EC9D3 Advanced Microeconomics, Part I: Lecture 6

Francesco Squintani

August, 2020

A general pure exchange economy with *I* consumers is characterized by the following elements:

• *i*'s endowment vectors:

$$\omega^{i} = \begin{pmatrix} \omega_{1}^{i} \\ \vdots \\ \omega_{L}^{i} \end{pmatrix};$$

• i's (locally-non-satiated) preferences represented by a utility function

 $u_i(\cdot).$

Pure Exchange Economy (2)

• Denote the total endowment of each commodity / as

$$\bar{\omega}_I = \sum_{i=1}^I \omega_I^i \qquad \forall I \in \{1, \dots, L\}$$

 Denote consumer i's excess demand vector for any given distribution of endowments ω = {ω¹,...,ω^l} to be:

$$z^{i}(p) = \begin{pmatrix} x_{1}^{i}(p) - \omega_{1}^{i} \\ \vdots \\ x_{L}^{i}(p) - \omega_{L}^{i} \end{pmatrix}$$

• Denote the vector of *aggregate excess demands* as

$$Z(p) = \begin{pmatrix} Z_1(p) = \sum_{i=1}^{l} z_1^i(p) \\ \vdots \\ Z_L(p) = \sum_{i=1}^{l} z_L^i(p) \end{pmatrix}$$

• In this pure exchange economy we can define a *Walrasian equilibrium* by means of the vector of aggregate excess demands in the following manner.

Definition (Walrasian equilibrium)

It is defined by a vector of prices p^* and an induced allocation $x^* = \{x^{1,*}(p^*), \ldots, x^{I,*}(p^*)\}$ such that all *markets clear*:

$$Z(p^*)=0$$

or for every $I = 1, \ldots, L$:

$$Z_{l}(p^{*}) = \sum_{i=1}^{l} \left(x_{l}^{i,*}(p^{*}) - \omega_{l}^{i} \right) = 0$$

These *L* equations are not all independent, the reason being *Walras Law*.

Pure Exchange Economy (4)

 Indeed, each consumer Marshallian demand x^{i,*}(p) will be such that the consumer's budget constraint will be binding:

$$p^*x^{i,*}(p^*)=p^*\omega^i$$

• If we sum these budget constraint across the consumers we get:

$$\sum_{i=1}^{l} p^* x^{i,*}(p^*) = \sum_{i=1}^{l} p^* \omega^i$$

or

 $p^* Z(p^*) = 0$

• This condition introduces a degree of freedom in the equilibrium price determination: if *L* - 1 markets clear the *L*-th market also clears.

Walrasina Equilibrium in a Pure Exchange Economy

- An old approach to general equilibrium analysis consisted in counting equations and unknowns.
- A modern approach is the one introduced by Debreu (1959).
- It starts from an *alternative definition of Walrasian equilibrium*.

Definition (Walrasian Equilibrium)

A *Walrasian equilibrium* is a vector of prices p^* and an allocation of resources x^* associated to p^* such that:

$$Z(p^*) \leq 0$$

Walrasina Equilibrium in a Pure Exchange Economy (2)

Given the definition above we can prove the following Lemma.

Lemma

The Walrasian equilibrium price is such that $p_l \ge 0 \ \forall l \in \{1, \dots, L\}$.

Proof: Assume by way of contradiction that there exists *I* such that $p_I < 0$. The utility maximization problem is then:

$$\max_{x} \quad u(x)$$

s.t.
$$\sum_{h \neq l} p_h x_h \le m - p_l x_l$$

If $x_l > 0$ then $p_l x_l < 0$ therefore by increasing x_l we do not decrease the objective function u(x).

Walrasina Equilibrium in a Pure Exchange Economy (3)

We can then increase x_h , $h \neq l$ also unboundedly and $u(x) \rightarrow +\infty$.

A contradiction to the existence of a solution to the utility maximization problem.

Lemma Let $\{p^*, x^*\}$ be a Walrasian equilibrium then: a) if $p_l^* > 0$ then $Z_l(p^*) = 0$; b) if $Z_l(p^*) < 0$ then $p_l^* = 0$.

Walrasina Equilibrium in a Pure Exchange Economy (4)

Proof: Walras Law implies that

$$p^* Z(p^*) = 0.$$

or

$$\sum_{l=1}^{L} p_l^* Z_l(p^*) = 0.$$

By the previous lemma $p_l^* \ge 0$ while by the definition of Walrasian equilibrium we have

$$Z_l(p^*) \leq 0$$

From here the result.

