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This supplementary material consists of four parts. Section S1 contains the proofs

of all the Lemmae of the main text. Section S2 provides a proof for the existence of

a fixed point to the operator T defined in (20). Section S3 studies a finite horizon

version of our model of Section 4. Section S4 analyses a model with moral hazard and

limited liability that endogenizes our function π, see (1).

53In this supplementary material we use cross references to equations, definitions, lemmas and proposi-

tions in the original paper. The numbering of footnotes is consecutive to the original paper.



S1 Proofs of Lemmae

Proof of Lemma A1

Proof. To get a contradiction, suppose that w ∈ (0,min{νβ,mi}] belongs to the support

of Fi and Fj puts zero probability on [w− ε, w] for some ε > 0. We shall argue that Firm

i has a profitable deviation when Firm j plays (b∗, Fj). The contradiction hypothesis has

two implications. (a) w− ε gives Firm i strictly greater expected payoffs than w since the

former saves on the cost of working capital and increases the profit when winning without

affecting the probability of winning. (b) Firm i’s expected payoffs are continuous in its

working capital at w since Fj does not put an atom at w. (a) and (b) mean that there

exists an ε′ ∈ (0, ε) such that any working capital in (w − ε′, w + ε′) gives strictly less

expected payoffs than a working capital w− ε. The fact that w belongs to the support of

Fi means that Fi puts strictly positive probability in (w − ε′, w + ε′) and thus Firm i has

a profitable deviation: shift the probability mass in (w − ε′, w + ε′) to w − ε. �

Proof of Lemma A2

Proof. To get a contradiction, suppose there exists w ∈ [0,min{νβ,mj}) for which Fj puts

strictly positive probability on [w − ε, w] for all ε > 0 and Fi has an atom at w. Suppose,

first, that mj > mi and Fj puts zero probability on [w − ε′, w) for some ε′ > 0. Our tie

breaking rule in (2) implies that Firm i loses with probability one conditional on both

firms choosing w. Thus, Firm i can profitably deviate by shifting the probability that Fi

puts in w to w − ε′. Since Fj puts zero probability in [w − ε′, w), this deviation does not

affect the probability that i wins the contract but it saves the cost of working capital ε′.

We conclude that either (i) mj > mi and Fj puts strictly positive probability on [w−ε, w)

for all ε > 0 or (ii) mj ≤ mi and Fj puts strictly positive probability on [w − ε, w) for all

ε > 0. In each case one can find ε′ > 0 small enough such that Firm j can improve by

moving the probability that Fj puts in [w− ε′, w) in case (i) and in [w− ε′, w] in case (ii),

to a point slightly above w. Each deviation affects marginally Firm j’s cost of working

capital and profits conditional on winning but allows the firm to increase from at most

1
2 to 1 the probability of winning the procurement contract at a strictly positive profit if

Firm i plays the atom at w. �
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Proof of Lemma A3

Proof. Lemma A1 and the definition of support implies (i). (ii) and (iii) follow from

putting Lemmas A1 and A2 together. (iv) follows from Lemma A2 for w = 0. To prove

(v), note that Lemma A1 and (i) (with the roles of i and j interchanged) imply that it is

sufficient to show that Fj is continuous at w. That follows from (ii) (applied to Fj instead

of Fi). The case w = ml is similar, the only differences are that we use (iii) instead of

(ii) and we take mi < mj without loss of generality by (i). To prove (vi), note that for

{i, j} = {1, 2} the continuity of Fi in (0, ν) implies that j’s equilibrium expected payoffs

of choosing w ∈ (0, ν) are equal to (6) for F = Fi. Since (0, ν) belongs to the support of

Fj , the usual indifference condition of a mixed strategy equilibrium implies that Fi is a

continuous solution of (7) in (0, ν). Since Fi is a distribution and thus it is right-continuous

at 0, the uniqueness result in Theorem 7.1 in Coddington and Levinson (1984), pag. 22,

implies that the solutions we seek are characterized by (A1) as can be proved by taking

derivatives. �

Proof of Lemma A4

Proof. It follows from (5) and νβ ∈ [νβ, θ). That νβ < θ follows from Definitions 6 and 7.

To show that νβ ≥ νβ we use that (A4) and Definition 6 imply:

1− 1− β
β

∫ ν̂Ψ

0

e
∫ ν̂Ψ

x
(−π′(y))

π(y)+Ψ(y+m)
dy

π(x) + Ψ(x+m)
dx = 0. (S1)

Thus, νβ ≥ νβ follows from the facts that the left hand side of (S1) increases in Ψ and

decreases in ν̂Ψ and that, by Definitions 2 and 7, two solutions to (S1) are (Ψ, ν̂Ψ) = (0, νβ)

and (Ψ, ν̂Ψ) = (Ψβ, νβ) �

Proof of Lemma A5

Proof. In this lemma, we use five auxiliary results. First, we use the implication of

π(2m) > π(0) − π(m) and π strictly decreasing that π(2m) > 0, and hence 2m < θ,

by Definition 1, which together with Lemma A4 means that for β close to 1,

2m < νβ. (S2)
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Second, note that for m ≤ νβ, (22) implies that

F βl,m(0) = FΨβ

m (0) ≥ π(m)

π(0)

(
1− 1− β

β

m

π(m)

)
, (S3)

where the inequality follows from the fact that its right hand side is equal to the right

hand side of (A4) for Ψ equal to the zero function and w = 0, and that the right hand

side of (A4) decreases if the function Ψ shifts downwards.

Third, we use the following implication of (19)-(20) for m,m < νβ:

Ψβ(m)

Ψβ(m)
=
FΨβ
m (0)

FΨβ
m (0)

. (S4)

Fourth, we use that F βl,m is a solution to (18) in [w′, w′′] ⊂ [0,min{m, νβ}], by (21)-(23),

and hence satisfies:

F βl,m(w′′)− F βl,m(w′) =

∫ w′′

w′

1−β
β + (−π′(y))F βl,m(y)

π(y) + Ψ(y +m)
dy. (S5)

Fifth, we use that m ≤ νβ means that,

1− F βl,m(0) = F βl,m(m)− F βl,m(0)

=

∫ m

0

1−β
β + (−π′(y))F βl,m(y)

π(y) + Ψβ(y +m)
dy

≤
∫ m

0

1−β
β + (−π′(y))

Ψβ(2m)
dy

=

1−β
β m+ π(0)− π(m)

Ψβ(2m)
, (S6)

where the first step follows from F βl,m(m) = FΨβ
m (m), by (22), and FΨβ

m (m) = 1, by

Definition 5, the second step from (S5), the third step from F βl,m(y) ≤ 1, π(y) ≥ 0 and

Ψβ(y +m) ≥ Ψβ(2m), and the last step from standard algebra.

The lemma is proved using that π(2m) > 0, as explained above, limβ↑1 F
β
l,m(0) > 0, by

(S3), and the following equalities and inequalities, for β close to 1:

(1− β)Ψβ(m) = βF βl,m(0)
(
π(0) + Ψβ(m)

)
− βΨβ(m)

= βF βl,m(0)

(
π(0)−

1− F βl,m(0)

F βl,m(0)
Ψβ(m)

)

≥ βF βl,m(0)

(
π(0)−

1−β
β m+ π(0)− π(m)

F βl,2m(0)

)

≥ βF βl,m(0)π(0)
π(2m) + π(m)− π(0)− 1−β

β 3m

π(2m)− 1−β
β 2m

,
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where we use in the first equality (19) and (20); in the second equality, an algebraic

transformation; in the first inequality, (S2), (S4) for m = 2m and (S6); and in the second

inequality, (S2), (S3) for m = 2m and some algebra. �

Proof of Lemma A6

Proof. Direct from (21), (22), (23), and (A5). �

Proof of Lemma A7

Proof. It is sufficient to show that:

Qβ(m, [m,m′])− F βl,m(0) ≤ 2(1− F βl,m′−m(0)). (S7)

This can be deduced fromQβ(m,M) ≤ Qβ(m, (m,m′]), (A12) form′′ = m andQβ(m, {m}) =

F βl,m(0). That Qβ(m, {m}) = F βl,m(0) can be deduced from (26) since F βL,m(0) = 0 by (21)

and (23) and Definition 6.

If m′ − m ≥ m, (S7) follows from Qβ(m, [m,m′]) = 1, by (26), and F βl,m(0) ≥

F βl,m′−m(0), by Lemma A6. If m′ −m < m, (S7) follows from:

Qβ(m, [m,m′])− F βl,m(0)

= F βl,m(m′ −m) + F βL,m(m′ −m)(1− F βl,m(m′ −m))− F βl,m(0)

= F βl,m(m′ −m)− F βl,m(0) + (F βL,m(m′ −m)− F βL,m(0))(1− F βl,m(m′ −m))

≤ F βl,m(m′ −m)− F βl,m(0) + (F βL,m(m′ −m)− F βL,m(0))

≤ 2(F βl,m(m′ −m)− F βl,m(0))

≤ 2(F βl,m′−m(m′ −m)− F βl,m′−m(0))

= 2(1− F βl,m′−m(0)),

where the first step uses (A10) which applies by m′−m < m and the Lemma’s hypothesis;

the second step uses again that F βL,m(0) = 0; the third step uses that F βl,m ≤ 1 and that
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F βL,m(·) is increasing and m′ −m ≥ 0; and the fourth step uses that:

F βL,m(m′ −m)− F βL,m(0) =

∫ m′−m

0

1−β
β + (−π′(y))F βL,m(y)

π(y) + Ψ(y +m)
dy

≤
∫ m′−m

0

1−β
β + (−π′(y))F βl,m(y)

π(y) + Ψ(y +m)
dy

= F βl,m(m′ −m)− F βl,m(0),

where the equalities use m′ −m < m and the Lemma’s hypothesis to apply (S5) and a

similar equation in which F βL,m replaces F βl,m, and the inequality follows from Lemma A6

and (21)-(23); in the fifth step, we use the Lemma’s hypothesis, m′ − m < m, (S5) for

w′′ = m′−m and w′ = 0 and Lemma A6; and in the sixth step, that F βl,m′−m(m′−m) = 1

by (21) and (22). �

Proof of Lemma A8

Proof. We use the following implication of (π,m) ∈ Λ, first line, and Ψβ ∈ Pβ, second

line:

lim
β→1

Ψβ(m) =

 ∞ if m < θ,

0 if m ≥ θ.
(S8)

The definition of Pβ in (17) implies the second line. The first line can be deduced using

Lemma A4, (S4), limβ→1 Ψβ(m) =∞, FΨβ
m (0) ≤ 1 and (S3).

