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1 Introduction

The citizen-candidate model (Besley-Coate(1997), Osborne-Slivinski(1996))

is being increasingly used to model decision-making in environments where

Condorcet winners may not exist. The model has three stages of activity;

(i) citizens decide on whether to stand for oÆce, and may incur a small cost

if they do so; (ii) citizens vote for the candidates who stand, and the win-

ner is elected by plurality rule; (iii) the candidate who is elected implements

her most preferred policy from a �xed set of alternatives. Besley and Coate

call the subgame perfect equilbria of this three stage game political equilibria

(PE). Although the citizen-candidate model is a major advance over existing

models, a major problem is that there are typically multiple equilibria at

the voting stage, due to plurality rule (Dhillon and Lockwood(2000)). These

multiple equilibria at stage (ii) generate multiple equilibria to the game as a

whole. Osborne-Slivinski(1996) resolve this problem by assuming that vot-

ers vote sincerely. Sincere voting, however is an arbitrary rule for selecting

strategies. In contrast, Besley-Coate (1997) impose the requirement that,

conditional on any set of candidates, the voting equilibrium must be weakly

undominated. Not surprisingly, this weak re�nement at the voting stage still

leaves many equilibria, some of them not very credible1.

In this paper, we investigate whether imposing a stronger re�nement on

the (Nash) equilibrium at the voting stage, conditional on any set of can-

didates, eliminates any PE. Our re�nement is that voting strategies be it-

eratively weakly undominated. We call PE with this re�nement imposed at

the voting stage iteratively weakly undominated political equilibria (IWUPE).

Our justi�cation for this re�nement is twofold. First, that if it is common

knowledge than agents will not play weakly dominated strategies, then it is

"reasonable" that rational voters will not play their "second round" weakly

dominated strategies, and so on. Some formal justi�cation of this is in Ra-

jan(1998). Second, it has been shown by De Sinopoli(2000) that more stan-

1Besley and Coate declare \for those who would like a clean empirical prediction, our

multiple equilibria will raise a sense of dissatisfaction."
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dard re�nements (perfection, properness) do not have much bite in plurality

voting games; in particular, requiring subgame-perfection only rules out Nash

equilibria where Condorcet losers are elected.

De Sinopoli and Turrini(1999) initiated this approach to re�ning PE in a

paper where they present an example with four candidates and one winner

which has multiple equilibria. In their example, requiring voting strategies

to be iteratively undominated eliminates all but one equilibrium where the

Condorcet winner wins. This result raises the question of whether iterated

deletion of weakly dominated strategies also re�nes political equilibrium out-

comes in the case of one, two, and three candidate equilibria. This paper

answers this question, fully and negatively. We show2 that if there exists a

PE with fewer than four candidates, and a given set of winner(s), then there

also exists a IWUPE with the same candidate set and the same winner(s).

So, this paper complements De Sinopoli and Turrini(1999); together, they

how that iterated deletion of weakly dominated strategies also re�nes po-

litical equilibrium outcomes only when the number of candidates is at least

four.

We describe the Besley-Coate model in greater detail in Section 2. Section

3 then discusses the main results. Section 4 concludes.

2 The Citizen-Candidate Model of Represen-

tative Democracy

Besley-Coate (1997) consider a community of n citizens, who may select a

representative to implement a policy alternative. Each citizen i 2 N =

f1; :::; ng has a �nite action set Xi representing the policy alternatives avail-

able to him if elected. It is possible that citizens may be of di�erent com-

petencies i.e. Xi 6= Xj. If no-one is elected, a default policy x0 2 \i2NXi

is selected. Voters have preferences over who represents them, as well the

2We do not show that every PE is also a IWUPE, but rather that every outcome that

can be achieved via a PE can also be achieved via an IWUPE.
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alternatives they choose, so utility functions are de�ned on X � N [ f0g,

X = [i2NXi; i.e. �i(x; j) is the utility for i if j is elected and chooses action

x. If no-one is elected, utilities are �i(x0; 0):

The political process has three stages. At stage 1, citizens face a binary

decision: to stand for election (enter) or not. At stage 2, voting takes place,

and in stage 3, the elected representatives choose policy. We discuss each

stage in turn.