We address next the problem of *existence of a general equilibrium*.

Definition (Fixed Point)

Consider a mapping $F : \mathbb{R}^L \to \mathbb{R}^L$, any x^* such that

$$x^* = F(x^*)$$

is a *fixed point* of the mapping *F*.

Theorem (Brouwer Fixed Point Theorem)

Let S be a compact and convex set, and

 $F: S \rightarrow S$

a continuous mapping from S into itself. Then the mapping F has at least one fixed point in S.

Consider a *pure exchange economy* without any *externality*.

Let Z(p) be the vector of excess demands that satisfies the following assumptions on Z(p):

- Z(p) is single valued (it is a function).
- **2** Z(p) is *continuous*.
- **3** Z(p) is **bounded**.
- Z(p) is homogeneous of degree 0.
- Walras Law: p Z(p) = 0.

Theorem (Existence Theorem of Walrasian Equilibrium)

Under assumptions 1–5 there exists a Walrasian Equilibrium price vector p^* and an allocation x^* such that

 $Z(p^*) \leq 0.$

Proof: Let us normalize the set of prices we consider (Walras Law leaves us a degree of freedom in solving for the WE price vector p^*).

Consider the prices in the *L* dimensional Simplex:

$$S = \left\{ p \mid p \ge 0, \sum_{l=1}^{L} p_l = 1 \right\}$$

Notice that S is *compact* and *convex*. The strategy of the reminder of the proof is then:

- Define a continuous mapping from the *Simplex S* into itself.
- Use Brower Fixed Point Theorem to obtain a fixed point of such mapping.
- Show that such a fixed point is indeed a Walrasian Equilibrium price vector.

Let $\beta > {\rm 0}$ and define

$$t_I(p) = \max\left\{0, \; p_I + eta \; Z_I(p)
ight\}$$

which we normalize to be in S:

$$q_l(p) = \frac{t_l}{\sum_{l=1}^L t_l}$$

The mapping from *p* into *q* is *continuous* by construction.

Indeed,

- the mapping from p to t(p) is continuous:
 - $p_I + \beta Z_I(p)$ is continuous in p by assumption 2;
 - a constant function is clearly continuous;
 - the maximum of two continuous functions is also continuous.

• the mapping from t to q(p) is continuous provided that $\sum_{l=1}^{L} t_l \neq 0$.

Existence of General Equilibrium (7)

Lemma

It is the case that

$$\sum_{l=1}^{L} t_l \neq 0.$$

Proof: Notice that by construction $t_l \ge 0$ for every l = 1, ..., L.

Therefore
$$\sum_{l=1}^{L} t_l = 0$$
 if and only if $t_l = 0$ for every $l = 1, ..., L$.

Assume that this is the case.

Recall that

$$t_l(p) = \max\left\{0, \ p_l + eta \ Z_l(p)
ight\}$$

From the very first Lemma above we know that $p_l \ge 0$ therefore

- for every *l* such that $p_l = 0$ for $t_l = 0$ we need $Z_l(p) \le 0$.
- for every / such that $p_l > 0$ for $t_l = 0$ we need $Z_l(p) < 0$.

However, the latter case contradicts Walras Law:

Denote

$$A(p)=\{l\leq L\mid p_l=0\},$$

and

$$B(p) = \{ l \leq L \mid p_l > 0 \},\$$

Existence of General Equilibrium (9)

By Walras Law:

$$0 = \sum_{l=1}^{L} p_l Z_l(p) = \sum_{l \in A(p)} p_l Z_l(p) + \sum_{l \in B(p)} p_l Z_l(p)$$

Since by definition of A(p)

$$\sum_{l\in A(p)}p_lZ_l(p)=0$$

Walras Law implies:

$$\sum_{l\in B(p)}p_lZ_l(p)=0.$$

This is a contradiction of $p_l > 0$ and $Z_l(p) < 0$ for every $l \in B(p)$.

Therefore the mapping from p into q is continuous and maps a compact and convex set in itself.

Brower Fixed Point Theorem applies which means that there exists a fixed point p^* such that $q(p^*) = p^*$.

We still need to show that such a point is a Walrasian Equilibrium price vector.

Consider first $l \in A(p^*)$ then $p_l^* = 0$ by definition of $A(p^*)$.

