = 1) =
3 + r

6
, Pr(sj = 0|si = 1) =

3− r

6
,
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and simplifying, we obtain

E[E(ℓi|si, sj)|si] =
∑

sj=0,1

Pr(sj |si)E(ℓi|si, sj) =
3− r2

6(9− r2)
.

If agent i deviates at the communication stage and informs agent j that his signal is 1− si instead

of the true signal si he expects the payo�

uLi (si) = wi − ai
∑

sj=0,1

Pr(sj |si)E[(yi(si, sj)− θi)
2|si, sj ]

−bi
∑

sj=0,1

Pr(sj |si)E[(yj(sj , 1− si)− θj)
2|sj , si].

Of course, the expression for
∑

sj=0,1 Pr(sj |si)E[(yi(si, sj) − θi)
2|si, sj ] is unchanged. We calculate∑

sj=0,1 Pr(sj |si)E[(yj(sj , 1 − si) − θj)
2|sj , si] assuming that si = 0 as the case si = 1 is symmetric.

The agents' decisions and densities for sj = 1, and sj = 0, are, respectively:

yj(sj = 1,mi = 1) = E(θj |sj = 1, si = 1) =
2 + r

3 + r
, f(θj |sj = 1, sj = 0) =

6θj(1 + r − 2rθj)

3− r
,

yj(sj = 0,mi = 1) =
1

3− r
, f(θj |sj = si = 0) =

6(1− θj)(1 + r − 2rθj)

3 + r
.

Hence, we obtain:

E[(yj(sj = 1, 1− si)− θj)
2|sj = 1, si] =

∫ 1

0
E(θj |sj = 1, si = 1)f(θj |sj = 1, sj = 0)dθj

=
15 + 9r + 11r2 + r3

10(3− r)(3 + r)2
.

E[(yj(sj = 0, 1− si)− θj)
2|si, sj ] =

15− 9r + 11r2 − r3

10(3− r)2(3 + r)

Wrapping up:

∑
sj=0,1

Pr(sj |si)E[(yj(sj , 1− si)− θj)
2|sj , si] =

3− r

6
· 15 + 9r + 11r2 + r3

10(3− r)(3 + r)2
+

3 + r

6
· 15− 9r + 11r2 − r3

10(3− r)2(3 + r)

(9 + r2)(3 + r2)

6(9− r2)2
.

The expected deviation payo� can be written as

uLi (si) = wi − ai
3− r2

6(9− r2)
− bi

(9 + r2)(3 + r2)

6(9− r2)2

so that agent 1 does not deviate at the communication stage if

wi − (ai + bi)
3− r2

6(9− r2)
≥ wi − ai

3− r2

6(9− r2)
− bi

(9 + r2)(3 + r2)

6(9− r2)2

4



which implies bi
4r2

(9−r2)2 ≥ 0, or bi ≥ 0.

Q.E.D.

Derivation of Equation 4. First, we calculate the expected loss E(ℓi|sj) = E[(E(θi|sj) − θi)
2|sj ],

supposing sj = 0 (the case sj = 1 is symmetric). From Appendix A,

f(θi|sj = 0) = 1 + r(1− 2θi), E(θi|sj = 0) =
3− r

6
.

Substituting in the expected loss de�nition and simplifying, we obtain:

E[(E(θi|sj)− θi)
2|sj ] =

∫ 1

0
(E(θi|sj)− θi)

2f(θi|sj)dθi =
3− r2

36
.

Because, E(ℓi|sj) = 3−r2

36 is the same regardless of whether sj = 0 or sj = 1, we also obtain that

E[E(ℓi|sj)] = 3−r2

36 .

To calculate the expected loss E[(E(θj |sj ,mi) − θj)
2|sj ], we assume w.l.o.g. that mi = 0. From

Appendix A, the conditional densities and expected values are:

f(θj |sj = 0) = 2(1− θj) E(θj |sj = 0,mi = 0) =
1

3 + r
,

f(θj |sj = 1) = 2θj E(θj |sj = 1,mi = 0) =
2− r

3− r
,

the consequent expected losses are:

E[(E(θj |sj = 0,mi = 0)− θj)
2|sj = 0] =

∫ 1

0
(E(θj |sj = 0,mi = 0)− θj)

2f(θj |sj = 0)dθj

=
3 + 2r + r2

6(3 + r)2
.

E[(E(θj |sj = 1,mi = 0)− θj)
2|sj = 1] =

3− 2r + r2

6(3− r)2
.

Plugging the expected loss formulas into the unconditional loss formula, we obtain:

∑
sj=0,1

Pr(sj)E[(E(θj |sj = 0,mi = 0)− θj)
2|sj = 0] =

27 + r4

6(9− r2)2
.

Appropriate rearranging yields Equation 4.

Q.E.D.

Proof of Proposition 1. Program 5 is obtained through the same process of simpli�cation used

to obtain equation 3, and based on the model's symmetry across agents and signal realizations. By

linearity of the objective function and the information acquisition constraint ui ≥ uDi , the solution to
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the program 5 involves either ai > 0, bi = 0, or ai = 0, bi > 0. In each case wi = ai + bi and the

constraint ui ≥ uDi binds.

If wi = ai > 0, and bi = 0, then the constraint ui = uDi becomes ai =
36c(9−r2)
(3−r2)2 and the expected

transfer to agent i results in

wi − (ai + bi)E[E(ℓi|si, sj)] =
36c(9− r2)

(3− r2)2

(
1− 3− r2

6(9− r2)

)
=

6c(51− 5r2)

(3− r2)2
,

and we verify the ex-ante agent i's participation constraint, because: wi− (ai+ bi)E[E(ℓi|si, sj)]− c =

c (9−r2)(r2+33)

(3−r2)2
≥ 0 for all c ≥ 0.

If ai = 0, wi = bi > 0, then the constraint ui = uDi becomes bi
2r2

(9−r2)2 = c. The expected transfer

to agent i becomes:

wi − (ai + bi)E[E(ℓi|si, sj)] =
(9− r2)2c

2r2
(1− 3− r2

6(9− r2)
) =

c(9− r2)(51− 5r2)

12r2
,

and again, we verify wi − (ai + bi)E[E(ℓi|si, sj)]− c ≥ 0 for all c ≥ 0.

By comparing the two cases, we have 36c(9−r2)
(3−r2)2 < (>) (9−r2)2c

2r2 for r < (>)r1 where

r1 ≡

√√√√5− 10 3

√
2

9
√
29− 43

+ 22/3
3

√
9
√
29− 43 ≈ 0.803.

As a result, in the case of r > r1 the expected principal's payo� is:

Eπ22 = E[2 (1− E(ℓi|si, sj))]− 2w̄i − 2(ai + bi)E[E(ℓi|si, sj)]

= 2− 3− r2

3(9− r2)
− (51− 5r2)(9− r2)

6r2
c.

When r < r1, the expected principal's payo� is:

Eπ22 = 2− 3− r2

3(9− r2)
− 12(51− 5r2)

(3− r2)2
c.

Q.E.D.

Proof of Proposition 2. We distinguish 2 cases.

Case `21': Two-sided acquisition and one-sided sharing.

We calculate the optimal linear contracts t1, t2 to induce both agents i = 1, 2 to acquire information

and only agent, say 1, to transmit it to the other agent. First note that, again, each agent i = 1, 2 is

motivated to choose decision yi so as to minimize the loss ℓi = (yi − θi)
2 by setting ai ≥ 0. Likewise,

b1 ≥ 0 is needed so that 1 reports s1 truthfully to 2.
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The principal's cost minimization problem is:

min
ai≥0,

b1≥0, wi≥ai+bi

w1 − (a1 + b1)E[E(ℓ1|s1)] + w2 − (a2 + b2)E[E(ℓ2|s2, s1)], s.t. ui ≥ uDi . (6)

Let us consider agent 2's information acquisition stage constraint u2 ≥ uD2 . The equilibrium payo� of

agent 2 is, using m1 = s1,

u2 = w2 − a2E[(y2(s2, s1)− θ2)
2]− b2E[(y1(s1)− θ1)

2]− c

= w2 − a2
3− r2

6(9− r2)
− b2

1

18
− c.