At the �nal stage, once elected, a citizen i will therefore choose their own

most preferred policy (assumed to be unique):

x
�

i = argmax
x2Xi

�i(x; i)

Since for every citizen's most preferred point x�i 2 Xi is known, the induced

preferences of citizens over candidates are given by ui(j) � �i(x
�

i ; j); i; j 2

N: We assume that these induced preferences over candidates are strict: i.e.

ui(j) 6= ui(k); all i; j; k 2 N; j 6= k: Also, ui(0) � �i(x0; 0):

At the second stage, voting is by plurality rule: each voter has one vote,

which she can cast for any one of the set C � N of candidates who stand,

and the candidate with the greatest number of votes wins. If a set of two or

more candidates have the greatest number of votes, every candidate in this

set is selected with equal probability. Let W � C be the set of candidates

with the most votes, which we call the winset. Then voter payo�s over some

W are:

ui(W ) =
1

#W

X
j2W

ui(j); i 2 N

Formally, let �i = j if voter i votes for candidate j 2 C:
3 Then � =

(�1; :::; �n) denotes a vote pro�le. Let W (�;C) � C denote the winset,

given the vote pro�le � and candidate set C. The utility to voter i from �

(given C) is then ui(�;C) � ui(W (�;C)): A Nash equilibrium pro�le �� is

3We assume there is no abstention. When voting is costless and, as in our version of

the Besley-Coate model preferences over candidates are strict, abstention is always weakly

dominated so that ruling out abstention is without loss of generality.
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de�ned in the usual way as a pro�le where ��i is a best response to ��
�i; all

i 2 N:

Let S � C
n be any set of voting pro�les, with S = �i2NSi. Say that �i

is undominated relative to S if (i) �i 2 Si; (ii) there does not exist �
0

i 2 Si

such that ui(�
0

i; ��i; C) � ui(�i; ��i; C), all ��i 2 S�i, and ui(�
0

i; ��i; C) >

ui(�i; ��i; C), some ��i 2 S�i: Now de�ne the sequence of sets of vote pro�les

fA0
; A

1
; A

2
:::g for i as follows: A0 = C

n
; and A

n = �i2NA
n
i ; where A

n
i is the

set of voting actions for i that are undominated relative to An�1
; all i 2 N: As

the set of voting actions is �nite, An converges after a �nite number of steps

to some A
1
; which is the set of vote pro�les that are iteratively weakly

undominated. It is always non-empty. Also, the An are understood to be

conditional on C:

Besley and Coate de�ne a voting equilibrium to be a �
� which is (i) Nash

equilibrium; and (ii) weakly undominated i.e. �
� 2 A

1
: We will focus on

a stronger re�nement of Nash equilibrium i.e. where �� 2 A
1
: Formally, an

iteratively weakly undominated voting equilibrium is a �
� which is (i) Nash

equilibrium; and (ii) iteratively weakly undominated i.e. �� 2 A
1
:

Finally, we turn to the entry stage. Any citizen can run for oÆce, but if they

run, they incur a small cost Æ. If no-one runs for oÆce, the default policy x0

is implemented. In the �rst stage, citizens decide non-cooperatively on their

entry: 
i 2 f0; 1g denotes the entry4 decision for i. When deciding upon

candidacy, citizens all anticipate5 the same voting equilibrium �
�(C) among

the multiple equilibria at the voting stage, given any possible set of candidates

C. Denote the strategy pro�le at the entry stage by 
 = f
1; :::; 
ng.

We can now state our equilibrium concepts. A weakly undominated political

equilibrium (WUPE) of this game is a (
�; ��(:)) if (i) 
� is an equilibrium

of the entry stage, given ��(:) and (ii) �(C) 2 C
n is a weakly undominated

Nash equilibrium in the voting subgame, for every C � N . Our WUPE

is Besley and Coate's political equilibrium: we add the quali�er to make

4We do not allow citizens to randomise.
5This is represented as in De Sinopoli and Turrini (1999) by the function �(:) : 2N !

(N [ f0g)N .
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explicit the re�nement assumed at the voting stage. An iteratively weakly

undominated political equilibrium (IWUPE) of this game is a (
�; ��(:)) if (i)



� is an equilibrium of the entry stage, given �

�(:) and (ii) �(C) 2 C
n is an

iteratively weakly undominated Nash equilibrium in the voting subgame, for

every C � N .