Further, being p^* a fixed point $q_l(p^*) = p_l^* = 0$ which implies by definition of $t_l(p^*)$ and boundedness of Z(p) that $t_l(p^*) = 0$, hence $Z_l(p^*) \le 0$.

Existence of General Equilibrium (11)

Therefore $Z_l(p^*) \leq 0$ for every $l \in A(p^*)$.

Consider now $l \in B(p^*)$ then $p_l^* > 0$ by definition of $B(p^*)$.

Therefore by definition of $t_l(p^*)$:

$$q_l(p^*) = p_l^* = rac{p_l^* + eta Z_l(p^*)}{\sum_{l \in B(p^*)} t_l(p^*)}$$

multiplying both sides by $Z_l(p^*)$ we get:

$$p_l^* Z_l(p^*) = \frac{p_l^* Z_l(p^*) + \beta [Z_l(p^*)]^2}{\sum_{l \in B(p^*)} t_l(p^*)}$$

Existence of General Equilibrium (12)

which summed over $I \in B(p^*)$ gives:

$$\sum_{e \in B(p^*)} p_l^* Z_l(p^*) = \frac{\sum_{l \in B(p^*)} p_l^* Z_l(p^*) + \beta \sum_{l \in B(p^*)} [Z_l(p^*)]^2}{\sum_{l \in B(p^*)} t_l(p^*)}.$$

Walras Law

1

$$\sum_{l \in B(p^*)} p_l^* Z_l(p^*) = 0 \quad \Rightarrow \quad \frac{\beta \sum_{l \in B(p^*)} [Z_l(p^*)]^2}{\sum_{l \in B(p^*)} t_l(p^*)} = 0$$

From Lemma 2 and $t_l(p^*) = 0$ for every $l \in A(p^*)$

$$\sum_{l=1}^{L} t_{l} = \sum_{l \in A(p^{*})} t_{l} + \sum_{l \in B(p^{*})} t_{l} = \sum_{l \in B(p^{*})} t_{l} \neq 0 \quad \Rightarrow \quad \sum_{l \in B(p^{*})} [Z_{l}(p^{*})]^{2} = 0$$

or $Z_l(p^*) = 0$ for every $l \in B(p^*)$.

Existence of General Equilibrium (13)

In other words, we have proved that under assumptions 1–5 there exists a Walrasian Equilibrium price vector p^* and an allocation $x^*(p^*)$ such that:

• for every $l \in A(p^*)$ — for every l such that $p_l^* = 0$ — we have that

 $Z_l(p^*) \leq 0$

• while for every $l \in B(p^*)$ — for every l such that $p_l^* > 0$ — we have that

$$Z_l(p^*)=0$$

Notice that in equilibrium there exist excess demands only of commodities that are free (whose equilibrium price is zero).

Recall that $x = \{x^1, \dots, x^l\}$ denotes an allocation.

Definition

An allocation x Pareto dominates an alternative allocation \bar{x} if and only if:

$$u_i(x^i) \ge u_i(\bar{x}^i) \quad \forall i \in \{1, \ldots, I\}$$

and for some *i*:

 $u_i(x^i) > u_i(\bar{x}^i).$

In other words, the allocation x makes no one worse-off and someone strictly better-off.

Definition

An allocation x is *feasible* in a pure exchange economy if and only if:

$$\sum_{i=1}^{l} x_l^i \leq \bar{\omega}_l \qquad \forall l \in \{1, \dots, L\}.$$

Definition

An allocation x is *Pareto efficient* if and only if it is *feasible* and there does *not* exist an other feasible allocation that Pareto-dominates x.

Pareto Efficiency (2)

A standard way to identify *a Pareto-efficient allocation* is to introduce a *benevolent central planner* that has the authority to re-allocate resources across consumers so as to exhaust any gains-from-trade available.

Result

An allocation x^* is Pareto-efficient if there exists a vector of weights $\lambda = (\lambda^1, \dots, \lambda^l)$ such that x^* solves the following problem:

$$\max_{\substack{x^1,...,x^l \\ s.t}} \sum_{\substack{i=1\\l\\i=1}}^{l} \lambda^i u_i(x^i)$$

(1)

Proof: We start from the *only if:*

Assume by way of contradiction that the allocation \hat{x} that solves (1) is not Pareto efficient.

Then there exists a feasible allocation \tilde{x} and at least an individual i such that

$$u_i(\tilde{x}^i) > u_i(\hat{x}^i), \qquad u_j(\tilde{x}^i) \ge u_j(\hat{x}^j) \; \forall j \neq i$$

If then follows that, given $(\lambda^1, \ldots, \lambda')$, the allocation \tilde{x} is feasible in problem (1) and achieves a higher maximand.

This observation contradicts the assumption that \hat{x} solves problem (1).

We come back to the *if* later on.

Theorem (First Fundamental Theorem of Welfare Economics)

Consider a pure exchange economy such that consumers' preferences are weakly monotonic.

Assume that this economy is such that there exists a Walrasian equilibrium $\{p^*, x^*\}$.

Then the allocation x^* is a Pareto-efficient allocation.

Proof: Assume that the theorem is *not* true.

Contradiction hypothesis: There exists an allocation x such that

$$\sum_{i=1}^{l} x^{i} \leq \bar{\omega}$$

and

$$u_i(x^i) \ge u_i(x^{i,*}) \quad \forall i \le I$$

and for some $i \leq I$

 $u_i(x^i) > u_i(x^{i,*})$

First Welfare Theorem (3)

Claim Then $p^*x^i \ge p^*x^{i,*} \quad \forall i \le I.$

Proof: Assume that this is not true and there exists $i \leq I$ such that

$$p^*x^i < p^*x^{i,*}$$

From

$$p^*x^{i,*} = p^*\omega^i$$

we then get

$$p^* x^i < p^* \omega^i$$

This implies that there exists $\varepsilon > 0$ such that if we denote e^T the vector $e^T = (1, ..., 1)$ $p^* (x^i + \varepsilon \ e) < p^* \omega^i.$

$$u_i(x^i + \varepsilon \ e) > u_i(x^i)$$

which together with the contradiction hypothesis gives:

$$u(x^i + \varepsilon \ e) > u_i(x^{i,*})$$

This contradicts $x^{i,*} = x^i(p^*)$.

Claim

Since for some *i* we have $u_i(x^i) > u_i(x^{i,*})$ then for the same *i*

 $p^* x^i > p^* x^{i,*}.$

Proof: Assume this is not the case.

Then there exists a consumption bundle x^i which is affordable for *i*:

$$p^*x^i \le p^*x^{i,*} = p^* \omega^i$$

and yields a higher level of utility: $u_i(x^i) > u_i(x^{i,*})$.

This is a contradiction of the hypothesis $x^{i,*} = x^i(p^*)$.

Adding up these conditions across consumers we obtain:

or

$$\sum_{i=1}^{l} p^* x^i > \sum_{i=1}^{l} p^* x^{i,*} = p^* \bar{\omega}$$

a contradiction of the feasibility of the allocation x.

Notice that the hypothesis necessary for this Theorem are not enough to guarantee the existence of a Walrasian equilibrium.

So far we assumed:

- perfectly competitive markets;
- every commodity has a corresponding market (no-externalities).

Consider now the converse question.

Suppose you have a pure exchange economy and you want the consumer to achieve a given Pareto-efficient allocation.

Is there a way to achieve this allocation in a fully decentralized (hands-off) way?

Answer: redistribution of endowments.

Theorem (Separating Hyperplane Theorem)

Let A and B be two disjoint and convex set in \mathbb{R}^N . Then there exists a vector $p \in \mathbb{R}^N$ such that

 $p x \ge p y$

for every $x \in A$ and every $y \in B$.

In other words there exists an hyperplane identified by the vector p that separates the set A and the set B.

Theorem (Second Fundamental Theorem of Welfare Economics)

Consider a pure exchange economy with (weakly) convex, continuos and strongly monotonic consumers' preferences.

Let x^* be a Pareto-efficient allocation such that $x_l^{i,*} > 0$ for every $l \le L$ and every $i \le I$. Then there exists an endowment re-allocation ω' such that:

$$\sum_{i=1}^{I} \omega'^{i} = \sum_{i=1}^{I} \omega^{i}$$

and for some p^* the vector $\{p^*, x^*\}$ is a Walrasian equilibrium given ω' .

Proof: Consider

$$B^i = \left\{ x^i \in \mathbb{R}^L_+ \mid u_i(x^i) > u_i(x^{i,*}) \right\}$$

Notice that B^i is convex since preferences are convex by assumption (utility function is quasi-concave).

Let

$$B = \sum_{i=1}^{l} B^{i} = \left\{ z \in \mathbb{R}_{+}^{L} \mid z = \sum_{i=1}^{l} x^{i}, x^{i} \in B^{i} \right\}$$

Second Welfare Theorem (3)

Claim

B is convex.

