EC9D3 Advanced Microeconomics

Additional Questions - Set 2

1. Ms. A's monthly budget is entirely spent on apples and oranges. Here are her consumption patterns for two months:

	September	October
apple price	3	8
orange price	4	6
apple consumption	4	3
orange consumption	3	4

Is the consumption behaviour consistent with the utility maximization model?
2. A consumer in a three-commodity environment (x, y, z) behaves as follows.

- when prices are $p_{x}=1, p_{y}=1$ and $p_{z}=1$ the consumer buys $x=1$, $y=2$ and $z=3 ;$
- when prices are $p_{x}=4, p_{y}=6$ and $p_{z}=4$ the consumer buys $x=3$, $y=2$ and $z=1$.

Does the consumer maximize a strictly quasi-concave utility function? Why?
3. Does the input requirement set

$$
V(y)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}+\min \left\{x_{2}, x_{3}\right\} \geq 3 y, x_{i} \geq 0 \forall i=1,2,3\right\}
$$

corresponds to a regular (closed and non-empty) input requirement set?
Does the technology satisfies free disposal? Is the technology convex?
4. Let $c(w, y)=\left(a w_{1}+b w_{2}\right) y^{\frac{1}{2}}$ be a cost function. Derive its production function and draw a representative family of isoquants.

Answers

1. The consumption behaviour is indeed consistent with the utility maximization model.

First, observe that if does not contradicts the Weak Axiom of Revealed Preferences. In fact, let $t=1=$ September and $t=2=$ October and denote $p^{1}=(3,4), p^{2}=(8,6), x^{1}=\binom{4}{3}, x^{2}=\binom{3}{4}, m^{1}=p^{1} x^{1}=24$ and $m^{2}=p^{2} x^{2}=48$. Then we get:

$$
p^{1} x^{2}=25>m^{1}
$$

and

$$
p^{2} x^{1}=50>m^{2} .
$$

This observation does not prove the consistency with consumption behaviour.

However, a firm proof exists here. In fact, notice that Ms. A's consumption behaviour of both September and October could be obtained from preferences represented by the Cobb-Douglas utility function $u\left(x_{a}, x_{o}\right)=$ $\ln x_{a}+\ln x_{o}$.
2. The consumption behaviour is not consistent with the utility maximization of a quasi-concave utility function subject to budget constraint.

In fact, let $t=1=$ September and $t=2=$ October and denote $p^{1}=$ $(1,1,1), p^{2}=(4,6,4), x^{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), x^{2}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right), m^{1}=p^{1} x^{1}=6$ and $m^{2}=p^{2} x^{2}=28$. We get:

$$
p^{1} x^{2}=6=m^{1}
$$

and

$$
p^{2} x^{1}=28=m^{2} .
$$

These two equality represent a violation of the Weak Axiom for a quasi concave utility function.
3. The input requirement set

$$
V(y)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}+\min \left\{x_{2}, x_{3}\right\} \geq 3 y, x_{i} \geq 0 \forall i=1,2,3\right\}
$$

has the following graphical representation:

which shows that it is clearly closed, non-empty. As for convexity consider
two input vectors, $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \in V(y)$ and $\left(x_{1}, x_{2}, x_{3}\right) \in V(y)$, by definition of $V(y)$ we have: $x_{1}^{\prime}+\min \left\{x_{2}^{\prime}, x_{3}^{\prime}\right\} \geq 3 y$ and $x_{1}+\min \left\{x_{2}, x_{3}\right\} \geq 3 y$. Consider now the input vector $\left(z_{1}, z_{2}, z_{3}\right)=\lambda\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)+(1-\lambda)\left(x_{1}, x_{2}, x_{3}\right)$ and $z_{1}+\min \left\{z_{2}, z_{3}\right\}$. Clearly
$z_{1}+\min \left\{z_{2}, z_{3}\right\}=\lambda x_{1}^{\prime}+(1-\lambda) x_{1}+\min \left\{\lambda x_{2}^{\prime}+(1-\lambda) x_{2}, \lambda x_{3}^{\prime}+(1-\lambda) x_{3}\right\}$

Consider first the case $\lambda x_{2}^{\prime}+(1-\lambda) x_{2} \geq \lambda x_{3}^{\prime}+(1-\lambda) x_{3}$ then
$z_{1}+\min \left\{z_{2}, z_{3}\right\}=\lambda x_{1}^{\prime}+(1-\lambda) x_{1}+\lambda x_{2}^{\prime}+(1-\lambda) x_{2}=\lambda\left(x_{1}^{\prime}+x_{2}^{\prime}\right)+(1-\lambda)\left(x_{1}+x_{2}\right)$

$$
\geq \lambda\left(x_{1}^{\prime}+\min \left\{x_{2}^{\prime}, x_{3}^{\prime}\right\}\right)+(1-\lambda)\left(x_{1}+\min \left\{x_{2}, x_{3}\right\}\right) \geq 3 y
$$

A symmetric argument applies for the case $\lambda x_{3}^{\prime}+(1-\lambda) x_{3} \geq \lambda x_{2}^{\prime}+(1-\lambda) x_{2}$. For what it concern free disposal this property is equivalent to the monotonicity of the production function:

$$
F\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+\min \left\{x_{2}, x_{3}\right\} .
$$

Consider an input vector $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \geq\left(x_{1}, x_{2}, x_{3}\right)$. By definition of inequality between vectors: $x_{i}^{\prime} \geq x_{i}$ for every $i \in\{1,2,3\}$. It then follows that $f\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \geq f\left(x_{1}, x_{2}, x_{3}\right)$.
4. By Shephard's Lemma we obtain:

$$
\frac{\partial c}{\partial w_{1}}=a y^{\frac{1}{2}}=x_{1}(w, y)
$$

and

$$
\frac{\partial c}{\partial w_{2}}=b y^{\frac{1}{2}}=x_{2}(w, y)
$$

then

$$
y=f\left(x_{1}, x_{2}\right)=\min \left\{\left(\frac{x_{1}}{a}\right)^{2},\left(\frac{x_{2}}{b}\right)^{2}\right\}
$$

and the family of isoquants is represented in the following figure:

