Assignment 1 EC9D3 Advanced Microeconomics

1. Show that the utility function

$$
u\left(x_{1}, x_{2}\right)=k\left(x_{1}-a\right)^{\alpha}\left(x_{2}-b\right)^{\beta},
$$

where $k, a, b, \alpha, \beta>0$, represents the same preferences as the utility function

$$
\begin{equation*}
u\left(x_{1}, x_{2}\right)=\delta \ln \left(x_{1}-a\right)+(1-\delta) \ln \left(x_{2}-b\right) \tag{1}
\end{equation*}
$$

where $\delta=\frac{\alpha}{\alpha+\beta}$.
2. Assume that the consumer's preferences over the consumption bundles $\left(x_{1}, x_{2}\right)$ are represented by the utility function $u\left(x_{1}, x_{2}\right)$ given in (1). Let prices be $\left(p_{1}, p_{2}\right)$ and let income be m. Assume that $m>p_{1} a+p_{2} b$.
(i) By maximizing utility subject to the budget constraint

$$
p_{1} x_{1}+p_{2} x_{2} \leq m,
$$

find the Marshallian demands $x_{i}(p, m), i=1,2$.
(ii) From your results in (i), show that the indirect utility function is given by

$$
\begin{aligned}
v(p, m)= & \ln (\\
& \left(m-a p_{1}-b p_{2}\right)+\delta \ln \delta+ \\
& +(1-\delta) \ln (1-\delta)-\delta \ln p_{1}-(1-\delta) \ln p_{2}
\end{aligned}
$$

(iii) By minimizing expenditure subject to the utility constraint $u\left(x_{1}, x_{2}\right) \geq U$, find the Hicksian demands $h_{i}(p, U), i=1,2$.
(iv) From your results in (iii), show that the expenditure function is given by

$$
\begin{equation*}
e(p, U)=a p_{1}+b p_{2}+e^{U} \delta^{-\delta}(1-\delta)^{-(1-\delta)} p_{1}^{\delta} p_{2}^{(1-\delta)} \tag{2}
\end{equation*}
$$

(v) Interpret a and b. Why do we need to assume that $m>\left(p_{1} a+p_{2} b\right)$?
3. A consumer lives in a three-goods economy (goods A, B and C), faces prices $\left(p_{A}, p_{B}, p_{C}\right)$ and has income m. The consumer's demand functions for A and B are given by:

$$
\begin{align*}
x_{A} & =\alpha_{0}+\alpha_{1} \frac{p_{A}}{p_{C}}+\alpha_{2} \frac{p_{B}}{p_{C}}+\alpha_{3} \frac{m}{p_{C}} \tag{3}\\
x_{B} & =\beta_{0}+\beta_{1} \frac{p_{A}}{p_{C}}+\beta_{2} \frac{p_{B}}{p_{C}}+\beta_{3} \frac{m}{p_{C}} \tag{4}
\end{align*}
$$

(i) Indicate how to find the demand function for C.
(ii) Are (3) and (4) appropriately homogeneous?

At one set of prices and income, $x_{A}=1$ and $x_{B}=2$. At another set of prices $x_{A}=1$ and $x_{B}=1$.
(iii) What is the income elasticity of demand for A ?
4. A consumer with income m buys three goods A, B and C, whose prices are, respectively, p_{A}, p_{B}, and p_{C}. In the relevant range for this problem, the consumer's Marshallian demand for A is given by:

$$
x_{A}=\alpha+\beta \frac{p_{A}}{p_{C}}+\gamma \frac{p_{B}}{p_{C}}+10 \frac{m}{p_{C}}
$$

When income is $m=10$ and prices $p_{A}=p_{B}=p_{C}=1$, the consumer buys 2 units of $A, 3$ units of B and 5 units of C.
(i) What restrictions, if any, can be put on β ?
(ii) If B and C are complements, what restriction, if any, can be put on γ ?

