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Two Steps to Profit Maximization

The profit maximization can be obtained in two sequential steps:

1 Given y , find the choice of inputs that allows the producer to obtain
y at the minimum cost;

This generates conditional factor demands and the cost function;

2 Given the cost function, find the profit maximizing output level.

Step 1 is common to firms that behave competitively in the input market
but not necessarily in the output market.

In step 2 we impose the competitive assumption on the output market.
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Cost Minimization

We shall start from cost minimization:

min
x

w x

s.t. f (x) ≥ y

The necessary first order conditions are:

y = f (x∗),

w ≥ λ∇f (x∗)

[w − λ∇f (x∗)] x∗ = 0

or for every input l = 1, . . . , h: wl ≥ λ
∂f (x∗)

∂xl
with equality if x∗l > 0.
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Cost Minimization (2)

The first order conditions are also sufficient if f (x) is quasi-concave (the
input requirement set is convex).

Alternatively, a set of sufficient conditions for a local minimum are that
f (x) is quasi-concave in a neighborhood of x∗.

This can be checked by means of the bordered hessian matrix and its
minors.
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Cost Minimization (3)

In the case of only two inputs f (x1, x2) we have:

wl ≥ λ
∂f (x∗)

∂xl
, ∀l = 1, 2

with equality if x∗l > 0

SOC: ∣∣∣∣∣∣
f11(x∗) f12(x∗) f1(x∗)
f21(x∗) f22(x∗) f2(x∗)
f1(x∗) f2(x∗) 0

∣∣∣∣∣∣ > 0
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Cost Minimization (4)

In the case the two first order conditions are satisfied with equality (no
corner solutions) we can rewrite the necessary conditions as:

MRTS =
∂f (x∗)/∂x1
∂f (x∗)/∂x2

=
w1

w2

and
y = f (x∗)

Notice a close formal analogy with consumption theory (expenditure
minimization).
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Conditional Factor Demands and Cost Function

This leads to define:

the solution to the cost minimization problem:

x∗ = z(w , y) =

 z1(w , y)
...

zh(w , y)


as the conditional factor demands (correspondence).

the minimand function of the cost minimization problem:

c(w , y) = w z(w , y)

as the cost function.
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Properties of the Cost Function and Cond. Factor Demand

1 c(w , y) is non-decreasing in y .

2 c(w , y) is homogeneous of degree 1 in w .

3 c(w , y) is a concave function in w .

4 z(w , y) is homogeneous of degree 0 in w .
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Shephard’s Lemma

5 Shephard’s Lemma: if z(w , y) is single valued with respect to w then
c(w , y) is differentiable with respect to w and

∂c(w , y)

∂wl
= zl(w , y)

Further the lagrange multiplier of the cost minimization problem is
the marginal cost of output:

∂c(w , y)

∂y
= λ∗(w , y)
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Properties of Conditional Factor Demands (2)

6 If z(w , y) is differentiable in w then:


∂2c

∂w2
1

· · · ∂2c

∂w1 ∂wh
...

. . .
...

∂2c

∂wh ∂w1
· · · ∂2c

∂w2
h

 =


∂z1
∂w1

· · · ∂z1
∂wh

...
. . .

...
∂zh
∂w1

· · · ∂zh
∂wh



is a symmetric and negative semi-definite matrix.
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Properties of the Cost Function and Cond. Factor Dem. (2)

7 If f (x) is homogeneous of degree one (i.e. exhibits constant returns to
scale), then c(w , y) and z(w , y) are homogeneous of degree one in y .

Proof: Let k > 0 and consider:

c(w , k y) = min
x

w x

s.t. f (x) ≥ k y
(1)

Recall that by definition of c(w , y) defining x∗ to be the solution to

min
x

w x

s.t. f (x) ≥ y
(2)
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Properties of the Cost Function and Cond. Factor Dem. (3)

we obtain
y = f (x∗)

Hence by homogeneity of degree 1 of f (x) we obtain:

k y = k f (x∗) = f (k x∗)

which implies that k x∗ is feasible in Problem (1).

Therefore:

k c(w , y) = k [w x∗] = w (k x∗) ≥ c(w , k y).
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Properties of the Cost Function and Cond. Factor Dem. (4)

Let now x̂ be the solution to Problem (1). Necessarily:

f (x̂) = k y

or, by homogeneity of degree 1:

(1/k) f (x̂) = f [(1/k) x̂ ] = y

which implies that [(1/k) x̂ ] is feasible in Problem (2).

Therefore we get:

c(w , k y) = w x̂ = k w [(1/k) x̂ ] ≥ k c(w , y)

which concludes the proof.
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Constant Returns to Scale

8 A technology that exhibits CRS has a cost function that is linear in y :
c(w , y) = c(w)y .

9 A technology that exhibits CRS has a constant marginal
(∂c(w , y)/∂y) and average cost function:

(∂c(w , y)/∂y) = (c(w , y)/y).