To prove (i) and (ii), we use that limβ↑1 ν
β = θ, by Lemma A4, νβ < θ, by Definitions

6 and 7, and (21)-(23) imply that for β close to 1:

F βl,m(w) =

 FΨβ
m (w) if m < θ

FΨβ

νβ
(w) if m ≥ θ

, (S9)

and,

F βL,m(w) = FΨβ

νβ
(w) if w ∈ [0,min{m, θ}). (S10)

The limit, as β goes to 1, of the first line of the right hand side of (S9) is equal to the

corresponding expressions in the first three lines of the right of (A13). This is because:

(a) the two terms of the product in the right hand side of (A4) evaluated at Ψβ have the

necessary finite limits as β goes to 1; and (b) the product of (finite) limits equals the limit

of the product. Result (a) can be shown by using the the bounded convergence theorem
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(Royden (1988), page 81), denoted BCT hereafter,54 and (S8). That the limit, as β goes

to 1, of the second line of the right of (S9) is equal to the right of the fourth line of (A13) is

a consequence of the integral in the last line of the right hand side of (A6) being bounded

for Ψ = Ψβ. Since this argument does not require neither (π,m) ∈ Λ nor θ > 2m, it also

implies the limit in (ii).

To prove (iii), we start with the case m = m. We use that for β close to 1, F βl,m(0) =

FΨβ
m (0) by (22) and m < νβ, a consequence of 3m < θ and Lemma A4. Thus, Definition

7 means that:

(1− β)Ψβ(m) = βF βl,m(0)(π(0) + Ψβ(m))− βΨβ(m)

= βF βl,m(0)π(0)− βΨβ(m)(1− F βl,m(0)), (S11)

where the first term on the second line of the right hand side of (S11) tends to π(0)

since limβ↑1 F
β
l,m(0) = 1 by the first line of the right of (A13) and 3m > θ. We use that

F βl,m(m) = 1, by (22) and Definition 5, and (S5) to rewrite the last term of (S11) as

βΨβ(m)

∫ m

0

1−β
β + (−π′(z))F βl,m(z)

π(z) + Ψβ(z +m)
dz = β

∫ m

0

1−β
β + (−π′(z))F βl,m(z)

π(z)
Ψβ(m)

+
Fβl,z+m(0)

Fβl,m(0)

dz. (S12)

where the equality in (S12) follows from (S4). By application of the BCT, the limit of this

last term when β tends to 1 is equal to π(0)− π(m), as required, since Ψβ(m) diverges to

infinity and F βl,m(w) tends to 1 for w ≤ m and m ∈ [m, 2m]. The former follows from the

assumption that (π,m) ∈ Λ and Definition A1, and the latter follows from the first line of

the right hand side of (A13) since we assume that 3m < θ which means that 2m < θ−m.

The result for a general m can be deduced from the result for m = m and (S4) and

the limit results for F βl,m in part (i) of this lemma. �

Proof of Lemma A9

Proof. To show (i), note that (21) and (23) and Lemma A4 imply that FL,m(w) = FΨβ

νβ
(w)

for w < min{θ,m} and β close to 1. Thus, we can deduce (i) from (A6), (S8), and the

BCT.

54The BCT applies because each integrand in (A4) is uniformly bounded along the sequence since Ψ

being non negative implies that | −π′(y)
π(y)+Ψ(y+m)

| ≤ π′(y)
π(y)

and 0 ≤ 1
π(x)+Ψ(x+m)

≤ 1
π(x)

.
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To show (ii), note that (21) and Lemma A4 imply that F βL,θ(θ − 2m − ε) = FΨβ

νβ
(θ −

2m− ε) for β close to 1. Thus, we can deduce from (A6) and Definition 7 that:

F βL,θ(θ − 2m− ε)
(1− β)2

=
1

β

∫ θ−2m−ε

0

e
∫ θ−2m−ε
x

(−π′(y))

π(y)+Ψβ(y+m)
dy

(1− β)π(x) + (1− β)Ψβ(x+m)
dx.

We can deduce (ii) from this equation, applying the limits in (S8), the first line of the

right of (A14) and the BCT. The BCT can be applied to the integral in x because, first,

its integrand is non negative and bounded above by:

e
∫ θ−2m−ε
0

(−π′(y))
π(y)

dy

(1− β)Ψβ(θ −m− ε)
, (S13)

since π(x) is non-negative for x ∈ [0, θ] and Ψβ(z + m) is decreasing and non-negative

in x; and second, expression (S13) is uniformly bounded above for any β in (1/2, 1) as a

consequence of the first line of the right of (A14).

To show (iii), note that for β close to 1:

lim
β↑1

1− F βl,θ−m−ε(0)

1− β
= lim

β↑1

F βl,θ−m−ε(θ −m− ε)− F
β
l,θ−m−ε(0)

1− β

= lim
β↑1

∫ θ−m−ε

0

1−β
β + (−π′(z))F βl,θ−m−ε(z)

(1− β)π(z) + (1− β)Ψβ(z +m)
dz

=

∫ θ−m−ε

0
lim
β↑1

(
1−β
β + (−π′(z))F βl,θ−m−ε(z)

(1− β)π(z) + (1− β)Ψβ(z +m)

)
dz

=

∫ θ−m−ε

0

(−π′(z)) min
{

π(m)
π(θ−m) , 1

}
π(m) min

{
π(z+m)
π(θ−m) , 1

} dz,

where first equality follows from Lemma A4, (22), and FΨβ
m (m) = 1; the second equality

follows by Lemma A4 and (S5); in the third equality we apply, once again, the BCT using

that the integrand is nonnegative and bounded above by:

1−β
β + γ

(1− β)π(z) + (1− β)Ψβ(z +m)
,

which is uniformly bounded above in β for β ∈ (1/2, 1) and z ∈ [0, θ−m−z] as can be shown

by applying Lemma A8(iii) to the denominator; and finally, in the fourth equality we use

the following three properties: (a) the numerator converges to (−π′(w)) min
{

π(m)
π(θ−m) , 1

}
since the first and third line of the right hand side of (A13) implies that limβ↑1 F

β
l,m(z) =
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min
{

π(m)
π(θ−m) , 1

}
because z ≤ θ−m−ε, (b) the denominator converges to π(m) min

{
π(w+m)
π(θ−m−ε) , 1

}
>

0 since Lemma A8(iii) implies that limβ↑1(1 − β)Ψβ(z + m) = π(m) min
{
π(z+m)
π(θ−m) , 1

}
be-

cause z + m < θ and (c) the limit of the ratio equals the ratio of the limits when the

denominator has a positive limit. �

Proof of Lemma A10

Proof. For M = (m, θ], (27) implies that µβ(M) =
∫
Qβ(m,M)µβ(dm), which is less

than 2(1 − F βl,θ−m(0)) for β close to 1 since Lemma A7 for m′ = θ can be applied by

Lemma A4 and since µβ is a probability measure. Thus, the lemma follows from the third

line on the right hand side of (A13). �

S2 Existence of Fixed Points of the Operator T

To simplify the notation, we adopt the convention that

(a)+ ≡ max {a, 0} . (S14)

We also find convenient to compute a bound for ν̂Ψ for any Ψ ∈ Pβ.

Definition S1. xβ is the unique w ∈ [(θ −m)+, θ] that solves:

βπ(w) = (1− β)(w − (θ −m)+).

Note the similarity between the equation that defines xβ and (4). Indeed, as next

lemma shows, xβ is an upper bound to the support of the randomizations that firms play

over working capitals in the models of Section 4 and Section S3. In this sense, it is an

analogue of νβ in the static model.

Lemma S1. ν̂Ψ ≤ xβ for any Ψ ∈ Pβ.

Proof. By Definition 5, FΨ
ν̂Ψ(ν̂Ψ) = 1. Besides, the right hand side of (A6) is increasing in

w for w < θ. Thus, it is sufficient to show the right hand side of (A6) is greater than 1 at
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w = xβ. This expression is equal to:

1− β
β

∫ xβ

0

e
∫ xβ
x

(−π′(y))
π(y)+Ψ(y+m)

dy

π(x) + Ψ(x+m)
dx ≥ 1− β

β

∫ xβ

(θ−m)+

e
∫ xβ
x

(−π′(y))
π(y)+Ψ(y+m)

dy

π(x) + Ψ(x+m)
dx

=
1− β
β

∫ xβ

(θ−m)+

e
∫ xβ
x

(−π′(y))
π(y)

dy

π(x)
dx

=
1− β
β
· x

β − (θ −m)+

π(xβ)

= 1,

where we use that the integrand is positive in the first step, that Ψ(m) = 0 for m ≥ θ in

the second step, standard algebra in the third step and Definition S1 in the last step. �

We prove that T has a fixed point applying Schauder Fixed-Point Theorem. For this

purpose, we restrict the domain of Ψ to [0, θ +m]. Define P̃β as:{
Ψ: [0, θ +m]→

[
0,

β

1− β
π(0)

]
is continuous, decreasing and Ψ(m) = 0∀m ≥ θ

}
. (S15)

For any Ψ̃ ∈ P̃β, we define its (unique) extension to Pβ by the function Ψ that satisfies

Ψ(m) = Ψ̃(m) if m ∈ [0, θ + m] and Ψ(m) = 0 if m ∈ (θ + m,∞). For any Ψ̃ ∈ P̃β, let

F Ψ̃
m ≡ FΨ

m where Ψ is the extension of Ψ̃ to Pβ. For any Ψ̃ ∈ P̃β, let T̃ (Ψ̃)(m) ≡ T (Ψ)(m)

for m ∈ [0, θ +m], where T is defined in (20) and Ψ is the extension of Ψ̃ to Pβ.

Lemma S2. The operator T̃ : P̃β → P̃β has a fixed point. Moreover, the extension of

any fixed point of T̃ is a fixed point of the operator T : Pβ → Pβ and any fixed point of

T is the extension of some fixed point of T̃ .

Proof. We endow P̃β with the sup-norm, that we denote by || · ||, and check that the

operator T̃ on P̃β satisfies all the conditions of Schauder Fixed-Point Theorem, see Stokey

and Lucas (1999), Theorem 17.4, page 520.

P̃β is a nonempty, closed, bounded and convex subset of the set of continuous functions

on [0, θ + m]. Furthermore, it is easy to see that T : Pβ → Pβ, see Footnote 37, implies

that T̃ : P̃β → P̃β. We show below that T̃ is continuous and that the family T̃ (P̃β) is

equicontinuous, as desired.

Claim 1: T̃ is continuous.
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We assume an arbitrary sequence {Ψn} → Ψ in P̃β and show that T̃ (Ψn) → T̃ (Ψ).

Note that ||T̃ (Ψn)− T̃ (Ψ)|| is equal to:

sup
m∈[0,xβ ]

∣∣β(FΨn
m (0))+(π(0) + Ψn(m))− β(FΨ

m(0))+(π(0) + Ψ(m))
∣∣

= sup
m∈[0,xβ ]

∣∣((FΨn
m (0))+ − (FΨ

m(0))+)β(π(0) + Ψ(m)) + β(FΨn
m (0))+(Ψn(m)−Ψ(m))

∣∣
≤ sup

m∈[0,xβ ]

{∣∣(FΨn
m (0))+ − (FΨ

m(0))+
∣∣β(π(0) + Ψ(m)) + β(FΨn

m (0))+ |Ψn(m)−Ψ(m)|
}

≤ sup
m∈[0,xβ ]

{∣∣(FΨn
m (0))+ − (FΨ

m(0))+
∣∣ β

1− β
π(0) + β |Ψn(m)−Ψ(m)|

}
≤ β

1− β
π(0) sup

m∈[0,xβ ]

∣∣FΨn
m (0)− FΨ

m(0)
∣∣+ β sup

m∈[0,xβ ]

|Ψn(m)−Ψ(m)| ,

where the first step follows from (20), Lemma S1 and because (S14) implies that (FΨ
m(0))+ =

FΨ
m(0) if m ≤ ν̂Ψ and55 (FΨ

m(0))+ = 0 if m > ν̂Ψ; in the second step we add and sub-

tract βΨ(m)(FΨn
m (0))+; the third step follows from |A+B| ≤ |A| + |B|; the fourth step

because Ψ(m) ≤ β
1−βπ(0) and (FΨn

m (0))+ ≤ 1; and the fifth step from the property that

supx{a(x) + b(x)} ≤ supx a(x) + supx b(x), and that |(A)+ − (B)+| ≤ |A−B|.

Definition S1 implies that xβ < θ +m and so,

sup
m∈[0,xβ ]

|Ψn(m)−Ψ(m)| ≤ sup
m∈[0,θ+m]

|Ψn(m)−Ψ(m)| = ||Ψn −Ψ||.

Since we assume that ||Ψn −Ψ|| converges to zero, it only remains to be shown that:

lim
n→∞

sup
m∈[0,xβ ]

∣∣FΨn
m (0)− FΨ

m(0)
∣∣ = 0. (S16)

Let Ψn(w) ≡ (Ψ(w)− εn)+ and Ψn(w) ≡ Ψ(w) + εn for εn ≡ supñ≥n ||Ψñ −Ψ||. With

a slight abuse of notation, we denote by F
Ψn(w)
m (w) and F

Ψn(w)
m (w) the right hand side

of (A4) at Ψ = Ψn and Ψ = Ψn, respectively. Thus, that Ψ(w) and Ψn(w) belong to

[Ψn(w),Ψn(w)] and that FΨ
m ≥ F Ψ̃

m if Ψ(w) ≥ Ψ̃(w) ≥ 0 for any w, by (A4), imply that

F
Ψ(w)
m (0) and F

Ψn(w)
m (0) belong to [F

Ψn(w)
m (0), F

Ψn(w)
m (0)]. Thus:

|FΨn
m (0)− FΨ

m(0)| ≤
∣∣∣FΨn
m (0))− FΨn

m (0)
∣∣∣ . (S17)

Note that,

lim
n→∞

sup
m∈[0,xβ ]

∣∣∣FΨn
m (0)− FΨn

m (0)
∣∣∣ = 0, (S18)

55Since FΨ
m(0) is decreasing in m, see (A4), and FΨ

ν̂Ψ(0) = 0, see Definition 6.
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by an application of Theorem 7.13 in Rudin (1976), pag. 150. We can apply this theorem,

because (A4) implies that: (a) FΨn
m (0) and F

Ψn
m (0) are continuous in m ∈ [0, xβ], (b)

{FΨn
m (0) − F

Ψn
m (0)}n is a decreasing sequence since {Ψn}n and {Ψn}n are respectively

decreasing and increasing sequences, and (c) FΨn
m (0)−FΨn

m (0) converges to zero pointwise

in m ∈ [0, xβ] since limn→∞ ||Ψn −Ψn|| = 0 and the BCT56 applies.

Equations (S17) and (S18) imply (S16) as desired.

Claim 2: the family T̃ (P̃β) is equicontinuous.

(20), Ψ(m) ∈
[
0, β

1−βπ(0)
]

for Ψ ∈ P̃β and Lemma S1 means that it is sufficient to

show that there exists a finite κ such that:∣∣∣∣∂FΨ
m(0)

∂m

∣∣∣∣ ≤ κ for any Ψ ∈ P̃β and m ∈ [0, xβ]. (S19)

Equation (A5) evaluated at w = 0 implies that:

∣∣∣∣∂FΨ
m(0)

∂m

∣∣∣∣ =
e
∫m
0

π′(y)
π(y)+Ψ(y+m)

dy

π(m) + Ψ(m+m)

∣∣∣∣π′(m)− 1− β
β

∣∣∣∣ for m ∈ [0, xβ]. (S20)

Note that e
∫m
0

π′(y)
π(y)+Ψ(y+m)

dy ≤ 1 because π′(y)
π(y)+Ψ(y+m) < 0 and that π(m) + Ψ(m + m) ≥

π(xβ) because π is a decreasing function and Ψ(m + m) ≥ 0. Besides, since −π′ is

continuous, there exists a finite γ ≥ 0 such that:

−π′(z) ≤ γ, for all z ∈ [0, θ]. (S21)

These arguments imply the condition in (S19) for

κ =
1

π(xβ)

∣∣∣∣γ +
1− β
β

∣∣∣∣ .
�

Lemma S2 implies the following proposition (and no proof is required).

Proposition S1. The operator T defined in (20) has a fixed point in Pβ.

56The same arguments as in Footnote 54 can be used to show that each integrand in (A4) is uniformly

bounded in β.
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S3 A Finite Horizon Model

In this section, we show that the unique equilibrium of a finite period version of the model

in Section 4 converges as the number of periods tend to infinity to one of the equilibria

that we analyse in Section 4. As Athey and Schmutzler (2001) have argued:

If there are multiple equilibria, one equilibrium of particular interest (if it

exists) is an equilibrium attained by taking the limit of first-period strategies

as the horizon T approaches infinity.

We consider a t+ 1-period model with periods denoted by t ∈ {1, 2, . . . , t+ 1}. All the

periods but the last one are as in the model of Section 4. In the last period, all the firm’s

cash is consumed. The dynamic link between periods and the firms’ objective functions,

adapted to the finite time horizon, are also as in Section 4. Both firms start with identical

cash larger than θ and we assume Assumption 1. We study the subgame perfect equilibria

of the game.

Definition S2. We let Ψt, t = 2, . . . , t + 1, be defined recursively (starting from t + 1)

by Ψt+1 ≡ 0, and Ψt ≡ T (Ψt+1), where T is the operator defined in (20). We let νt,

t = 1, . . . , t, denote ν̂Ψt+1 .

For t = 1, . . . , t, let,

Ft,l,m(w) = Ft,L,m(w) = FΨt+1
νt (w) if w ≤ νt ≤ m (S22)

Ft,l,m(w) = FΨt+1
m (w) if w ≤ m < νt (S23)

Ft,L,m(w) ≡

F
Ψt+1
νt (w) if w < m < νt

1 if w = m < νt
(S24)

Let Ω denote (as in Section 4) the cash vectors that can arise along the game tree. For

any t ∈ {1, 2, ..., t} and (m,m′) ∈ Ω, let:

σ∗t (w|m,m′) ≡

 Ft,l,m(w) if m ≤ m′

Ft,L,m′(w) if m > m′,
(S25)

and,

Wt(m,m
′) ≡

 m+m
∑t+1−t

τ=1 βτ if m ≤ m′

m+m
∑t+1−t

τ=1 βτ + Ψt(m
′) if m > m′.

(S26)
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Note that Wt is continuous in Ω because the only conflicting point is when m = m′

and Assumption 1 implies that in this case m′ ≥ θ and hence Ψt(m
′) = 0 by (17). We

also let Wt+1(m,m′) ≡ m, for any (m,m′) ∈ Ω.

Proposition S2. There is a unique subgame perfect equilibrium of the game. In this

equilibrium, and at any period t ∈ {1, 2, ..., t}, both firms randomize their working capital

according to σ∗t , bid according to b∗ and have Wt expected continuation payoffs at the

beginning of period t.

Proof: We prove the proposition using backward induction. It is trivial that the continu-

ation payoffs at the beginning of period t + 1 are described by Wt+1 in period t + 1. We

can then apply recursively the following claim:

Claim: There is a unique equilibrium in the reduced game defined by period t and the

continuation payoffs βWt+1. In this equilibrium both firms use the strategy (b∗, σ∗t ), and

get expected equilibrium payoffs described by Wt.

To prove the claim, note that the argument in the first paragraph of the proof of

Proposition 4 also applies here using Wt+1, Ψt+1, (S26) and Definition S2 instead of W ∗,

Ψβ, (25) and Definition 7, respectively. Thus, in equilibrium both firms use b∗. Under this

assumption, the expected payoffs of a firm with cash m and working capital w ≥ θ −m

that faces a rival that randomizes according to F are equal to:

m−w+β

∫ w

0
Wt(w+π(w) +m, w̃+m)F (dw̃) +β

∫ ∞
w

Wt(w+m, w̃+π(w̃) +m)F (dw̃)

= m− (1− β)w +m
t+1−t∑
τ=1

βτ + βπ(w)F (w) + β

∫ min{w,xβ−m}

0
Ψt+1(w̃ +m)F (dw̃)

(S27)

since Ψt+1(w̃ +m) = 0 for w̃ +m ≥ xβ by (20) and Lemma S1.

We use (S27) to show, first, that σ∗t is an equilibrium with equilibrium expected payoffs

given by Wt and, second, that there is no other equilibrium.

To show that σ∗t is optimal when the other firm uses σ∗t we distinguish whether the

laggard’s cash is larger than νt. If this is the case, the proof follows by an adaptation of

the proof of the case m,m′ ≥ νβ in Proposition 4, but using νt, F
Ψt+1
νt (·), Ψt+1, Wt+1,
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(S22) and Definition S2 instead of νβ, FΨβ

νβ
(·), Ψβ, W ∗, (21) and Definition 7, respectively.

Otherwise, the proof follows by an adaptation of the proof of the case m < m′ and

m ∈ [0, νβ) and the case m > m′ and m′ ∈ [0, νβ) in Proposition 4, but using νt, Ft,L,m,

Ft,l,m, Ψt+1, Wt+1 and (S22), (S23) and (S26) instead of νβ, F βL,m, F βl,m, Ψβ, W ∗, and

(21), (22) and (25), respectively.

Similarly, one can apply the argument in the proof of Proposition 4 that the value

function of the Bellman equation is equal to W ∗ to show that the expected equilibrium

payoffs are equal to Wt.