If agent 2 deviates at the information acquisition stage, her payo� is

uD2 = w2 − a2E[(y2(s1)− θ2)
2]− b2E[(y1(s1)− θ1)

2]

= w2 − a2
3− r2

36
− b2

1

18
.

using E[(y2(s1)− θ2)
2] =

∑
s1=0,1

1

2

∫ 1

0
(E[θ2|s1]− θ2)

2f(θ2|s1)dθ2

=

∫ 1

0
(E[θ2|s1 = 0]− θ2)

2f(θ2|s1 = 0)dθ2 =
3− r2

36
,

because f(θ2|s1 = 0) = 1 + r(1− 2θ2) and E(θ2|s1 = 0) = 3−r
6 (see Appendix A).

The constraint u2 ≥ uD2 is thus: a2
1
36

(3−r2)2

9−r2 ≥ c. This yields the optimal contract for agent 2:

w2 = a2 = 36 9−r2

(3−r2)2 c and b2 = 0. The agent's ex-ante participation constraint is satis�ed as an

equality.

Then, we consider the optimal contract of agent 1. Again, we note that he does not deviate from

truthtelling if and only if b1 ≥ 0. Turning to the information acquisition constraint, we note that the

equilibrium payo� of agent 1 is:

u1 = w1 − a1E[(y1(s1)− θ1)
2]− b1E[(y2(s2,m1)− θ2)

2]− c

= w1 − a1
1

18
− b1

3− r2

6(9− r2)
− c,

using E[(y1(s1)− θ1)
2] =

∑
s1=0,1

1

2

∫ 1

0
(E(θ1|s1)− θ1)

2f(θ1|s1)dθ1

=

∫ 1

0
(E(θ1|s1 = 0)− θ1)

2f(θ1|s1 = 0)dθ1 =
1

18
.

If agent 1 deviates and does not acquire information, then his payo� is:

uD1 = w1 − a1E[(y1 − θ1)
2]− b1E[E[(y2(s2,m1)− θ2)

2|s2]]
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w1 − a1
1

12
− b1

27 + r4

6(9− r2)2
,

using E[(y1 − θ1)
2] =

∫ 1

0
(E(θ1)− θ1)

2f(θ1)dθ1 =
1

12
.

This yields the information acquisition constraint: a1
1

36
+ b1

2r2

(9− r2)2
≥ c.

Because the principal objective function is linear in w1, a1 and b1, and such that w1 ≥ 0, a1 ≥ 0, b1 ≥ 0,

there are two possibilities: either w1 = a1 > 0 and b1 = 0, or a1 = 0, w1 = b1 > 0.

In the �rst case, w1 = a1 > 0 and b1 = 0, the constraint u1 ≥ uD1 becomes a1 ≥ 36c. Using

w1 = a1 = 36c the expected transfer to agent 1 becomes:

a1
[
1− E[(y1(s1)− θ1)

2]
]
= 34c.

In the second case, a1 = 0, w1 = b1 > 0, and the constraint u1 ≥ uD1 becomes b1 ≥ (9−r2)2c
2r2 . Using

w1 = b1 =
(9−r2)2c

2r2 and a1 = 0, the expected transfer to agent 1 becomes:

b1
(
1− E[(y2(s2, s1)− θ2)

2]
)
=

(9− r2)(51− 5r2)c

12r2
.

In either case, the ex-ante participation constraint is satis�ed.

Now, we have

34 < (>)
(9− r2)(51− 5r2)c

12r2
if and only if r < (>)r2 =

√
3

5
(84−

√
6801)

As a result, we conclude that for r < r2 the principal optimally chooses w1 = a1 > 0 and b1 = 0.

Otherwise, for r ≥ r2 the principal optimally chooses a1 = 0, w1 = b1 > 0. The principal's payo� is

Eπ21 = 2− 9− 2r2

9(9− r2)
−min

{
36

(
1− 1

18

)
,
(9− r2)2

2r2

(
1− 3− r2

6(9− r2)

)}
c− 6(51− 5r2)

(3− r2)2
c.

Case `20': Two-sided acquisition and no sharing.

We calculate the optimal contract when the principal wants to incentivize both agents i = 1, 2 to

acquire and not to share their signal si. The principal's cost minimization problem is:

min
ai≥0,

wi≥ai+bi

w̄i − (ai + bi)E[(yi(s1)− θi)
2] = min

ai≥0,
w̄i≥ai+bi

w̄i − (ai + bi)
1

18
, s.t. ui ≥ uDi .