Proof: Homogeneity of degree 1 in y implies linearity of c(w , y) in y .

By Euler theorem cy (w)y = c(w , y) or cy (w) = c(w , y)/y .
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Constant Returns to Scale (2)

-

6 6
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cy (w) = c(w ,y)
y

y

c(w , y) = cy (w) y
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Increasing Returns to Scale

10 If f (x) is convex (IRS technology), then c(w , y) is concave in y .

11 A technology that exhibits IRS has a decreasing marginal cost
function (∂c(w , y)/∂y) and average cost function:

(∂c(w , y)/∂y) ≤ (c(w , y)/y)
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Increasing Returns to Scale (2)

-

6 6

-

y

c(w ,y)
y

y

c(w , y)

cy (w , y)
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Decreasing Returns to Scale

12 If f (x) is concave (DRS technology), then c(w , y) is convex in y .

13 A technology that exhibits DRS has an increasing marginal cost
function (∂c(w , y)/∂y) and average cost function:

(∂c(w , y)/∂y) ≥ (c(w , y)/y)

Francesco Squintani EC9D3 Advanced Microeconomics, Part I August, 2020 18 / 50



Decreasing Returns to Scale (2)

-

6 6

-

y y

cy (w , y)
c(w ,y)

y
c(w , y)
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Profit Maximization (5)

Assume that the output market is competitive.

The profit maximization problem is then:

max
y

p y − c(w , y)

The necessary FOC are:

p − ∂c(w , y∗)

∂y
≤ 0

with equality if y∗ > 0.
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Profit Maximization (6)

The sufficient SOC conditions for a local maximum:

∂2c(w , y∗)

∂y2
> 0

Clearly SOC imply at least local DRS in a neighborhood of y∗.

Notice that if y∗ > 0 the optimal choice of the firm is:

p =
∂c(w , y∗)

∂y
= MC(y∗)

in words, price equal to marginal cost.

This condition defines the solution to the profit maximization problem: the
supply function: y∗(w , p)
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Profit Maximization (7)

The two profit maximization problems produce the same outcome for
equal (w , p). Indeed:

max
y

py − c(w , y)

where
c(w , y) = min

x
w x

s.t. f (x) ≥ y

yields
maxx p y − w x

s.t. f (x) = y

the very first problem we considered.
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Long Run and Short Run

We now explicitly include long run and short run considerations in the
profit maximization problem (flow variables).

Short run: one or more inputs may be fixed, ass. xh = x̄h, while the
remaining inputs may be varied at will.

The short run variable cost function:

cS(w , y , x̄h) = wh x̄h + min
x1,...,xh−1

h−1∑
l=1

wl xl

s.t. f (x1, . . . , xh−1, x̄h) ≥ y
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Long Run and Short Run (2)

Alternatively:

cS(w , y , x̄h) = min
x

w x

s.t. f (x) ≥ y

xh = x̄h

Recall z(w , y) denote the long run conditional factor demands, that solve:

c(w , y) = min
x

w x

s.t. f (x) ≥ y

Let x̄ = (x̄1, . . . , x̄h) be the input vector that achieves the minimum long
run cost of producing ȳ :

x̄ = (x̄1, . . . , x̄h) = z(w̄ , ȳ)
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Long Run and Short Run (3)

We characterize the relationship between short and long run total costs, or
alternatively, short run and long run variable costs (more familiar).

Notice that
c(w , y) ≡ cS(w , y , zh(w , y))

or
c(w , y)

y
≡ cS(w , y , zh(w , y))

y

moreover

∂c(w , y)

∂y
≡ ∂cS(w , y , zh(w , y))

∂y
(3)

by Envelope Theorem.
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Long Run and Short Run (4)

We shall now focus on a neighborhood of (w̄ , ȳ) and set x̄h = zh(w̄ , ȳ).

Recall that Envelope Theorem implies that only the first order effect is
zero.

Since (3) is an identity in (w , y) we can differentiate both sides with
respect to y :

∂2cS(w , y , x̄h)

∂y2
+
∂2cS(w , y , x̄h)

∂y ∂x̄h

∂zh(w , y)

∂y
=
∂2c(w , y)

∂y2
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Long Run and Short Run (4)

and with respect to wh:

∂2cS(w , y , x̄h)

∂y ∂wh
+
∂2cS(w , y , x̄h)

∂y ∂x̄h

∂zh(w , y)

∂wh
=
∂2c(w , y)

∂y ∂wh

Now
∂2cS(w , y , x̄h)

∂y ∂wh
= 0

since
∂cS(w , y , x̄h)

∂wh
= x̄h

is independent of y .
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Long Run and Short Run (5)

Hence by Shephard’s Lemma:

∂2cS(w , y , x̄h)

∂y ∂x̄h
=

∂zh(w , y)/∂y

∂zh(w , y)/∂wh

which implies by substitution:

∂2cS(w , y , x̄h)

∂y2
+

(∂zh(w , y)/∂y)2

∂zh(w , y)/∂wh
=
∂2c(w , y)

∂y2

which delivers:
∂2cS(w , y , x̄h)

∂y2
≥ ∂2c(w , y)

∂y2

since
(∂zh(w , y)/∂y)2

∂zh(w , y)/∂wh
≤ 0
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Le Chatelier Principle

This allows us to conclude that the function:

l(w , y) = c(w , y)− cS(w , y , x̄h) ≤ 0

reaches a local maximum at x̄ .

By definition of x̄ , FOC are satisfied:

∂cS(w , y , x̄h)

∂y
=
∂c(w , y)

∂y

While we just proved that the SOC hold:

∂2c(w , y)

∂y2
≤ ∂2cS(w , y , x̄h)

∂y2
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Le Chatelier Principle (2)

A similar approach proves:

0 ≥
∂zSh
∂wi
≥ ∂zh
∂wi

Moving to profit maximization:

0 ≥
∂xSh
∂wi

≥ ∂xh
∂wi

and

0 ≤ ∂yS

∂p
≤ ∂y

∂p

All these results are summarized under the name of: Le Chatelier Principle.
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Aggregation

The question we address is when can we speak of an aggregate
demand and aggregate supply function?

We start from aggregate demand.

In particular the way this question is usually stated is:

When can we treat the aggregate demand function as if it were
generated by a fictional representative consumer whose preferences
satisfies the standard axioms of choice?

This would also imply that the aggregate Marshallian demand will
satisfy the standard properties of Marshallian demands we have
analyzed up to now.
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Aggregate Demand

Assume there are I consumers.

Consider the aggregate Marshallian demand:

X (p,m1, . . . ,mI ) =
I∑

i=1

x i (p,mi )

The main question is when can we state the aggregate demand as a
function of aggregate income, only:

X

(
p,

I∑
i=1

mi

)
= X (p,m1, . . . ,mI )
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Aggregate Demand (2)

This implies that the aggregate demand has to be invariant to any
redistribution of income that sums to the same level.

In other words, for every pair of allocations of income: (m1, . . . ,mI )
and (m̂1, . . . , m̂I ) such that∑

i

mi =
∑
i

m̂i

it has to be the case that

X (p,m1, . . . ,mI ) = X
(
p, m̂1, . . . , m̂I

)
or

X (p,m1, . . . ,mI )− X
(
p, m̂1, . . . , m̂I

)
= 0
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Aggregate Demand (3)

Alternatively, for any initial allocation (m1, . . . ,mI ) and any
differential change

(dm1, . . . , dmI )

such that
I∑

i=1

dmi = 0

it must be the case that for every commodity l ∈ {1, . . . , L}:

dX (p,m1, . . . ,mI ) =
I∑

i=1

∂x il (p,mi )

∂mi
dmi = 0
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Aggregate Demand (4)

Notice that this condition holds if and only if the coefficients of the
different dmi are equal:

∂x il (p,mi )

∂mi
=
∂x jl (p,mj)

∂mj

for every commodity l , every pair of consumers i , j , and every initial
income distribution (m1, . . . ,mI ).

In other words, the income effect at p must be the same whatever
consumer we look at and whatever his level of income.

Geometrically we require that all consumers’ income expansion paths
are parallel, straight lines.
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Aggregate Demand (5)

A special case in which this is true is when all consumers have
identical and homothetic preferences.

Preferences are homothetic if the indifference curves have the same
slope at every point of any ray from the origin.

Homothetic preferences can be represented by a monotonic
transformation of an homogeneous of degree 1 utility function.

An other special case is when all consumers have preferences that are
quasi-linear with respect to the same good.
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Aggregate Demand (6)

Result

In general a necessary and sufficient condition for the set of consumers to
exhibit parallel, straight income expansion path at any price p is that
preferences admit indirect utility functions of the Gorman form:

v i (p,mi ) = ai (p) + b(p) mi

where b(p) is common to all consumers.

Property

If every consumer’s Marshallian demand satisfies the uncompensated law
of demand so does the aggregate demand.

Clearly the problems associated with aggregation arise from income effects
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Aggregate Supply

The absence of a budget constraint implies that individual firms’
supply are not subject to income effects.

Hence aggregation of production theory is simpler and requires less
restrictive conditions.

Consider J production technologies:

(Z 1, . . . ,Z J)

Let z j(p,w) =

(
−x j(p,w)
y j(p,w)

)
be firm j ’s production plan.
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Aggregate Supply (2)

We define the following aggregate optimal production plan:

z(p,w) =
J∑

j=1

z j(p,w) =

(
−
∑

j x
j(p,w)∑

j y
j(p,w)

)

We have seen that the matrix of cross and own price effects on
production plan z j(p.w):

Dz j(p,w)

is symmetric and positive semi-definite: the law of supply.

Since both properties are preserved under sum then

Dz(p,w)

is also symmetric and positive semi-definite.
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Aggregate Supply (3)

In other words an aggregate law of supply holds.

Result (Existence of the Representative Producer)

In a purely competitive environment the maximum profit obtained by every
firm maximizing profits separately is the same as the profit obtained if all
J firms were to coordinate their choices in a joint profit maximization:

π(p,w) =
J∑

j=1

πj(p,w)

Clearly, the intersection of aggregate supply and aggregate demand gives
us a Market equilibrium.
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Competitive Equilibrium

Consider the entire economy, in which three main activities occur:
production, consumption and trade.

We focus first on a pure exchange economy (two activities,
consumption and trade).

Consumers are born with endowments of commodities.

They can either consume the endowments or trade them.

Consider I = 2 consumers and L = 2 commodities.
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Edgeworth Box Economy

In such case the consumption feasible set for every consumer is
X i ∈ R2

+ and consumer i ’s endowment is:

ωi =

(
ωi
1

ωi
2

)

The total endowment of commodity l available in the economy is:

ω̄l = ω1
l + ω2

l > 0 ∀l ∈ {1, 2}

An allocation in this economy is then a pair of vectors x such that

x = (x1, x2) =

((
x11
x12

)
,

(
x21
x22

))
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Edgeworth Box Economy (2)

An allocation is feasible if and only if

x1l + x2l ≤ ω̄l ∀l ∈ {1, 2}

An allocation is non-wasteful if and only if

x1l + x2l = ω̄l ∀l ∈ {1, 2}

This economy can be represented in an Edgeworth box.
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Edgeworth Box
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Edgeworth Box Economy (3)

Notice that in such an environment the income of each consumer is
the market value of the consumer endowment:

mi = p ωi

where however p is determined in equilibrium.

The budget set of consumer i is then:

B i (p) =
{
x i ∈ R2

+ | p x i ≤ p ωi
}

For a vector of equilibrium prices p the budget sets of both consumers
are two complementary sets in the Edgeworth box (slope of the

separating line −p1
p2

).
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Edgeworth Box Economy (4)

The preferences of the two consumers are represented by two maps of
indifference curves.

For any given level of prices we can represent the offer curve of each
consumer: the consumption bundle that represent the optimal choice
for each consumer.

The offer curve necessarily passes through the endowment point.

Indeed the allocation

ω = (ω1, ω2) =

((
ω1
1

ω1
2

)
,

(
ω2
1

ω2
2

))
is always affordable hence each consumer must choose an optimal
consumption bundle that makes him/her at least as well off as at ω.
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Edgeworth Box Economy (5)

Given the preferences of the two consumers the only candidate to be
an equilibrium price vector (if it exists) is a unique price vector that
defines a unique budget constraint in the Edgeworth box tangent to
indifference curves of both consumers.

However if the tangency occur at two distinct points on the budget
constraint then there will exist excess supply in one good l = 1 and
excess demand in the other good l = 2.

The allocation represented by the two tangency point is then not
feasible.

We define a market equilibrium as a situation in which markets clear,
the consumers fulfil their desired purchases and the allocation
obtained is feasible.
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Edgeworth Box Economy (6)

Definition

A Walrasian (competitive) equilibrium for the Edgeworth box economy is a
price vector p∗ and an allocation x∗ = (x1,∗, x2,∗) such that

ui (x
i ,∗) ≥ ui (x

i ) ∀x i ∈ B i (p∗)

and
x1,∗l + x2,∗l = ω̄l ∀l ∈ {1, 2}

This corresponds to an intersection of the two offer curves.

It also corresponds to a point in which the indifference curves of the two
consumers are tangent to the unique budget constraint.
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Edgeworth Box Economy (7)

Property

The price vector p∗ is identified up to a degree of freedom: only the
relative price matters.

Proof: If the preferences of both consumers are locally non-satiated then
the budget constraint of both consumers will be binding:

p∗x i ,∗ = p∗ωi ∀i ∈ {1, 2}

If we sum the two budget constraint across consumers we get:

p∗
(
x1,∗ + x2,∗

)
= p∗ω̄

which exhibits a linear dependence among the vectors of the equilibrium
allocation (from here the degree of freedom).
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Edgeworth Box Economy (8)

The above property is known as Walras Law, (it only depends from
binding budget constraints).

Two main problems with a Walrasian equilibrium: existence and
uniqueness.

Uniqueness is in general not a property of Walrasian equilibria.

A Walrasian equilibrium might not exists (non-convexity of
preferences, unbounded demand).
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