To prove uniqueness of our equilibrium we explain how to adapt the proof of Proposi-

tions 1 and 2. First, we show that one can restrict to working capitals in [0, xβ] because

for the expected payoff function in (S27), a working capital w ≥ xβ is strictly dominated

by a working capital of (θ−m)+. To see why, note that one can deduce from (S27) and the

definition of xβ in Definition S1 that the difference in expected payoffs between working

capital w > xβ and working capital (θ −m)+ is equal to:

βπ(w)F (w)− βπ((θ −m)+)F ((θ −m)+)

−(1− β)(w − (θ −m)+) ≤ βπ(w)− (1− β)(w − (θ −m)+)

< βπ(xβ)− (1− β)(xβ − (θ −m)+)

= 0,

as desired.

We can show that a version of Lemmas A1, A2 and A3 in which νβ is replaced by xβ

and (A1) by:

Fi(w) = e
∫ w
0

−π′(y)
π(y)+Ψt+1(y+m)

dy
Fi(0) +

1− β
β

∫ w

0

e
∫ w
x

(−π′(y))
π(y)+Ψt+1(y+m)

dy

π(x) + Ψt+1(x+m)
∀w ∈ [0, ν). (S28)

is satisfied by the game defined by the expected payoffs in (S27). We can proceed as in the

proof of Propositions 1 and 2 to prove uniqueness when the laggard’s cash is greater than

νt, and when the laggard’s cash is less than νt, respectively. The only difference is that

we use νt and xβ instead of νβ, Definition S1 instead of Definition 2, (18) for Ψ = Ψt+1

instead of (7), F
Ψt+1
νt instead of F β, Ft,l,m instead of Fl,m, and Ft,L,m instead of FL,m, and

thus (S22)-(S24) instead of (8)-(10). �
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Finally, we show that the limit of the equilibrium of this finite game as the number

of periods goes to infinity is equal to the equilibrium of the model in Section 4. To get

this result, we abuse a little bit of the notation and denote by σ∗
t,t

, Wt,t, Ψt,t and νt,t the

functions σ∗t , Wt, Ψt and νt, respectively, to make the dependence in the length of the

time horizon of the game explicit.

Lemma S3. {Ψt,t}∞t=t+1
is an increasing sequence in Pβ with limit Ψ∞ ∈ Pβ. Besides,

Ψ∞ is a fixed point of T , where T is defined in (20).

Proof. We first note that by Definition S2, Ψt,t = T t−t(Ψ) for Ψ the zero function in Pβ,

and Tn : Pβ → Pβ an operator defined recursively by T 1 = T and Tn = Tn−1 for n > 1.

The operator T is monotone in the sense that Ψ ≥ Ψ′ implies that T (Ψ) ≥ T (Ψ′).

This is a consequence of (20) because (A4) implies that FΨ
m(0) ≥ FΨ′

m (0). Furthermore,

the operator T is continuous and the set T (Pβ) is equicontinuous by analogous arguments

to Claim 1 and Claim 2, respectively, in the proof of Lemma S2. Thus, {Ψt,t}∞t=t+1
is an

increasing sequence in an equicontinuous set T (Pβ). Consequently, {Ψt,t}∞t=t+1
has a limit

in Pβ that we denote by Ψ∞. By continuity of T and the definitions of Ψ∞ and Ψt,t:

T (Ψ∞) = T ( lim
t→∞

Ψt,t) = lim
t→∞

T (Ψt,t) = lim
t→∞

Ψt−1,t = Ψ∞.

Thus Ψ∞ is a fixed point of T as desired. �

Denote by σ∗ and W ∗ the equilibrium of Proposition 4 that corresponds to the function

Ψβ = Ψ∞, where Ψ∞ is defined in Lemma S3.

Proposition S3. For any (m,m′) ∈ Ω, σ∗
t,t

(·|m,m′) converges weakly to σ∗(·|m,m′) and

Wt,t(m,m
′) converges uniformly to W ∗(m,m′) as t goes to infinity.

Proof. The uniform convergence of Wt,t(m,m
′) to W ∗(m,m′) is a straightforward conse-

quence of Lemma S3 and the definitions of W ∗(m,m′) and Wt,t(m,m
′) in (25) and (S26).

The convergence of σ∗
t,t

follows the definitions in (21)-(24) and in (S22)-(S25) and the

limits:

F
Ψt,t
m (w)

t→∞−−−→ FΨβ

m (w) (S29)

F
Ψt,t
νt,t (w)

t→∞−−−→ FΨβ

νβ (w) (S30)

νt,t
t→∞−−−→ νβ, (S31)
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for νt,t = ν̂Ψt,t , Ψβ = Ψ∞ and νβ = ν̂Ψ∞ .

Equation (S29) follows from Lemma S3 and the application of the property that the

limit of the product is equal to the product of the limits if finite and the BCT to (A4) for

Ψ = Ψt,t. BCT can applied because the same arguments as in Footnote 54 mean here that

the integrands of the corresponding limits are uniformly bounded in t. Equation (S30)

follows from the application of Lemma S3 and the BCT to (A6) for Ψ = Ψt,t. Equation

(S31) follows from the application of the property that the sequence of unique solutions

xt to the sequence of equations Υt(xt) = 1 converges to the unique solution x of the limit

equation limt→∞Υt(x) = 1 when Υt is a strictly increasing function and {Υt} converges

to a strictly increasing function. This property applies to xt = νt,t and x = νβ because

(a) νt,t and νβ are the unique solutions in w to 1 equal to the last line of the right hand

side of (A6) for Ψ = Ψt,t and Ψ = Ψ∞, respectively; (b) the last line of the right hand

side of (A6) is strictly increasing in w; and (c) the last line of the right hand side of (A6)

evaluated at Ψ = Ψt,t converges to the last line of the right hand side of (A6) evaluated

at Ψ = Ψ∞ by application of the BCT to the two integrals and Lemma S3. �

S4 A Model of Financial Constraints

In this section, we endogenize the function π in a model in which moral hazard and

limited liability restrict the set of acceptable bids. In this model, the firm who wins the

procurement contract can divert some funds at the cost of jeopardizing the success of the

procurement contract. The main implication is that the minimum acceptable bid for a

firm with working capital w is given by an endogenous function π which under natural

assumptions is strictly decreasing.