For each agent i the information acquisition stage constraint ui ≥ uDi becomes

wi − ai
1

18
− bi

1

18
− c ≥ wi − ai

1

12
− bi

1

18

resulting in wi = ai ≥ 36c. The transfer paid to each agent i is 36c(1 − 1
18). The agents' ex-ante
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participation constraint is satis�ed as an equality. The principal's payo� is:

Eπ20 = 2− 1

9
− 2ai(1−

1

18
) = 2− 1

9
− 2 · 36c(1− 1

18
).

Q.E.D.

Proof of Proposition 3 and case `00': We distinguish 3 cases.

Case `11': One-sided acquisition and sharing.

We calculate the optimal linear contracts t1, t2 to induce agent 1 to acquire signal s1 and share with

the other agent 2, and agent 2 to not acquire information. The optimal contract of agent 2 is, trivially,

t2(ℓ1, ℓ2) = 0 for all ℓ1 and ℓ2 (the optimal linear contract is such that w2 = a2 = b2 = 0). The

principal's cost minimization problem for agent 1 is:

min
a1≥0,≥b1≥0,
w1≥a1+b1

w1 − a1E[(y1(s1)− θ1)
2]− b1E[(y2(s1)− θ2)

2], s.t. u1 ≥ uD1 .

The equilibrium payo� of agent 1 is:

u1 = w1 − a1E[(y1(s1)− θ1)
2]− b1E[(y2(s1)− θ2)

2]− c

= w1 − a1
1

18
− b1

3− r2

36
− c

If agent 1 does not acquire information, he still sends a message m1 to agent 2 who mistakenly believes

that m1 = s1. The equilibrium payo� of agent 1 is:

uD1 = w1 − a1E[(y1 − θ1)
2]− b1E[(y2(m1)− θ2)

2]

= w1 − a1
1

12
− b1

3 + r2

36
,

using E[(y2(m1)− θ2)
2] =

∫ 1

0
[(E[θ2|m = 0]− θ2)

2]f(θ2)dθ2 =
3 + r2

36
.

Here, the information acquisitions constraint is:

−a1
1

18
− b1

3− r2

36
− c ≥ −a1

1

12
− b1

3 + r2

36

So, the optimal contract is either w1 = a1 = 36c and b1 = 0, or w1 = b1 =
18c
r2 and a1 = 0.

In case w1 = a1 = 36c and b1 = 0, the expected transfer to agent 1 is

a1
[
1− E[(y1(s1)− θ1)

2]
]
= 34c,

and the participation constraint is met with equality.

In case, a1 = 0, w1 = b1 =
18c
r2 , the expected transfer to agent 1 is

(a1 + b1)
[
1− E[(y1(s1)− θ1)

2]
]
= 18c

r2

(
1− 3−r2

36

)
.
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As a result, the principal's payo� is

Eπ11 = 2− 1

18
− 1

36
(3− r2)−min

{
34,

18

r2
(1− 1

36
(3− r2))

}
c.

Equating 34 = 18
r2 (1−

1
36(3− r2)), we obtain the admissible solution r3 :=

√
33
67 .

Case `10': One-sided acquisition and no sharing.

We calculate the optimal linear contract to induce agent 1 to acquire signal s1 and not to share it, and

agent 2 not to acquire information. The optimal contract for agent 2 is t2(ℓ1, ℓ2) = 0. The principal's

cost minimization problem for agent 1 is:

min
a1≥0

w1≥a1+b1

w1 − a1E[(y1(s1)− θ1)
2]− b1E[(y2 − θ2)

2], s.t. u1 ≥ uD1 .

The equilibrium payo� of agent 1 is:

u1 = w1 − a1E[(y1(s1)− θ1)
2]− b1E[(y2 − θ2)

2] = w1 − a1
1

18
− b1

1

12
− c,

his deviation payo� at the information acquisition stage is:

uD1 = w1 − a1E[(y1 − θ1)
2]− b1E[(y2 − θ2)

2] = w1 − a1
1

12
− b1

1

12
,

so that the incentive compatibility constraint is: a1 ≥ 36c, and the optimal linear contract is w1 =

a1 = 36c and b1 = 0. The principal's expected pro�t is:

Eπ10 = 2− 1

18
− 1

12
− 36(1− 1

18
)c.

