EC9D3 Advanced Microeconomics, Part I: Lecture 2

Francesco Squintani

August, 2020

Budget Set

- Up to now we focused on how to represent the consumer's preferences.
- We shall now consider the sour note of the constraint that is imposed on such preferences.

Definition (Budget Set)

The consumer's budget set is:

$$
\mathcal{B}(p, m)=\{x \mid(p x) \leq m, x \in X\}
$$

Budget Set (2)

Income and Prices

- The two exogenous variables that characterize the consumer's budget set are:
- the level of income m
- the vector of prices $p=\left(p_{1}, \ldots, p_{L}\right)$.
- Often the budget set is characterized by a level of income represented by the value of the consumer's endowment x_{0} (labour supply):

$$
m=\left(p x_{0}\right)
$$

Utility Maximization

The basic consumer's problem (with rational, continuous and monotonic preferences):

$$
\begin{array}{ll}
\max _{\{x\}} & u(x) \\
\text { s.t. } & x \in \mathcal{B}(p, m)
\end{array}
$$

Result

If $p>0$ and $u(\cdot)$ is continuous, then the utility maximization problem has a solution.

Proof: If $p>0$ (i.e. $p_{I}>0, \forall I=1, \ldots, L$) the budget set is compact (closed, bounded) hence by Weierstrass theorem the maximization of a continuous function on a compact set has a solution.

First Order Condition

Result

If $u(\cdot)$ is continuously differentiable, the solution $x^{*}=x(p, m)$ to the consumer's problem is characterized by the following necessary conditions. There exists a Lagrange multiplier λ such that:

$$
\begin{gathered}
\nabla u\left(x^{*}\right) \leq \lambda p \\
x^{*}\left[\nabla u\left(x^{*}\right)-\lambda p\right]=0 \\
p x^{*} \leq m \\
\lambda\left[p x^{*}-m\right]=0 .
\end{gathered}
$$

where

$$
\nabla u\left(x^{*}\right)=\left[u_{1}\left(x^{*}\right), \ldots, u_{L}\left(x^{*}\right)\right] .
$$

First Order Condition (2)

Meaning that $\forall I=1, \ldots, L$:

$$
u_{l}\left(x^{*}\right) \leq \lambda p_{l}
$$

and

$$
x_{l}^{*}\left[u_{l}\left(x^{*}\right)-\lambda p_{l}\right]=0
$$

That is if $x_{l}^{*}>0$ then $u_{l}\left(x^{*}\right)=\lambda p_{l}$ while if $u_{l}\left(x^{*}\right)<\lambda p_{I}$ then $x_{l}^{*}=0$.
Moreover

$$
\sum_{l=1}^{L} p_{l} x_{l}^{*} \leq m, \quad \text { and } \quad \lambda\left[\sum_{l=1}^{L} p_{l} x_{l}^{*}-m\right]=0
$$

First Order Condition (3)

In other words:

- if $\lambda>0$ then

$$
\sum_{I=1}^{L} p_{I} x_{l}^{*}=m
$$

- if

$$
\sum_{I=1}^{L} p_{I} x_{I}^{*}<m
$$

then $\lambda=0$

- If preferences are strongly monotonic (or locally non-satiated) then

$$
\sum_{I=1}^{L} p_{I} x_{l}^{*}=m
$$

First Order Condition (4)

In the case $L=2$ and $X=\mathbb{R}_{+}^{2}$ these conditions are:

$$
\begin{aligned}
& \text { if } x_{1}^{*}>0 \text { and } x_{2}^{*}>0 \text { then } \frac{u_{1}}{u_{2}}=\frac{p_{1}}{p_{2}} \\
& \text { if } \frac{u_{1}}{u_{2}}<\frac{p_{1}}{p_{2}} \text { then } x_{1}^{*}=0 \text { and } x_{2}^{*}>0 \\
& \text { if } \frac{u_{1}}{u_{2}}>\frac{p_{1}}{p_{2}} \text { then } x_{1}^{*}>0 \text { and } x_{2}^{*}=0
\end{aligned}
$$

Interior Solution $L=2$

Corner Solution $L=2$

Sufficient Conditions

- The conditions we stated are merely necessary.
- What about sufficient conditions?

Result

If $u(\cdot)$ is quasi-concave and monotone,

$$
\nabla u(x) \neq 0 \quad \text { for all } \quad x \in X
$$

then the Kuhn-Tucker first order conditions are sufficient.

Sufficient Conditions (2)

Result

If $u(\cdot)$ is not quasi-concave then a $u(\cdot)$ locally quasi-concave at x^{*}, where x^{*} satisfies FOC, will suffice for a local maximum.

- Local (strict) quasi-concavity can be verified by checking whether the determinants of the bordered leading principal minors of order

$$
r=2, \ldots, L
$$

of the Hessian matrix of $u(\cdot)$ at x^{*} have the sign of

$$
(-1)^{r}
$$

Sufficient Conditions (3)

- The Hessian is:

$$
H=\left(\begin{array}{ccc}
\frac{\partial^{2} u}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} u}{\partial x_{1} \partial x_{L}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} u}{\partial x_{1} \partial x_{L}} & \cdots & \frac{\partial^{2} u}{\partial x_{L}^{2}}
\end{array}\right)
$$

- The bordered leading principal minor of order r of the Hessian is:

$$
\left(\begin{array}{cc}
H_{r} & {\left[\nabla u\left(x^{*}\right)\right]_{r}^{T}} \\
{\left[\nabla u\left(x^{*}\right)\right]_{r}} & 0
\end{array}\right)
$$

H_{r} is the leading principal minor of order r of the Hessian matrix H and $\left[\nabla u\left(x^{*}\right)\right]_{r}$ is the vector of the first r elements of $\nabla u\left(x^{*}\right)$.

Marshallian Demands

Definition (Marshallian Demands)

The Marshallian or uncompensated demand functions are the solution to the utility maximization problem:

$$
x=x(p, m)=\left(\begin{array}{c}
x_{1}\left(p_{1}, \ldots, p_{L}, m\right) \\
\vdots \\
x_{L}\left(p_{1}, \ldots, p_{L}, m\right)
\end{array}\right)
$$

Notice that strong monotonicity of preferences implies that the budget constraint will be binding when computed at the value of the Marshallian demands. (building block of Walras Law)

Indirect Utility Function

Definition

The function obtained by substituting the Marshallian demands in the consumer's utility function is the indirect utility function:

$$
V(p, m)=u\left(x^{*}(p, m)\right)
$$

We derive next the properties of the indirect utility function and of the Marshallian demands.

Properties of the Indirect Utility Function

(1) $\frac{\partial V}{\partial m} \geq 0$ and $\frac{\partial V}{\partial p_{i}} \leq 0$ for every $i=1, \ldots, L$.
(2) $V(p, m)$ continuous in (p, m).

It rules out situations in which the consumption feasible set is non-convex (e.g. indivisibility).

Properties of the Indirect Utility Function (2)

(3) $V(p, m)$ homogeneous of degree 0 in (p, m).

Definition

$F(x)$ is homogeneous of degree r iff $F(k x)=k^{r} F(x) \quad \forall k \in \mathbb{R}_{+}$

Proof: Multiply both the vector of prices p and the level of income m by the same positive scalar $\alpha \in \mathbb{R}_{+}$we obtain the budget set:

$$
\mathcal{B}(\alpha p, \alpha m)=\{x \in X \mid \alpha p x \leq \alpha m\}=\mathcal{B}(p, m)
$$

hence the indirect utility (and Marshallian demands) are the same.

