Historical Analysis of National Wellbeing Using Digitized Text

Daniel Sgroi

University of Warwick, CAGE & IZA daniel.sgroi@warwick.ac.uk

Joint work with Thomas Hills (Warwick), Eugenio Proto (Bristol) and Chanuki Seresinhe (Alan Turing Institute)

2nd April 2009

The Meaning of Life?

- Going back at least as far as Aristotle and Confucius "happiness" has been an important concept and arguably even the meaning of life itself... although they had a very different understanding of what 'happiness' means.
- Happiness (or "subjective wellbeing") underpins much of economics but it has played a relatively minor role in the development and application of economic policy in the past.
- There is a growing literature on international patterns of subjective wellbeing: especially since Easterlin's famous "paradox" and the intense controversy surrounding it.
- Several nations including the UK, Australia, China, France and Canada now collect subjective wellbeing data to use alongside GDP in national measurement exercises. OECD & UN also active since 2011.

A Parallel with GDP

- Development of GDP in the 1930s immediately following the Great Depression; Simon Kuznets (early developer) had different ideas about GDP (e.g., shouldn't include military spending or dis-services).
- Problems with GDP as a way to capture wellbeing:
 - Environment: BP Deep Horizons oil spill increased US GDP.
 - Leisure is not included: wealthier people may choose to "buy" leisure but then income "falls".
 - Other issues: exchange rates, goods/output change over time, informal economy, illegal activity.
- Maddison Historical GDP Project rolls back GDP to the early 19th century, Broadberry et al going back much further for Britain and the Netherlands.
- But what about "National Happiness" data?

LSE, 2nd April 2019 3 of 22

Our Approach

- The availability of life satisfaction survey-based data typically dates back to the mid 1970s at best.
- Our primary objective is to produce a workable proxy for subjective wellbeing going back to 1800, which would enable direct comparisons with GDP over that period.
- Our methods rely on the digitization of books and newspapers, available in numerous corpora, such as the Google Books corpus, the British Newspaper project and the COHA corpora.
- We elected to start in 1800 because the number of digitized books and periodicals shrinks considerably before 1800.

Word Norms or Valence

- The approach we take here is a common approach among studies seeking to infer public mood and relies on affective word norms to derive sentiment from text.
- For example, in a study of 17 million blog posts, (Nguyen et al, 2010) found that a simple calculation based on the weighted affective ratings of words was highly effective (70% accuracy) at predicting the mood of blogs compared against the ground truth provided by the bloggers.
- To make progress we need both a corpus of language (a source of text data) and a set of word norms (what individual words tell us about mood).

Language Corpus Data

- The main language corpora we use is the Google Books Ngram Corpus (https://books.google.com/ngrams).
- The corpus is based on a digitized database of several million published books, which was developed as part of the Google Books programme.
- We will focus on data for 4 languages, English (British), English (American), German and Italian.
- We have some results for France and Spain but there are issues associating language with nationality.
- There are no word norms available for Chinese, Hebrew and Russian.

Alternative Corpora

- To ensure we are robust to the specific corpus we also used:
 - "Find My Past" data from the British Library's "British Newspaper Project" which covers 65 million newspaper and periodical articles from the UK across 200 periodicals going back to 1710.
 - The US English COHA Corpora which includes 400 million words from 1810-2000.
 - Two alternative indices of sentiment (a "National Pleasantness Index" and "National Polarity Index") derived from SenticNet data.
- Since our results turn out to be robust to the choice of corpora in much of what follows we will focus on the Google book corpus.

Word Norms

- In order to assess the valence of individual words, we used the largest available sets of existing word valence rating norms for each language.
- Word valence rating norms generally ask participants to rate each word from a list on how positive or negative they perceive a word to be.
- To allow for comparison across languages, all of our valence norms use a subset of words. There is a list of a thousand words that served as the basis for developing valence ratings for multiple languages through several independent studies.

Affective Norms for Different Languages

- For English, ANEW contains about 10,000 words, all rated on a 1 to 9 valence scale by a group of subjects.
- For German, we used the Affective norms for German sentiment terms. This is a list of 1003 words, a German translations of the ANEW list. The valence ratings were collected on a -3 to +3 scale. The mean values were adjusted to reflect a 1 to 9 scale.
- For Italian, we used an adaptation of the ANEW norms containing 1121 Italian words, based on the ANEW material on a 1 to 9 scale.
- We also checked that our results are robust to the specific word norm: we replicated or findings using AFINN, another popular word norm used in psychology and linguistics.

Valence and Words in Different Languages

- High end: Happiness 8.53, Enjoyment 8.37, Vacation 8.53, Joy 8.21, Relaxing 8.19, Peaceful 8, Lovemaking 7.95, Celebrate 7.84.
- Low end: Murder 1.48, Abuse 1.53, Die 1.67, Disease 1.68, Starvation 1.72, Stress 1.79, Unhappy 1.84, Hateful 1.9.
- Middle: Neutral 5.5, Converse 5.37, Eight 5.37, Century 5.36, Machinery 4.65, Platoon 4.65.

Language Average Valence Computation

■ For each language we compute the weighted valence score, Valence_t, for each year, t, using the valence, v for each word, j, as follows,

$$Val_{i,t} = \sum_{j=1}^{n} v_{j,i} p_{j,i,t};$$

Note that $v_{j,i}$ is the valence for word j as found in the appropriate valence norms for language i, and $p_{j,i,t}$ is the proportion of word j in year t for the language i.