Case `00': No acquisition.

The optimal linear contracts t1, t2 in the case that both agents i = 1, 2 are not supposed to acquire

information are such that wi = ai = bi = 0. This leads to expected principal's pro�t:

Eπ00 = 2− 2
1

12
.

Q.E.D.

Proof of Proposition 4. By the same logic as in Propositions 1 - 3, an agent i who is not expected

to acquire a signal si, gets zero transfer: wi = 0, ai = 0, bi = 0. An agent i expected to acquire a

signal si, but not to share it, has a transfer linked only to his own performance: wi = ai > 0, bi = 0.

In the following we study the optimal transfer to any agent i who is expected to acquire and share his

signal si.
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Case `22': Two-sided acquisition and sharing.

The principal's cost minimization program is still (5): it needs to be that ai ≥ 0 for either agent to

optimally choose yi(si,mj) and that bi ≥ 0 to ensure truthful communication. The expected payo� of

agent i if not acquiring signal si is:

uDi = wi − aiE[E(ℓi|sj)]− biE(ℓi) = wi − ai
3− r2

36
− bi

1

18
,

because if i does not acquire signal si, then she reveals that to j. The agent's equilibrium expected

payo� ui is unchanged, and hence the information acquisition constraint ui ≥ uDi takes the following

form: ai
(3−r2)2

36(9−r2) + bi
r2

81−9r2 ≥ c. The principal's program has a linear objective function and a linear

constraint. Because the coe�cient (3−r2)2

36(9−r2) of ai is larger than the coe�cient r2

81−9r2 of bi in the

constraint ui ≥ uDi , and the two choice variables have the same coe�cient in the objective function

(5), the optimal contract is such that bi = 0 and ai > 0. Solving out ui = uDi , we obtain ai =
36c(9−r2)
(3−r2)2 .

Case `21:' Two-sided acquisition and one-sided sharing.

The principal's cost minimization problem is still (6). The incentive constraint that prevents agent

1 from deviating at the information acquisition stage and reporting the lack of the signal to agent 2,

is

w1 − a1
1

18
− b1

3− r2

6(9− r2)
− c ≥ w1 − a1

1

12
− b1

1

18

that can be rewritten as a1
1
36 + b1

r2

81−9r2 ≥ c. The principal's program has a linear objective function

and a linear constraint. The ratio between the coe�cients of a1 and b1 in the (binding) constraint

u1 = uD1 is ρab =
81−9r2

36r2 , whereas the same ratio in the objective function is ρ̄ab =
6(9−r2)
18(3−r2) . Because

ρ̄ab < ρab, the optimal contract is such that bi = 0 and ai > 0. Solving out u1 = uD1 , we obtain:

a1 = 36c.

Case `10:' One-sided acquisition and sharing.

The principal's cost minimization problem is still (6). The incentive constraint u1 = uD1 that

prevents agent 1 from deviating at the information acquisition stage and reporting the lack of the

signal to agent 2, is

w̄1 − a1
1

18
− b1

3− r2

36
− c ≥ w̄1 − a1

1

12
− b1

1

12

that can be expressed as a1
1
36+b1

r2

36 ≥ c. The ratio between the coe�cients of a1 and b1 in the (binding)

constraint u1 = uD1 is ρab =
1
r2 , whereas the same ratio in the objective function is ρ̄ab =

2
3−r2 . Because

ρ̄ab < ρab, the optimal contract is such that bi = 0 and ai > 0. Solving out u1 = uD1 , we obtain:

a1 = 36c.

Q.E.D.
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Proof of Lemma 2: Subtracting the formulas of Eπ11(r, c) and Eπ10(r, c) and rearranging, we obtain

Eπ11 − Eπ10 =
5

36
− 1

36
(5− r2) + 34c−min

{
34,

1

2

r2 + 33

r2

}
c,

which is obviously strictly positive.

Q.E.D.

Proof of Lemma 3: We �rst compare Eπ22(r, c) and Eπ21(r, c) and consider

Eπ22(r, c)− Eπ21(r, c) =
9− 2r2

9(9− r2)
− 3− r2

3(9− r2)
−D22−21(q)c

=
q2

9(9− r2)
−D22−21(r)c ≥ −D22−21(r)c.

where

D22−21(r) = min

{
12

(3− r2)2
,
(9− r2)

6q2

}
(51− 5r2)−min

{
34, (51− 5r2)

(9− r2)

12r2

}
− 6

51− 5r2

(3− r2)2
.