Properties of the Indirect Utility Function (3)

(9) $V(p, m)$ is quasi-convex in p, that is:

$$
\{p \mid V(p, m) \leq k\}
$$

is a convex set for every $k \in \mathbb{R}$.
Proof: let p, m and p^{\prime}, be such that:

$$
V(p, m) \leq k \quad V\left(p^{\prime}, m\right) \leq k
$$

and $p^{\prime \prime}=t p+(1-t) p^{\prime}$ for some $0<t<1$. We need to show that also $V\left(p^{\prime \prime}, m\right) \leq k$. Define:

$$
\mathcal{B}=\{x \mid(p x) \leq m\} \mathcal{B}^{\prime}=\left\{x \mid\left(p^{\prime} x\right) \leq m\right\} \mathcal{B}^{\prime \prime}=\left\{x \mid\left(p^{\prime \prime} x\right) \leq m\right\}
$$

Properties of the Indirect Utility Function (4)

Claim

It is the case that:

$$
\mathcal{B}^{\prime \prime} \subseteq \mathcal{B} \cup \mathcal{B}^{\prime}
$$

Proof: Consider $x \in \mathcal{B}^{\prime \prime}$, then

$$
\begin{aligned}
p^{\prime \prime} x & =\left[t p+(1-t) p^{\prime}\right] x \\
& =t(p x)+(1-t)\left(p^{\prime} x\right) \leq m
\end{aligned}
$$

which implies either $p x \leq m$ or/and $p^{\prime} x \leq m$, or $x \in \mathcal{B} \cup \mathcal{B}^{\prime}$.

Properties of the Indirect Utility Function (5)

Now

$$
\begin{aligned}
V\left(p^{\prime \prime}, m\right) & =\max _{\{x\}} u(x) \quad \text { s.t. } \quad x \in \mathcal{B}^{\prime \prime} \\
& \leq \max _{\{x\}} u(x) \quad \text { s.t. } \quad x \in \mathcal{B} \cup \mathcal{B}^{\prime} \\
& =\max \left\{V(p, m), V\left(p^{\prime}, m\right)\right\} \leq k
\end{aligned}
$$

Since by assumption: $V(p, m) \leq k$ and $V\left(p^{\prime}, m^{\prime}\right) \leq k$.

Properties of the Marshallian Demand $x(p, m)$

(1) $x(p, m)$ is continuous in (p, m), (consequence of the convexity of preferences).
(2) $x_{i}(p, m)$ homogeneous of degree 0 in (p, m).

Proof: Once again if we multiply (p, m) by $\alpha>0$:

$$
\mathcal{B}(\alpha p, \alpha m)=\{x \in X \mid \alpha p x \leq \alpha m\}=\mathcal{B}(p, m)
$$

the solution to the utility maximization problem is the same.

Constrained Envelope Theorem

- Consider the problem:

$$
\begin{aligned}
& \max _{x} f(x) \\
& \text { s.t. } g(x, a)=0
\end{aligned}
$$

- The Lagrangian is: $L(x, \lambda, a)=f(x)-\lambda g(x, a)$
- The necessary FOC are:

$$
\begin{gathered}
f^{\prime}\left(x^{*}\right)-\lambda^{*} \frac{\partial g\left(x^{*}, a\right)}{\partial x}=0 \\
g\left(x^{*}(a), a\right)=0
\end{gathered}
$$

Constrained Envelope Theorem (2)

- Substituting $x^{*}(a)$ and $\lambda^{*}(a)$ in the Lagrangian we get:

$$
\mathcal{L}(a)=f\left(x^{*}(a)\right)-\lambda^{*}(a) g\left(x^{*}(a), a\right)
$$

- Differentiating, by the necessary FOC, we get:

$$
\begin{aligned}
\frac{d \mathcal{L}(a)}{d a}= & {\left[f^{\prime}\left(x^{*}\right)-\lambda^{*} \frac{\partial g\left(x^{*}, a\right)}{\partial x}\right] \frac{d x^{*}(a)}{d a}-} \\
& -g\left(x^{*}(a), a\right) \frac{d \lambda^{*}(a)}{d a}-\lambda^{*}(a) \frac{\partial g\left(x^{*}, a\right)}{\partial a} \\
= & -\lambda^{*}(a) \frac{\partial g\left(x^{*}, a\right)}{\partial a}
\end{aligned}
$$

- In other words: to the first order only the direct effect of a on the Lagrangian function matters.