It is helpful for future reference to state the equilibrium entry conditions in

either case, which are �rst, that i 2 C must prefer to enter, given �
� i.e.

ui(�
�(C�

=fig); C�
=fig) � ui(�

�(C�); C�)� Æ; i 2 C
� (1)

and second, that any j =2 C must prefer not to enter, given �
� i.e.

uj(�
�(C�

[ fkg); C�
[ fkg)� Æ � uj(�

�(C�); C�); j =2 C
� (2)

Finally, we state the assumptions we need (in addition to those made by

Besley and Coate(1997)) for our analysis. First, we assume a \no indi�erence

over lotteries" condition i.e.

NI. ui(W ) 6= ui(W
0); for all i and all W 6= W

0
; W;W

0 � N:

This condition ensures that the order of deletion of weakly dominated

strategies does not matter6, and thus implies that is important to ensure that

the solution concept we use is well de�ned. Our second assumption, already

made above, and purely for convenience, is that voters cannot abstain.

3 Analysis

Let (
�; ��(:)) be some WUPE, and let C(
�) = C
� be the equilibrium

set of candidates given entry decisions 
�: We will show that as long as

#C� � 3; for any WUPE with equilibrium candidate set C�
; and winset

W (C�
; �

�(C�)); there is a IWUPE (
��; ���(:)) with the same equilibrium

set of candidates and the same winset - and therefore the same outcome in

terms of policy chosen and political representation.

6That is, the calculation ofA1 does not depend on the order in which weakly dominated

strategies are deleted. See Marx and Swinkels (1997).
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We proceed as follows. First, ���(:) must generate the same winset as

�
�(:) when the candidate set is the equilibrium one:

W (C; ���(C�)) = W (C; ��(C�)) (3)

Second, the incentives to enter must be the same in the original WUPE and

the constructed IWUPE. That is, the entry conditions (1),(2) must continue

to hold when �
� is replaced by �

�� i.e.

ui(�
��(C�

=fig); C�
=fig) � ui(�

��(C�); C�)� Æ; i 2 C
� (4)

uk(�
��(C�

[ fkg); C�
[ fkg)� Æ � uk(�

��(C�); C�); j =2 C
� (5)

So, for any C
� with #C� � 3; we must show that we can construct some

�
�� 2 A

1 such that (3)-(5) hold.

Now let 	 be the set of candidate sets comprising C� and those sets aris-

ing from unilateral deviations from equilibrium entry decisions7. Note that

conditions (3)-(5) impose conditions on �
��(C) when C 2 	: For candidate

sets not in 	; ���(:) can be de�ned arbitrarily, subject to the requirement

that it is an iteratively undominated pro�le. That is, we can set

�
��(C) 2 A

1(C); all C 2 N =	� (6)

where N is the power set of N: Note that (6) is always possible as A1(C) is

always non-empty for all non-empty C:

It is helpful to break our complex task into steps by classifying political

equilibria by the number of candidates. Following Besley and Coate, 1997,

say that a political equilibrium is a m�candidate political equilibrium if m

candidates stand for election in the equilibrium. We �rst have:

7Formally,

	 = fC � N jC = C
�
; C = C

�
=fig; i 2 C

�
; C = C

�
[ fjg; j =2 C

�
g
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Proposition 1. For any 1-candidate WUPE with equilibrium candidate set

C
� = fig; and winset W (C�

; �
�(C�)) = fig; there is a IWUPE (
��; ���(:))

with the same equilibrium set of candidates and the same winset.

Proof. First, ���(:) is de�ned8 on 	 as follows. For C = fig; or C =

fi; jg; j 2 N; set ���(:) = �
�(:): As we have set ���(:) = �

�(:); (3)-(5) hold

from the fact that ��(:) is part of a WUPE. To conclude, we must verify that

�
�(C) is iteratively undominated for all C 2 	: The case C = fig is trivial,

as every voter has only one strategy, so we must have A1(i) = A
1(i) = fign:

In the case C = fi; jg; j 2 N , the only undominated strategy for any voter

is to vote sincerely, so A
1(C) is a singleton, so again iterated deletion does

not reduce it i.e. A1(C) = A
1(C): �

To deal with two-candidate equilibria, we �rst need the following Lem-

mas. Let �(C) be the voting (subgame) with candidate set C: A strict Nash

equilibrium (Harsanyi, 1973) of �(C) is a vector of voting decisions �� where

ui(�
�

i ; �
�

�i ) > ui(�i; �
�

�i) all �i 2 C; �i 6= �
�

i ; all i 2 N: We then have:

Lemma 1. Any strict Nash equilibrium �
� is iteratively undominated i.e.