Calculations omitted for brevity show that D22−21(r) > 0 for 0 ≤ r < r1 and D22−21(r) < 0 for r1 <

r ≤ 1. We obtain that for 0 ≤ r < r1, whether Eπ22(r, c) is larger or smaller than Eπ21(r, c) depends

on whether c is smaller or larger than a strictly positive threshold c22−21(r) implicitly de�ned by the

equation Eπ22(r, c) = Eπ21(r, c), whereas for r1 ≤ r ≤ 1 it is the case that Eπ22(r, c) > Eπ21(r, c) for

all c.

To complete the proof we show that, for almost all c and 0 ≤ r ≤ r1 it is either the case

that Eπ22(r, c) > Eπ21(r, c) or that Eπ20(r, c) > Eπ21(r, c). We begin by noting that the functions

Eπ22(r, c), Eπ21(r, c) and Eπ20(r, c) are all linear in c, and that Eπ22(r, c) > Eπ21(r, c) > Eπ20(r, c)

for c = 0. As a result, we can proceed by comparing the threshold functions

c22−21(r) =

1
18 − 3−r2

3(9−r2) +
3−r2

6(9−r2)

min
{

12
(3−r2)2 ,

9−r2

6r2

}
(51− 5r2)−min

{
34, 9−r2

12r2 (51− 5r2)
}
− 6 51−5r2

(r2−3)2

c21−20(r) =

1
18 − 3−r2

6(9−r2)

min
{
34, 9−r2

12r2 (51− 5r2)
}
+ 6 51−5r2

(r2−3)2 − 68

implicitly de�ned by the equations Eπ22(r, c) = Eπ21(r, c) and Eπ21(r, c) = Eπ20(r, c), respectively.

In fact, for any (r, c) such that c < c22−21(r), it is the case that Eπ22(r, c) > Eπ21(r, c), and for any

(r, c) such that c > c21−20(r), it is the case that Eπ21(r, c) < Eπ20(r, c).

Calculations omitted for brevity show that c22−21(r) ≥ c21−20(r) for all 0 ≤ r ≤ r1. This completes

the proof of the Lemma, because it implies that for almost all c and 0 ≤ r ≤ r1, it is either the case

that Eπ22(r, c) > Eπ21(r, c) or that Eπ20(r, c) > Eπ21(r, c).
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Q.E.D.

Proof of Proposition 5: We need to compare the pro�t functions Eπ22(r, c), Eπ20(r, c), Eπ11(r, c)

and Eπ00(r, c). To determine the area in which Eπ22(r, c) is the largest, we note that all the pro�t

functions are linear in c, and that Eπ22(r, c) > Eπ20(r, c) > Eπ11(r, c) > Eπ00(r, c) for c = 0 and all

r. As a result, we can proceed by comparing the threshold functions

c22−20(r) =

1
9 − 3−r2

3(9−r2)

min
{

12
(r2−3)2 ,

9−r2

6q2

}
(51− 5r2)− 68

c22−11(r) =

5−r2

36 − 3−r2

3(9−r2)

min
{

12
(3−r2)2 ,

9−r2

6r2

}
(51− 5r2)−min

{
34, 12

r2+33
r2

}
c22−00(r) =

1
6 − 3−r2

3(9−r2)

min
{

12
(3−r2)2 ,

9−r2

6r2

}
(51− 5r2)

implicitly de�ned by the equations Eπ22(r, c) = Eπ20(r, c), Eπ22(r, c) = Eπ11(r, c) and Eπ22(r, c) =

Eπ00(r, c). For any such a threshold function c22−(·)(r), and any value r ∈ [0, 1] for which c22−(·)(r) is

positive, it is the case that Eπ22(r, c) > Eπ(·)(r, c) if and only if c < c22−(·)(r). Instead, for all r such

that c22−(·)(r) < 0, it is the case that Eπ22(r, c) > Eπ(·)(r, c) for all c.