Properties of the Marshallian Demand $x(p, m)(2)$

(3) Roy's identity:

$$
x_{i}(p, m)=-\frac{\partial V / \partial p_{i}}{\partial V / \partial m}
$$

Proof: By the constrained envelope theorem and the observation:

$$
V(p, m)=u(x(p, m))-\lambda(p, m)[p \times(p, m)-m]
$$

we obtain:

$$
\partial V / \partial p_{i}=-\lambda(p, m) x_{i}(p, m) \leq 0
$$

and

$$
\partial V / \partial m=\lambda(p, m) \geq 0
$$

which is the marginal utility of income.

Properties of the Marshallian Demand $x(p, m)(3)$

Notice: the sign of the two inequalities above prove the first property of the indirect utility function $V(p, m)$.

The proof follows from substituting

$$
\partial V / \partial m=\lambda(p, m)
$$

into

$$
\partial V / \partial p_{i}=-\lambda(p, m) x_{i}(p, m)
$$

and solving for $x_{i}(p, m)$.

Properties of the Marshallian Demand $x(p, m)(4)$

(1) Adding up results: From the identity:

$$
p \times(p, m)=m \quad \forall p, \quad \forall m
$$

Differentiating with respect to m gives:

$$
\sum_{i=1}^{L} p_{i} \frac{\partial x_{i}}{\partial m}=1
$$

while with respect to p_{j} gives:

$$
x_{j}(p, m)+\sum_{i=1}^{L} p_{i} \frac{\partial x_{i}}{\partial p_{j}}=0
$$

Properties of the Marshallian Demand $x(p, m)(5)$

More informatively:

$$
0 \geq \sum_{i=1}^{L} p_{i} \frac{\partial x_{i}}{\partial p_{h}}=-x_{h}(p, m)
$$

which means that at least one of the Marshallian demand function has to be downward sloping in p_{h}.

Consider, now, the effect of a change in income on the level of the Marshallian demand:

$$
\frac{\partial x_{l}}{\partial m}
$$

Properties of the Marshallian Demand $x(p, m)(6)$

In the two commodities graph the set of tangency points for different values of m is known as the income expansion path.

In the commodity/income graph the set of optimal choices of the quantity of the commodity is known as Engel curve.

Income Effect

We shall classify commodities with respect to the effect of changes in income in:

- normal goods:

$$
\frac{\partial x_{1}}{\partial m}>0
$$

- neutral goods:

$$
\frac{\partial x_{1}}{\partial m}=0
$$

- inferior goods:

$$
\frac{\partial x_{1}}{\partial m}<0
$$

Income Effect (2)

Notice that from the adding up results above for every level of income m at least one of the L commodities is normal:

$$
\sum_{I=1}^{L} p_{I} \frac{\partial x_{l}}{\partial m}=1
$$

We also classify commodities depending on the curvature of the Engel curves:

- if the Engel curve is convex we are facing a luxury good
- If the Engel curve is concave we are facing a necessity.

Income Effect (3)

Expenditure Minimization Problem

- The dual problem of the consumer's utility maximization problem is the expenditure minimization problem:

$$
\begin{array}{ll}
\min _{\{x\}} & p x \\
\text { s.t. } & u(x) \geq U
\end{array}
$$

- Define the solution as the Hicksian (compensated) demand functions:

$$
x=h(p, U)=\left(\begin{array}{c}
h_{1}\left(p_{1}, \ldots, p_{L}, U\right) \\
\vdots \\
h_{L}\left(p_{1}, \ldots, p_{L}, U\right)
\end{array}\right)
$$

- We shall also define the expenditure function as:

$$
e(p, U)=p h(p, U)
$$

Properties of the Expenditure Function

(1) $e(p, U)$ is continuous in p and U.
(2) $\frac{\partial e}{\partial U}>0$ and $\frac{\partial e}{\partial p_{I}} \geq 0$ for every $I=1, \ldots, L$.

Proof: $\frac{\partial e}{\partial U}>0$. Suppose it does not hold.
Then there exist $U^{\prime}<U^{\prime \prime}$ such that (denote x^{\prime} and $x^{\prime \prime}$ the, corresponding, solution to the e.m.p.)

$$
p x^{\prime} \geq p x^{\prime \prime}>0
$$

If the latter inequality is strict we have an immediate contradiction of x^{\prime} solving e.m.p.

Properties of the Expenditure Function (2)

If on the other hand

$$
p x^{\prime}=p x^{\prime \prime}>0
$$

then by continuity and strict monotonicity of $u(\cdot)$ there exists $\alpha \in(0,1)$ close enough to 1 such that

$$
u\left(\alpha x^{\prime \prime}\right)>U^{\prime}
$$

Moreover

$$
p x^{\prime}>p \alpha x^{\prime \prime}
$$

which contradicts x^{\prime} solving e.m.p.

Properties of the Expenditure Function (3)

Proof: $\quad \frac{\partial e}{\partial p_{l}} \geq 0$

Consider p^{\prime} and $p^{\prime \prime}$ such that $p_{l}^{\prime \prime} \geq p_{l}^{\prime}$ but $p_{k}^{\prime \prime}=p_{k}^{\prime}$ for every $k \neq I$.

Let $x^{\prime \prime}$ and x^{\prime} be the solutions to the e.m.p. with $p^{\prime \prime}$ and p^{\prime} respectively.

Then by definition of $e(p, U)$

$$
e\left(p^{\prime \prime}, U\right)=p^{\prime \prime} x^{\prime \prime} \geq p^{\prime} x^{\prime \prime} \geq p^{\prime} x^{\prime}=e\left(p^{\prime}, U\right)
$$

that concludes the proof.

Properties of the Expenditure Function (4)

(3) $e(p, U)$ is homogeneous of degree 1 in p.

Proof: The feasible set of the e.m.p. does not change when prices are multiplied by the factor $k>0$:

$$
u(x) \geq U
$$

Hence $\forall k>0$, minimizing $(k p) x$ on this set leads to the same answer.

Let x^{*} be the solution, then:

$$
e(k p, U)=(k p) x^{*}=k e(p, U)
$$

that concludes the proof.

Properties of the Expenditure Function (4)

(9) $e(p, U)$ is concave in p.

Proof: Let $p^{\prime \prime}=t p+(1-t) p^{\prime}$ for $t \in[0,1]$.
Let $x^{\prime \prime}$ be the solution to e.m.p. for $p^{\prime \prime}$.

Then

$$
\begin{aligned}
e\left(p^{\prime \prime}, U\right) & =p^{\prime \prime} x^{\prime \prime}=t p x^{\prime \prime}+(1-t) p^{\prime} x^{\prime \prime} \\
& \geq t e(p, U)+(1-t) e\left(p^{\prime}, U\right)
\end{aligned}
$$

by definition of $e(p, U)$ and $e\left(p^{\prime}, U\right)$ and $u\left(x^{\prime \prime}\right) \geq U$.

Properties of the Hicksian demand functions $h(p, U)$

(1) Shephard's Lemma.

$$
\frac{\partial e(p, U)}{\partial p_{l}}=h_{l}(p, U)
$$

Proof: By constrained envelope theorem.
(2) Homogeneity of degree 0 in p.

Proof: By Shephard's lemma and the following theorem.

Properties of the Hicksian demand functions $h(p, U)(2)$

Theorem

If a function $F(x)$ is homogeneous of degree r in x then $\left(\partial F / \partial x_{l}\right)$ is homogeneous of degree $(r-1)$ in x for every $I=1, \ldots, L$.