�
� 2 A

1
:

Proof. A strict Nash equilibrium is a pro�le of pure strategies (��1; �
�

2; :::; �
�

n);

such that each �
�

i is a unique best response to the pro�le ��
�i. Thus, none

of these strategies can be deleted in the �rst round. Moreover if this pro�le

survives for all players at any round k of iterated deletion, they must survive

in round k + 1. This is because iterated deletion means that any player has

the same or fewer strategies at every round, so if a strategy was a unique

best response to a pro�le which survived round k, it will continue to be a

unique best response to this pro�le in round k + 1. �

For the proof of the next Lemma, the following notation will be useful. Let

!�i(��i) be a vector recording the total votes for each candidate; given a

strategy pro�le ��i i.e. when individual i is not included. We suppress

the dependence of !�i on ��i except when needed and refer to !�i as a vote

8Obviously, C=fig = ;; so �(;) is not de�ned.
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distribution. Clearly i's best response to !�i depends only on the information

in !�i.

Lemma 2. Any weakly undominated Nash equilibrium �
�(C) of a voting

game �(C); where #W (��; C) > 1 is a iteratively weakly undominated

Nash equilibrium, and remains so even in �(C [ fkg) for any k 62 C:

Proof. Since all candidates in W (��; C) are tied, i.e. !i = !j; 8i; j 2

W (��; C); it follows that every voter is pivotal between all elements of

W (�;C). Clearly, voting for his best alternative in W (��; C) is a unique

best response for any voter9. Hence any weakly undominated Nash equilib-

rium �
� with #W (��; C) > 1 must be a strict Nash equilibrium. But then by

Lemma 1, ��(C) is also an iteratively weakly undominated Nash equilibrium.

Now consider the game �(C [ fkg). Assume that j is voter i0s most

preferred candidate in W (��; C). The vector of votes i faces given �
�(C) is

such that (w.l.o.g.) !j = !l � 1; 8l 6= j; and j; l 2 W (C): It is suÆcient to

show that voting for candidate k is not a best response for i in �(C [ fkg).

Note that n � 3 since #W (C) > 1; so #C > 1: Therefore, n � 4 (otherwise

we cannot have a tie between two candidates in the two candidate game).

Thus, if voter i deviates to k, he would ensure thatW (C[fkg) = W (Cnfjg):

Thus, voting for j remains a unique best response. Thus, ��(C) remains a

strict Nash equilibrium of the game �(C[fkg). Again, by Lemma 1, ��(C) is

also an iteratively weakly undominated Nash equilibrium in �(C [ fkg). �

We now turn to two-candidate WUPE. Note that the entry condition (1)

requires that if there are two candidates, both must be in the winset - oth-

erwise, the one that does not win would withdraw (Besley and Coate(1997).

So, our second result is:

Proposition 2. For any 2-candidate WUPE with equilibrium candidate

set C
� = fi; jg; and winset W (C�

; �
�(C�)) = fi; jg; there is an IWUPE

(
��; ���(:)) with the same equilibrium set of candidates and the same win-

set.

9This also implies, given our NI condition, that all voters will vote for their best

alternative in W (C).

