Historical Analysis of National Subjective Wellbeing Using Millions of Digitized Books

Daniel Sgroi

daniel.sgroi@warwick.ac.uk

Joint work with

Thomas Hills and Eugenio Proto

November 7, 2016

A Preview of the HPS Index for the UK

The Need for an Index of Subjective Wellbeing

- Subjective wellbeing (or "happiness") has played a minor role in the development and application of economic policy in the past.
- Recent call for a dashboard of indicators (Stiglitz Commission, OECD Better Life Index, UN World Happiness Report).
- Many nations now collect subjective wellbeing data to use alongside GDP in national measurement exercises.
- But it's difficult to know how to interpret these, because we have very limited time-series.

Why We Need Long-Run Data

- Understanding what has driven happiness in the past.
- Wars, epidemics, depressions, natural disasters occur infrequently.
- Now is fine, we can just ask people and we have this data available from the 1970s.
- But the past, surely impossible? How can we "go back in time" to ask our great grandparents how happy they are?

A Parallel with GDP

- Development of GDP in the 1930s immediately following the Great Depression; Simon Kuznets (early developer) had different ideas about GDP (e.g., shouldn't include military spending or dis-services).
- Problems with GDP as a way to capture wellbeing:
 - BP Deep Horizons oil spill increased US GDP; spending savings increases GDP temporarily.
 - Leisure is not included: wealthier people may choose to "buy" leisure but then income "falls".
 - Other issues: exchange rates, goods/output change over time (centuries), informal economies, complexity, sustainability.

A Parallel with GDP

- But these issues do not forestall the need to roll back GDP figures to better understand the evolution of national income and its drivers.
- Consider the original motivation for national income accounting.
- Maddison Historical GDP Project rolls back GDP to the early 19th century, Broadberry et al going back much further for Britain and the Netherlands.

Our Approach

- Our primary objective is to produce a workable proxy for subjective wellbeing going back to 1776, which would enable direct comparisons with GDP over that period.
- Our methods rely on the digitization of books, available in the Google Books corpus.
- We elected to start in 1776, for several reasons:
 - 1776 is the date of the American Declaration of Independence, one of the most famous of all historical documents to specifically reference happiness.
 - American Revolutionary War (1775-83) and the French Revolution (1789) as key events denoting the start of the modern era.

Prediction from Written Texts

- Inferring mood from text is commonplace endeavour now: psychiatrists, market researchers, security services...
- Inferring public mood (i.e., sentiment) from large collections of written text represents a growing scientific endeavour:
 - recovering large-scale opinions about political candidates
 - predicting stock market trends,
 - understanding diurnal and seasonal mood variation
 - detecting the social spread of collective emotions,
 - and understanding the impact of events with the potential for large-scale societal impact such as celebrity deaths, earthquakes, and economic bailouts.

Valence

- The approach we take here is a common approach among the studies described above and relies on affective word norms to derive sentiment from text.
- In a study of 17 million blog posts, (Nguyen et al, 2010) found that a simple calculation based on the weighted affective ratings of words was highly effective (70% accuracy) at predicting the mood of blogs compared against the ground-truth provided by the bloggers.
- Another weighted average technique based on word valence, coined the *Hedonometer*, was created by Dodds and Danforth (2010) and has been used successfully to recover sentiment from songs, blogs, presidential speeches, and temporal patterns of happiness using Tweets.

Language Corpus Data

- The language source we used is the *Google Books Ngram* Corpus https://books.google.com/ngrams
- Overall, this data represents about 6% of all books ever published.
- The corpus is based on a digitized database of physically published books, which was developed as part of the Google Books programme.
- We analysed data for 6 languages, English (British), English (American), German, Italian, Spanish, French.
- There are no "word norms" available for Chinese, Hebrew or Russian.

Word Norms

- In order to assess the valence of individual words, we used the largest available sets of existing word valence rating norms for each language.
- Word valence rating norms generally ask participants to rate each word from a list on how positive or negative they perceive a word to be.
- To allow for comparison across languages, all of our valence norms use a subset of words. This is a list of a thousand words that served as the basis for developing valence ratings for multiple languages through several independent studies.

Affective Norms for Different Languages

- For English, ANEW contains about 10,000 words, all rated on a 1 to 9 valence scale.
- For German, we used the Affective norms for German sentiment terms. This is a list of 1003 words, a German translations of the ANEW list. The valence ratings were collected on a -3 to +3 scale. The mean values were adjusted to reflect a 1 to 9 scale.
- the French and Spanish norms were also adaptations of the ANEW. These contained 1031 and 1034 words respectively. Both used a 1 to 9 points scale.
- For Italian, we used an adaptation of the ANEW norms containing 1121 Italian words, based on the ANEW material on a 1 to 9 scale.

Example Words

- High end: Happiness 8.53, Enjoyment 8.37, Vacation 8.53, Joy 8.21, Relaxing 8.19, Peaceful 8, Lovemaking 7.95, Celebrate 7.84.
- Low end: Murder 1.48, Abuse 1.53, Die 1.67, Disease 1.68, Starvation 1.72, Stress 1.79, Unhappy 1.84, Hateful 1.9.
- Middle: Neutral 5.5, Converse 5.37, Eight 5.37, Century 5.36, Machinery 4.65, Platoon 4.65.

Language Average Valence Computation

For each language we compute the weighted valence score, Valence_t, for each year, t, using the valence, v for each word, j, as follows,

$$Val_{i,t} = \sum_{j=1}^{n} v_{j,i} p_{j,i,t};$$

Note that $v_{j,i}$ is the valence for word j as found in the appropriate valence norms for language i, and $p_{j,i,t}$ is the proportion of word j in year t for the language i.

Words and Words Covered

Valence and Aggregate Life Satisfaction.

Figure: Residual of the average Life satisfaction and of the Valence for the period 1972-2009 for France, Germany, Italy, Spain, UK. The residuals are calculated after regressing valence and life satisfaction against the country dummies.

Valence Predicts Aggregate Life Satisfaction

Table: Average life satisfaction per country and year is the dependent variable. Coefficients are in standard deviations.

	1	2	3	4
	Year FE	with GDP	until 2009	W/O Spain and France
	b/se	b/se	b/se	b/se
Valence	1.4646***	1.3795***	1.3892***	2.1837***
	(0.3535)	(0.3847)	(0.2483)	(0.3453)
Log GDP		0.1747	0.2186	0.5076
		(0.3102)	(0.2327)	(0.3624)
Country FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Words Covered	Yes	Yes	Yes	Yes
r2	0.903	0.903	0.904	0.953
N	119	119	163	78

How to Interpret the Index

- Think about the book market as highly competitive (lots of potential writers and publishers): publishers "match" books to demand.
- It could be that publishers match happy people to happy books or do sad people demand happy books?
- Given the comparison with survey measures, the former seems right.

Country Specific Factors

- Long-Run Biases deriving from:
 - Culture,
 - Language,
 - Religion,
 - Demographics (immigration, age structure).
- We can control for these to some extent through country fixed effects.

Limitations of the Book Market

- Literate people in the past were a minority (so we can use the index as an "Elite Happiness" index for the very earliest years available).
- Freedom of the press (note France in WWII: we can use the index to pick up state control via cross-country comparison).

We use as controls:

- Education,
- Democracy.

The Evolution of Literature

- The countries we are considering are relatively similar in terms of economic development and literary evolution.
- Literary realism started in the first half of 1800 more or less in all countries:
 - George Eliot (1819 1880) in UK;
 - Mark Twain (1835 1910) in US;
 - Honore de Balzac (1799 1850) in France;
 - Theodor Fontaine (1819 1898) in Germany;
 - Benito Perez Galdos (1843 1920) in Spain;
 - Alessandro Manzoni (1785 1873) in Italy.

The Evolution of Literature

But hasn't the content of books changed over time? We assume that:

- The content of books has evolved in a similar way, so controlling for year fixed effects should correct for the evolution of language.
- The content of books has evolved in an a linear way (but differently across the different countries), so controlling for country-specific trends should correct for the evolution of language.

The HPS Index over Time

HP-filtered HPS Index and Life Expectancy

Historical Determinants of Estimated Subjective Wellbeing, with Detrended Data

	1	2	3	4
	Baseline	Controls	Infant Mort.	Conflicts
	b/se	b/se	b/se	b/se
Life Expectancy t-1	0.0057***	0.0065***	0.0062***	0.0039***
	(0.0012)	(0.0014)	(0.0014)	(0.0009)
GDP (log) t-1	-0.0586	-0.0657	-0.0724	-0.0525
	(0.0378)	(0.0437)	(0.0387)	(0.0263)
Infant Mortality t-1			-0.0004**	-0.0002
			(0.0001)	(0.0002)
Internal Conflict t-1				-0.0012
				(0.0015)
External Conflict $^-t-1$				0.0018
				(0.0025)
WW1 t-1				-0.0746**
				(0.0227)
WW2 t-1				0.0077
				(0.0136)
Democracy		-0.0026**	-0.0027**	-0.0021**
		(0.0010)	(0.0009)	(0.0007)
Education Inequality		0.0005	-0.0003	-0.0000
		(0.0010)	(0.0015)	(0.0012)
Words Covered		0.6402	0.7196	3.1986
		(0.6591)	(0.7141)	(4.0215)
Country FE	Yes	Yes	Yes	Yes
r2	0.126	0.166	0.175	0.296
N	765	648	633	586

Summary

- Average Word Valence (the HPS index) of a language predicts country aggregate subjective wellbeing of the corresponding country well when we have both, which justifies rolling back the index.
- Average word valence positively correlates with life expectancy and child mortality: an increase of 1% life expectancy is equivalent to more than 5% increase in yearly GDP.
- One year of internal conflict costs the equivalent of a 50% drop in GDP per year.

Summary

- Public debt has a short-run positive effect though this is perhaps not so surprising.
- Note the big shock events (Great Depression, World Wars) and the huge impact especially measurable in terms of the gradient of the index, but note also the rapid recoveries.
- Some caution: we have to treat the data like any macro-level time series (control for cointegration, de-trending, etc.).
- Note also that super-long-run comparisons are tricky: e.g. in terms of levels compare the 20th and 19th centuries: Aspirations? Expectations? Relative happiness?

Just the Beginning

- We have much to do in terms of rolling back through time and "deflating" word use and the evolution of language appropriately.
- The method is applicable well beyond happiness: several projects in progress.