Calculations omitted for brevity prove that c22−20(r) > 0 if and only if r <

√
252
5 − 3

√
3

5

√
2267,

and that c22−11(r) > 0 and c22−00(r) > 0 for all r ∈ [0, 1]. Further, comparing c22−11(r) and c22−00(r),

omitted calculations show that c22−11(r) < c22−00(r) for all r ∈ [0, 1], and that c22−20(r) < c22−11(r)

if and only if r < r̃ ≈ 0.553 on the relevant range r ∈ [0,

√
(28

√
3−

√
2267)3

√
3

5 ]. The implication is that

Eπ22(r, c) > max{Eπ20(r, c), Eπ11(r, c), Eπ00(r, c)} for every c < c22−20(r) for r < r̃ and for every

c < c22−11(r) for r > r̃.

Likewise, to determine the area in which Eπ00(r, c) is larger than Eπ22(r, c), Eπ20(r, c) and

Eπ11(r, c), we note that Eπ00(r, c) > max{Eπ22(r, c), Eπ20(r, c), Eπ11(r, c)} for c → ∞ and all r.

As a result, we can proceed by comparing the threshold function c22−00(r) reported above with the

threshold functions

c11−00(r) =
r2 + 1

36min
{
34, 1

2r2 (r
2 + 33)

} and c20−00(r) =
1

1224
,

implicitly de�ned by the equations Eπ20(r, c) = Eπ00(r, c) and Eπ11(r, c) = Eπ00(r, c). Omitted

calculations show that, for all r ∈ [0, 1] all the functions c22−20(r), c22−11(r) and c22−00(r) are strictly

positive. Hence, for every r ∈ [0, 1], it is the case that Eπ00(r, c) > max{Eπ22(r, c), Eπ20(r, c),

Eπ11(r, c)} for every c > max{c22−00(r), c20−00(r), c11−00(r)}. Comparing c22−00(r), c20−00(r) and

c11−00(r), omitted calculations show that c11−00(r) > c22−00(r), and c11−00(r) > c20−00(r) for all

r ∈ (0, 1]. The implication is that Eπ00(r, c) > max{Eπ22(r, c), Eπ20(r, c), Eπ11(r, c)} for every r > 0
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and c > c11−00(r).

For any r and cost c values that are below c11−00(r) and either above c22−20(r), for r < r̃, or above

c22−11(r), for r > r̃, it is either the case that Eπ20(r, c) or Eπ11(r, c) is the highest pro�t function.

Because Eπ20(r, c) > Eπ11(r, c) for c = 0 and all r, this is once more determined by considering a

threshold function:

c20−11(r) =
1− r2

2448− 36min
{
34, r

2+33
2r2

} ,
implicitly de�ned by the equation Eπ20(r, c) = Eπ11(r, c). Because 2448−36 ·34 = 1224, the threshold

function c20−11(r) is strictly positive for all r ∈ [0, 1). Hence, for all r it is the case that Eπ20(r, c) >

Eπ11(r, c) if and only if c < c20−11(r).

Comparing c20−11(r) with c22−20(r), c22−11(r) and c11−00(r), omitted calculations show that c20−11(r) =

c11−00(r) for r = 0, that c20−11(r) < c11−00(r) for all r > 0, that c20−11(r) > c22−20(r) for 0 ≤ r < r̃,

that c20−11(r) = c22−20(r) = c22−11(r) for r = r̃ and that c20−11(r) < c22−11(r) for r̃ < r ≤ 1.

This concludes the proof of the Proposition. We have derived the result depicted in Figure 1: For

0 < r < r̃ and c < c(r)22−20, and for r̃ < r ≤ 1 and r < c(r)20−11, it is the case that Eπ22(r, c) >

max{Eπ20(r, c), Eπ11(r, c), Eπ00(r, c)}. For 0 < r < r̃ and c(r)22−20 < c < c(r)20−11, Eπ20(r, c) >

max{Eπ22(r, c), Eπ11(r, c), Eπ00(r,c)}. For c(r)22−11 < c < c(r)11−00, Eπ11(r, c) > max{Eπ22(r, c),

Eπ20(r, c), Eπ00(r, c)}. For c > c(r)11−00, Eπ00(r, c) > max{Eπ22(r, c), Eπ20(r, c), Eπ11(r, c)}.
Q.E.D.
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