9



Proof. First, ���(:) is de�ned10 on 	 as follows. For C = C
�
; or C = C

�
=fig;

i 2 C
�
; set ���(:) = �

�(:): For C = C
� [ fkg; k =2 C

�
; set ���(C� [ fkg) =

�
�(C�): Note that by construction, (3),(4) are satis�ed. Also, note that (5)

is satis�ed. First, note that

W (C�
[ fkg; �

��(C�
[ fkg)) =W (C�

[ fkg; �
�(C�)) = W (C�

; �
�(C�)) (7)

i.e. given �
��
; the winner is unchanged if k enters: So, from (7),

uk(�
��(C�

[ fkg); C�
[ fkg) = uk(�

�(C�); C�)

and consequently (5) holds as Æ > 0:

Again, to conclude, we must verify that ��(C) is iteratively undominated

for all C 2 	: For C = C
�
; or C = C

�
=fig; i 2 C

�, an argument identical to

the proof of Proposition 1 shows this. For C = C
� [ fkg; Lemma 2 implies

that ��(C) is an iteratively undominated voting pro�le in the game �(C�[k);

as required. �

We now turn to the most complex case, that of 3-candidate WUPE. First,

with three candidates, there may in principle, be one, two or three winners. It

turns out that the case of two winners is impossible under our assumption of

strict preferences. The case of three winners can be dealt with using Lemma

2, following the proof of Proposition 2. However, in the case of one winner,

Lemma 2 no longer applies, and so we must �nd some other argument to

construct an IWUPE with one winner. To illustrate our argument, we �rst

present an example of a 3-candidate WUPE with one winner where we can

�nd an IWUPE with the same outcome.

We need the following notation and lemma before this example. Fix some

candidate set C with #C = 3: Let Ni be the set of voters who rank candidate

i 2 C as worst, with ni = #Ni. Let q = maxl2C fnl=ng, and let wi denote

citizen i
0
s worst candidate in C; all i 2 N . Now de�ne a critical value of q

as:

qn =

(
1� 1

n
�

1
n
d
n+1
3
e; nodd

1� 1
n
dn+2

3
e; n even

(8)

10Obviously, C=fig = ;; so �(;) is not de�ned.
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where dxe denotes the smallest integer larger than x; and bxc denotes the

largest integer smaller than x: Finally, in this section, we assume that n �

4:11 We then have the following useful result, constructed from various results

of Dhillon and Lockwood, 2000:

Lemma 3. Assume #C = 3: If q � qn, then any weakly undominated

strategy pro�le in �(C) is also iteratively weakly undominated i.e. A1(C) =

A
1(C): Moreover, A1(C) is a subset of the set of iteratively undominated

strategy pro�les in �(C [ flg) i.e. A1(C) � A
1(C [ flg):

Proof. Every �i 2 C except �i = wi is weakly undominated in C; so

A
1(C) = �i(C=wi) (Dhillon and Lockwood, Lemma 1). Moreover, by Theo-

rem 2 of Dhillon and Lockwood, as q � qn; A
1(C) = �i(C=wi): So,A

1(C) =

A
1(C) as required. Finally, consider �(C [ flg): De�ne the full reduction of

(C [ flg)n; V = �iVi; to be the set of strategy pro�les where every �i 2 Vi

is iteratively undominated relative to V (Marx and Swinkels(1997)). Then,

by de�nition, V = A
1(C [ flg): We will show that A1(C) � V: To do this,

it is suÆcient to show (i) that every �i 2 C=wi is undominated relative to

(C[flg)n and (ii)it remains undominated in every subsequent stage of dele-

tion. In turn, it is suÆcient to show that every �i is a unique best response

in C [ flg to some ��i in (C [ flg)n�1; and that it remains a unique best

response in any subsequent stage of iterated deletion.

To prove this, let ~�i 2 C=wi: As ~�i 2 A
1(C); there exists ~��i 2 A

1

�i(C)

such that ~�i is the unique best response in A
1

i (C) to ~��i. Note that the

support of the set A1(C) consists of pure strategies that are a unique best

response to some pro�le which is also in A1(C): Thus, consider the �rst stage

of iterated deletion in the game �(C [ flg). We know that the set A1(C)

� A
1(C [ flg); because A1(C) = A

1(C) � A
1(C [ flg). Thus no strategy

in A1(C) is deleted in the �rst round if we can show that ~�i continues to be

the unique best response in A1

i (C) (and hence in A1(C [flg)) to ~��i; when

voter i can also choose l:

To see this, let ~�i = j and note that since q � qn for �(C), ~�i is a

11This is w.l.o.g since we only need this for the proof of the main Propositions.
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unique best response to the pro�le ~��i where i is pivotal between exactly

two alternatives w.l.o.g fi; jg � C. Thus, the vote distribution !�i(~��i)

must have one of the two alternatives (i; j) in C getting two or more votes

when n � 4: So, voting �i = l in response to ~��i cannot a�ect the outcome,

and so ~�i remains a unique best response in �(C [ flg) to ~��i: This proves

that every pure strategy in the support of A1 remains a unique best response

in A1(C [ flg). In particular, the strategy pro�le ~��i also cannot be deleted

in the �rst round.