The Evolution of Language

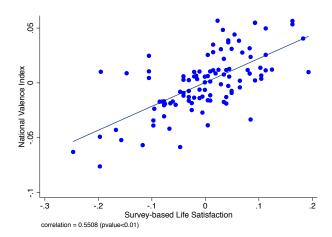
- Words have changed meanings over time: bad has meant good, dig has meant understand, etc.
- To control for this we constructed versions of our index that include only high stability words.
- The method boils down to looking at the neighbourhood of words: the argument being that when words change meaning they start to be used together with different words. High stability words keep the same neighbours.
- It turns out that our results are robust to using the full set of words, the top 25% or the top 50% and to variations on the stability method we use. This is likely to be because while some words do change meaning we use a large enough pool that this effect is small overall.

4日 > 4間 > 4 理 > 4 理 > 一重

How to Interpret the Index

- Think about the book market as highly competitive (lots of potential writers and publishers): publishers "match" books to demand.
- It could be that publishers match happy people to "happy books" or happy people to "sad books"?
- It could be that writers are inspired by the age in which they live: for instance a happy period inspires "happy books"?
- We will try to answer this question by comparing the available data on life satisfaction with our word-valence based index.
- The analysis in the paper involves lags (which makes sense for books), though we also duplicate everything for newspapers (and find similar results).

Valence and Life Satisfaction Survey Data



Comparing the Data

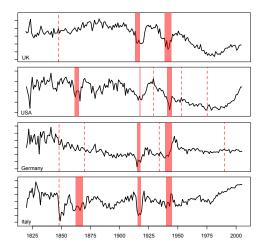
- The plot compares the Eurobarometer measure of life satisfaction with the word valence-based index for the period when the overlap (1973-2009) for the UK, Germany and Italy.
- Both variables (the National Valence Index and Eurobarometer Life Satisfaction measures) are expressed in the form of residuals after controlling for country fixed-effects, so that values represent variations around the averages for each of the three countries.
- A similar plot is generated if we compare our index with US life satisfaction data taken from the World Database of Happiness.
- It looks like life satisfaction and the content of books are positively correlated: so happy books go hand-in-hand with happy periods of time.

Valence Predicts Aggregate Life Satisfaction

Table: Average life satisfaction per country and year is the dependent variable.

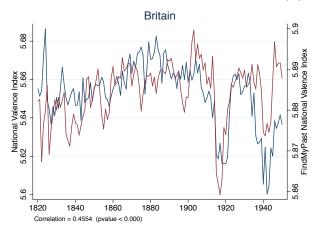
	1	2
	Year FE	CS trends
	b/se	b/se
National Valence Index	2.8551***	1.6596**
	(0.2867)	(0.2246)
GDP	Yes	Yes
Country Specific Trend	No	Yes
Year FE	Yes	No
r2	0.730	0.588
N	104	104

A Time-Series Plot of the NVI, 1820-2009



Comparing Newspapers and Books for the UK, 1820-2009

Note: Blue is the book-based NVI, red is based on newspapers.



18 of 22

Econometrics

- Next up we see what has mattered in the determination of the NVI in the past.
- First however, we need to note some issues:
 - Long-run biases might emerge from country-specific factors such as culture, language, religion and demographics (immigration, population age structure). We can control these to some extent through country fixed effects.
 - Literacy was lower in the past, Language different. We control for education, trends, year fixed effect.
 - To help with freedom of the press, we control for democracy.

Historical Determinants of the Valence Index, 1820-2009

Table: The countries included are Germany, Italy, the UK and the United States

	1	2	3	4
	Year FE	Year FE	Year FE	CS Trends
	b/se	b/se	b/se	b/se
(log) GDP(t-5)	0.0826***		0.0698***	0.0550**
	(0.0090)		(0.0106)	(0.0130)
Life Expectancy(t-1)	, ,	0.0048**	0.0030	0.0016
		(0.0013)	(0.0014)	(0.0013)
Internal Conflict(t-1)		, ,	, ,	-0.0184**
` '				(0.0040)
Words Covered(t)	Yes	Yes	Yes	Yes
Democracy(t)	Yes	Yes	Yes	Yes
Education Inequality(t)	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	No
Country-Specific Trends	No	No	No	Yes
r2	0.752	0.705	0.774	0.571
N	412	412	412	412

Summary of the Main Findings

- Our index based on average word valence of a language predicts country aggregate subjective wellbeing for several countries.
- But more than that it can go back much further than existing measures.
- Our index correlates positively with life expectancy, GDP (mildly) and negatively with conflict.
- Our findings are robust to different corpora (books, newspapers) and word norms.
- Our findings are also robust to the stability of word meanings over time.

Why this Matters

- The concept of "National Happiness" is important but there is a paucity of historical data: we help to fix that problem.
- More generally, the methods discussed in this talk can be applied much more widely than in the happiness economics literature (and we are working on more right now).
- This also represents a combination of "Big Data", increases in computational power and interdisciplinarity (Economics, Psychology and Computational Linguistics are represented in the team) which is perhaps a foretaste of one future direction for economics as a discipline.