Proof: Differentiating with respect to x_{l} the identity, $F(k x) \equiv k^{r} F(x)$, we get:

$$
k \frac{\partial F(k x)}{\partial x_{I}}=k^{r} \frac{\partial F(x)}{\partial x_{I}}
$$

This is the definition of homogeneity of degree $(r-1)$:

$$
\frac{\partial F(k x)}{\partial x_{I}}=k^{(r-1)} \frac{\partial F(x)}{\partial x_{I}} .
$$

Euler Theorem

Theorem (Euler Theorem)

If a function $F(x)$ is homogeneous of degree r in x then:

$$
r F(x)=\nabla F(x) x
$$

Proof: Differentiating with respect to k the identity:

$$
F(k x) \equiv k^{r} F(x)
$$

we obtain:

$$
\nabla F(k x) x=r k^{(r-1)} F(x)
$$

for $k=1$ we obtain:

$$
\nabla F(x) x=r F(x)
$$

Properties of the Hicksian demand functions $h(p, U)(3)$

(3) The matrix of own and cross-partial derivatives with respect to p (Substitution matrix)

$$
S=\left(\begin{array}{ccc}
\frac{\partial h_{1}}{\partial p_{1}} & \cdots & \frac{\partial h_{1}}{\partial p_{L}} \\
\vdots & \ddots & \vdots \\
\frac{\partial h_{L}}{\partial p_{1}} & \cdots & \frac{\partial h_{L}}{\partial p_{L}}
\end{array}\right)
$$

is negative semi-definite and symmetric.

Properties of the Hicksian demand functions $h(p, U)(4)$

Proof: Simmetry follows from Shephard's lemma and Young Theorem:

$$
\frac{\partial h_{I}}{\partial p_{i}}=\frac{\partial}{\partial p_{i}}\left(\frac{\partial e(p, U)}{\partial p_{I}}\right)=\frac{\partial}{\partial p_{I}}\left(\frac{\partial e(p, U)}{\partial p_{i}}\right)=\frac{\partial h_{i}}{\partial p_{I}}
$$

Negative semi-definiteness follows from the concavity of $e(p, U)$ and the observation that S is the Hessian of the function $e(p, U)$.

Identities

Since the expenditure minimization problem is the dual problem of the utility maximization problem the following identities hold:

$$
\begin{gathered}
V[p, e(p, U)] \equiv U \\
e[p, V(p, m)] \equiv m \\
x_{l}[p, e(p, U)] \equiv h_{l}(p, U) \quad \forall I=1, \ldots, L \\
h_{l}[p, V(p, m)] \equiv x_{l}(p, m) \quad \forall I=1, \ldots, L
\end{gathered}
$$

Slutsky Decomposition

Start from the identity

$$
h_{l}(p, U) \equiv x_{l}[p, e(p, U)]
$$

if the price p_{i} changes the effect is:

$$
\frac{\partial h_{I}}{\partial p_{i}}=\frac{\partial x_{I}}{\partial p_{i}}+\frac{\partial x_{I}}{\partial m} \frac{\partial e}{\partial p_{i}}
$$

Notice that by Shephard's lemma:

$$
\frac{\partial e}{\partial p_{i}}=h_{i}(p, U)=x_{i}[p, e(p, U)]
$$

you obtain the Slutsky decomposition:

$$
\frac{\partial x_{1}}{\partial p_{i}}=\frac{\partial h_{I}}{\partial p_{i}}-\frac{\partial x_{I}}{\partial m} x_{i}
$$

Slutsky Equation

Own price effect gives Slutsky equation:

$$
\frac{\partial x_{1}}{\partial p_{l}}=\frac{\partial h_{l}}{\partial p_{l}}-\frac{\partial x_{1}}{\partial m} x_{l} .
$$

Substitution effect:

$$
\frac{\partial h_{l}}{\partial p_{l}}
$$

Income effect:

$$
\frac{\partial x_{l}}{\partial m} x_{l}
$$

Slutsky Equation (2)

Slutsky Equation (3)

We know the sign of the substitution effect it is non-positive.

The sign of the income effect depends on whether the good is normal or inferior.

In particular we conclude that the good is Giffen if

$$
\frac{\partial x_{I}}{\partial p_{l}}>0
$$

This is not a realistic feature: inferior good with a big income effect.