Moreover, if ~�i; ~��i; are not deleted in the �rst round they cannot be deleted

in any subsequent round since no new strategies are added. �

This is a powerful result which allows treatment of the 3-candidate case.

Example

There are eight citizens with preferences over N as follows:

1 : 1 � 8 � 5 � 3 � 2 � 4 � 6 � 7

2 : 2 � 8 � 1 � 3 � 5 � 4 � 6 � 7

3 : 3 � 8 � 5 � 1 � 2 � 4 � 6 � 7

4 : 4 � 8 � 5 � 3 � 1 � 2 � 6 � 7

5 : 5 � 8 � 1 � 3 � 2 � 4 � 6 � 7

6 : 6 � 8 � 1 � 3 � 5 � 2 � 4 � 7

7 : 7 � 8 � 1 � 3 � 5 � 2 � 4 � 6

8 : 8 � 5 � 3 � 1 � 2 � 4 � 6 � 7

Let (
�; ��(:)) represent a WUPE in this game, with an equilibrium set of

3 candidates C
� = f1; 3; 5g; and one winner, W (C�

; �
�(C�)) = f5g: We

will �rst describe ��(:) and verify that it does induce the equilibrium entry

decisions. Then, we will show that there is an IWUPE with the same set of

candidates and winset.

Description of �
�(:)
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First, �(C�) = (5; 1; 5; 5; 5; 1; 3; 5); thus candidate 5 wins. This is a Nash

equilibrium, since no voter is pivotal, and moreover, the pro�le is undomi-

nated (�(C�) 2 A
1(C�)) as no-one votes for their worst candidate.

Voting pro�les and winsets in all the two candidate games generated by

withdrawal of one of the equilibrium candidates are as follows:

�(C�
=f1g) = (5; 3; 3; 5; 5; 3; 3; 5); W (C�

=f1g) = f3; 5g

�(C�
=f3g) = (1; 1; 5; 5; 5; 1; 1; 5); W (C�

=f3g) = f1; 5g

�(C�
=f5g) = (1; 1; 3; 3; 1; 1; 1; 3); W (C�

=f5g) = f1g

It is clear that withdrawal is suboptimal for all candidates. For example,

if candidate 1 withdraws, he gets a lottery over 3 and 5 which is worse for

him than 5: Finally, note that all these voting pro�les are undominated Nash

equilibrium ones, as there are only two alternatives and voting is sincere.

Next, note that if ��(C) 2 A
1(C [ fjg); j = 2; 4; 6; 7; then j cannot win in

�(C [ fjg): This is because j is ranked worst in C [ fjg = f1; 3; 5; jg by all

players except j himself, an is a dominated strategy to vote for one's worst

alternative. So, in equilibrium, j = 2; 4; 6; 7 will not enter, as required.

Finally, consider subgame �(C�[f8g):We set �(C�[f8g) = �(C�): This

is an undominated Nash equilibrium, as shown above. Moreover, W (C� [

f8g) = f5g; so that 8 has no incentive to enter, as required.

Construction of the Equivalent IWUPE

Let ���(:) � �
�(:) on 	: It is then obvious that ��� induces the same

entry behavior as ��:It remains to check that ���(C) is iteratively undom-

inated for all C 2 	. First, in �(C�), note from (8) that q(C�) = 3=8 <

q
3
8 = 1=2: Hence by Lemma 3 above, ��(C�) 2 A

1(C�) for all i. Next, in

�(C�
=fig); �

� is iteratively undominated, as there are only two alterna-

tives (formally, ��(C=fig) 2 A
1(C=fig); i 2 C). Finally, in �(C� [ flg);

�
�(C) 2 A

1(C) = A
1(C� [ flg); again by Lemma 3. k

We ncan generalise the arguments used in this example to prove:

Proposition 3. For any 3-candidateWUPE there is an IWUPE (
��; ���(:))

with the same equilibrium set of candidates and the same winset.
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Proof of Proposition 3. We divide the proof into three parts: (A) where

three candidates win, (B) where two candidates win and (C) where only one

candidate wins.