We endogenize the set of acceptable bids in the model57 of Section 4 by assuming that

a bid b is acceptable if and only if the firm has incentives to comply with the procure-

ment contract in case of winning. We begin by formalizing this incentive compatibility

constraint, and later we discuss institutional frameworks that enforce it.

Suppose the same game tree as in Section 4 with an additional stage each period after

a firm wins the procurement contract and before the firm complies with the contract. To

57It is straightforward how to adapt this variation to the static model of Section 3.
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describe this new stage, we use a differentiable function α : [0,∞)2 → [0,∞). As before,

the total funds of the firm that wins the procurement contract are equal to its working

capital w. We assume that either the working capital is sufficient to pay for the cost c,

i.e. w ≥ c, or the firm gets a loan d = c − w at zero interest rate.58 In both cases, the

firm can choose between complying with the procurement contract and the loan, if any, or

defaulting.59 If the firm complies with both, it starts next period with cash equal to w+d,

minus the production cost c, plus the procurement price b, minus the loan repayment d

and plus the exogenous cash flow m, i.e.60

w + b− c+m. (S32)

If the same firm defaults, it starts next period with cash equal to α(d,w) ∈ [0, d+w] plus

the exogenous cash flow m, i.e.

α(d,w) +m, (S33)

Thus, α(d,w) denotes the funds of the firm that cannot be expropriated after default.

This model is realistic. For instance, it is a common practice that an entrepreneur

who participates in a procurement contest uses a limited liability company (LLC) that

can be liquidated in case of default. The entrepreneur could divert the funds from the

LLC to its personal account before defaulting. α(d,w) represents the diverted funds that

cannot be expropriated even after litigation and w + d − α(d,w) represents the funds

that the entrepreneur cannot keep after default because they are either used to pay a

compensation to the sponsor, spent on litigation costs or recouped by the lender. In this

case, the limited liability status of the LLC implies that neither the lender nor the sponsor

can seize any future revenue of the entrepreneur. Finally, default may not restrict the

entrepreneur’s future ability to borrow if there are other lenders who are willing to lend

to the entrepreneur. Formally, this would happen in a model in which firms and lenders

are matched only once and lenders do not observe the outcome of past matches.

The comparison of (S32) and (S33) means that a firm that borrows d = max{c−w, 0}
58A zero interest rate is consistent with a competitive banking sector, no discounting between the moment

the money is transferred to the firm and when it pays back and the fact that acceptable bids are risk free.
59For simplicity, we do not allow for default only in the loan or only in the procurement contract.
60Formally, we identify the case w ≥ c and no loan with the case of borrowing d = 0.
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prefers to comply rather than default if and only if:

w + b− c ≥ α(max{c− w, 0}, w). (S34)

Thus, and no proof is necessary:

Proposition S4. If the firm’s continuation value W is increasing in its own cash, only

bids greater than α(max{c−w, 0}, w)+c−w are acceptable for a firm with working capital

w ∈ [0,∞). This implies that the set of acceptable bids is characterized by a function

π(w) = α(max{c− w, 0}, w)− w.

The endogenous function π is strictly decreasing under natural assumptions. For in-

stance, the derivative of π at61 w < c is negative if substituting one unit of working capital

for one unit of debt increases the amount of non-expropriable funds by no more than one

unit. Furthermore, one can find meaningful economic conditions under which the linear

case, π(w) = θ − w, arises. For instance, if ∂α(d,w)
∂d = ∂α(d,w)

∂w , for d = c− w, i.e. if the

amount of non-expropriable funds does not change when debt is substituted by working

capital.

In reality, the incentive compatibility constraint that we analyse above is usually en-

forced by different institutional frameworks. A natural example in procurement is the

requirement of a surety bond. Indeed, the role of sureties62 is to guarantee that the firm

will comply with the procurement contract. An alternative explanation for the particular

case w < c is that the sponsor requires proof of the availability of the required external

financing and banks are happy to provide it only if they do not expect the firm to default.

61The relevant case is w < c because of two reasons. First, θ ≤ c since θ solves π(θ) = α(max{c −

w, 0}, θ) − θ = 0 and π(c) = α((0, c) − c ≤ 0 because α(0, w) ≤ w. Second, the analysis in Section 4 only

requires characterizing π in the domain [0, θ), since firms have no incentive to carry more working capital

than θ. To see why, recall that a firm with working capital w bids b∗(w|m,m′) and note that w > θ implies

that π(w) < 0, and hence b∗(w|m,m′) < c. If continuation values are increasing in the firm’s cash, a firm

does not have incentives to bid below c if the rival does not do it, as in our proposed equilibrium. Bidding

less than c does not increase the cases in which the firm wins but reduces the profits in case of winning.
62See Footnote 5.
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