(A) Assume that C� = fi; j; kg; W (C�) = C
�
: Now de�ne �

��(:) on 	 as

follows. For C = C
�
; or C = C

�
=flg; l 2 C

�
; set �

��(:) = �
�(:): For

C = C
� [ fmg; m =2 C

�
; set ���(C� [ fmg) = �

�(C�): Then, by an identical

argument to that of the proof of Proposition 2, (3),(4),(5) are satis�ed.

Again, to conclude, we must verify that ���(C) is iteratively undominated

in �(C) for all C 2 	: Since W (C�) = C
�
; #W (C) > 1 so by Lemma

2, ��(C�) is an iteratively weakly undominated Nash equilibrium in �(C�)

and remains so even in �(C� [ fkg) for any k 62 C: This leaves the two

candidate games �(C=flg); l = i; j; k : here there is nothing to prove as

with two alternatives, an undominated Nash equilibrium is also iteratively

undominated.

Case(B): We show that a 3-candidate WUPE where two candidates tie is

impossible in our framework with strict preferences. Suppose that such a

WUPE exists: C
� = fi; j; kg; W (C�) = fi; jg: Then we must have i; j

getting equal numbers of votes. Since votes are split equally between two

candidates, n � 4 (since there are three citizen candidates) and n is even.

Moreover, all voters are pivotal, so the unique best response for a voter is

to vote for her preferred alternative in fi; jg: So, we know exactly half the

voters prefer i to j and vice versa.

Also, since this is a WUPE, the entry conditions for the three candidates

are satis�ed. For i; j this implies that entry costs are suÆciently low, and for

candidate k it must be that the outcome if he does not enter is less preferred

by him to a tie between i; and j. W.l.o.g. let W (C�
=fkg) = fig; and let

k prefer j to i: This implies that in �(fi; jg); i wins. In turn since only

equilibria with sincere voting are possible in the two candidate voting game,

this implies that a majority of citizens prefer i to j, a contradiction. So, case

(B) cannot arise.

Case (C). Assume that C� = fi; j; kg; W (C�) = fig: We prove �rst that in

14



this case there must be at least 4 voters:

Claim 1: If a three candidate WUPE in case (C) exists, then n � 4.

Proof in the Appendix

Now de�ne ���(:) on 	 as follows. ForC = C
�
; or C = C

�
=flg; l 2 C

�
; set

�
��(:) = �

�(:): For C = C
� [ fmg; m =2 C

�
; set ���(C� [ fmg) = �

�(C�):

It is clear from the construction of ��� that ��� gives the "correct" entry

incentives i.e. (3),(4),(5) are satis�ed.

We now take all the voting sub-games �(C); C 2 	 in turn, and show

that ���(C) is indeed iteratively undominated in these games.

1. �(C�
=flg); l 2 C

�
: As �(C�

=flg) is a two-candidate game, ��(C�
=flg) is

clearly iteratively undominated.

2. �(C�): First, we show that in this game, q(C�) � qn: We show this by the

following two Claims:

Claim 2: nj(C
�) � dn=2e and nk(C

�) � dn=2e:

Claim 3: ni(C
�) � n� dn+4

3
e

These two claims are proved in the Appendix. Now, by de�nition, and from

the Claims,

q(C�) = maxf
ni(C

�)

n
;
nj(C

�)

n
;
nk(C

�)

n
g = maxf

n

2
; n�d

n + 4

3
eg � q

3
n

where the last inequality follows by inspection of (8). So, by Lemma 3,

A
1(C�) = A

1(C�): So, ��(C�) 2 A
1(C�) as required:

3. �(C� [ l); for any l =2 C
�. By Lemma 3, �(C� [ flg); ��(C) 2 A

1(C) �

A
1(C� [ flg); so again �

��(C� [ flg) 2 A
1(C� [ flg) as required. �

4 Conclusion

In this paper we show that we cannot re�ne the set of WUPE outcomes

for one, two and three candidate (pure strategy) equilibria . Intuitively it

is easy to see why re�nements become easier with the four candidate case.

Consider WUPE where one candidate wins in a four candidate race. Unlike

15



the entry conditions in the three candidate case, the entry conditions in the

four candidate case involve three candidates (and 5 candidates) and hence

may involve insincere voting, thus imposing fewer restrictions on preferences

(e.g. in the example we needed n1; n3 � n=2). In the proof of Proposition

3 above, since two candidate elections involve sincere voting only, nj and nk

were restricted to be less than half of n. Such a restriction would not arise

in the four candidate case, and it is easy to �nd WUPE outcomes that are

not supported by any IWUPE.
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Appendix

Proof of Claim 1. It is suÆcient to show that if a WUPE exists, then

n > 3; since there are three candidates. Let the three citizen candidates be

i; j; k: Let W (C) = fig as before. Suppose to the contrary that a WUPE

exists with n = 3. Since a WUPE exists, i enters because he wins against

the other two. Thus in �(C), ni � 1. Moreover, j (k) enters because he

prefers i to k (j) and it must be that �(C�fjg) = k (�(C�fkg) = j): since

n = 3 two candidates cannot tie. Thus nj; nk � 1. Thus ni = nj = nk = 1.

W.l.o.g let Ni = fjg { this is a contradiction to the entry condition for j (i.e.

j prefers i to k). �

Proof of Claim 2. Since a WUPE exists, candidates j; k must have some in-

centive to enter. In particular, we cannot have W (C�
=fjg) = fig (otherwise

from (1), j would not enter), so (i) W (C�
=fjg) = fkg or fi; kg and more-

over, j must prefer i to k; otherwise gain, j would not enter. A symmetric

argument implies that (ii) W (C�
=fkg) = fjg or fi; jg:

Since the only undominated Nash equilibrium with in two candidates is

sincere voting, (i) and (ii) imply that at least half the voters prefer j to i

and at least half the voters prefer k to i: So, no more than half the voters can

rank either j or k as worst. �

Proof of Claim 3. Since there is a WUPE where i is the unique equilibrium

outcome in the game with three candidates, it must be that a suÆciently

large number of voters have i as a top or second ranked alternative among

the three i.e. ni must be suÆciently low. We look for the maximum ni that

is compatible with i being a unique winner. Thus, we can assume that all

!i = n�ni i.e. all n�ni voters vote for i. Note that in such an equilibrium,

by the example we have maxni > 0.

In such an equilibrium it must be true either that (i) !i � max(!j; !k)+2

or that (ii) only two candidates i, j get any votes at all. To see this, suppose

�rst that (i) is not true. Then the vote pro�le is w.l.o.g !i = !; !j = ! � 1

and !k � ! � 1. Consider any voter m 2 Ni: It is suÆcient to show that no

voter would vote for k { thus assume he votes for k. Then he faces a vote
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pro�le !�i such that (a) !i = !; !j = ! � 1 and !k � ! � 2. But then he is

strictly better o� voting for j since that ensures a tie.

Thus, in case (ii) the only case in which i can emerge a unique winner is if

all m 2 Ni vote for j and the maximum votes that j can get (= n � nj) is

strictly less than ! = n � ni. This implies, ni < nj: But this is impossible

(Claim 1 { in the 2 candidate game between i; j, j must be in the winning

set).

It remains to check case (i) i.e. the pro�le !i � max(!j; !k) + 2. Thus we

have the following constraints12:

!i = (n� ni) � max(!j; !k) + 2 (9)

max(!j; !k) = d
ni

2
e (10)

Combining the two, we have:

d
3ni

2
e � n� 2 (11)

From inequality (11) and the requirement that ni is an integer we have:

d
2

3
(n� 2)e � ni (12)

Thus:
ni

n
�

1

n
b
2(n� 2)

3
c = �

Note that b
2(n�2)

3
c is an integer if and only if dn+4

3
e is an integer. Hence

b
2(n�2)

3
c +dn+4

3
e = n ; 8n; from which we get:

� = 1�
1

n
d
n+ 4

3
e (13)

But then (12) and (13) yield the right result. �

12Thanks are due to an anonymous referee who suggested this part of the proof.
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