Proof: Take $z, z' \in B$. Now $z \in B$ implies $z = \sum_{i=1}^{l} x^i$ and $z' \in B$ implies $z' = \sum_{i=1}^{l} x'^i$.

Therefore

$$\begin{aligned} [\lambda z + (1 - \lambda)z'] &= \lambda \sum_{i=1}^{l} x^{i} + (1 - \lambda) \sum_{i=1}^{l} x'^{i} \\ &= \sum_{i=1}^{l} [\lambda x^{i} + (1 - \lambda)x'^{i}] \in B \end{aligned}$$

since $[\lambda x^i + (1 - \lambda)x'^i] \in B^i$ by convexity of B^i .

Claim

$$v = \sum_{i=1}^{l} x^{i,*} \notin B$$

Proof: Assume that this is not the case: $v \in B$.

This means that there exist I consumption bundles $\hat{x}^i \in B^i$ such that

$$v = \sum_{i=1}^{l} x^{i,*} = \sum_{i=1}^{l} \hat{x}^{i}.$$

Second Welfare Theorem (5)

Now, Pareto-efficiency of x^* implies that v is feasible:

$$v = \sum_{i=1}^{I} \hat{x}^i = \sum_{i=1}^{I} \omega^i$$

and by definition of B^i

 $u_i(\hat{x}^i) > u_i(x^{i,*})$

for every $i \leq I$.

This contradicts the Pareto-efficiency of x^* .

Claim

There exists a p^* such that: $p^* z \ge p^* v = p^* \sum_{i=1}^{l} x^{i,*} = p^* \sum_{i=1}^{l} \omega^i \qquad \forall z \in B$

Proof: It follows directly from the Separating Hyperplane Theorem.

Indeed, the sets $\{v\}$ and the set B satisfy the assumptions of the theorem.

We still need to show that the p^* we have obtained is indeed a Walrasian equilibrium.

Claim

$p^* \ge 0$

Proof: Denote $e_n^T = (0, \dots, 0, 1, 0, \dots, 0)$ where the digit 1 is in the *n*-th position, $n \leq L$.

Notice that strict monotonicity of preferences implies:

 $v + e_n \in B$

therefore from Claim 3 we have that:

$$p^*\left(v+e_n\right)\geq p^*\,v$$

Second Welfare Theorem (8)

In other words:

$$p^*\left(v+e_n-v\right)\geq 0$$

or

$$p^* e_n \geq 0$$

which is equivalent to:

$$p_n^* \ge 0$$
 \Box

Second Welfare Theorem (9)

Claim

For every consumer $i \leq I$

$$u_i(x^i) > u_i(x^{i,*})$$

implies

$$p^* x^i \ge p^* x^{i,*}$$

Proof: Let $\theta \in (0, 1)$. Consider the allocation

$$z^i = x^i (1 - \theta)$$

and

$$z^h = x^{h,*} + \frac{x^i \theta}{I-1} \qquad \forall h \neq i$$

the allocation z is a redistribution of resources from i to every h.

For a small θ by strict monotonicity we have that z is Pareto-preferred to x^* . Hence by the previous Claim:

$$p^* \sum_{i=1}^{l} z^i \ge p^* \sum_{i=1}^{l} x^{i,*}$$

or

$$p^*\left[x^i(1-\theta) + \sum_{h\neq i} x^{h,*} + x^i\theta\right] = p^*\left[x^i + \sum_{h\neq i} x^{h,*}\right] \ge p^*\sum_{i=1}^l x^{i,*}$$

which implies $p^* x^i \ge p^* x^{i,*}$.

Claim

For some agent i

$$u_i(x^i) > u_i(x^{i,*})$$

implies

 $p^*x^i > p^*x^{i,*}$

Proof: From the previous Claim we have $p^*x^i \ge p^*x^{i,*}$. Therefore we just have to rule out $p^*x^i = p^*x^{i,*}$. Continuity of preferences implies that for some scalar ξ close to 1 we have

$$u_i(\xi x^i) > u_i(x^{i,*})$$

and by the previous Claim $p^*\xi x^i \ge p^*x^{i,*}$. If now $p^*x^i = p^*x^{i,*} > 0$ from $p^* > 0$ and $x^{i,*} > 0$ it follows that $p^*\xi x^i < p^*x^{i,*}$: a contradiction.

The previous Claims imply that whenever $u_i(x^i) > u_i(x^{i,*})$ then $p^*x^i > p^*x^{i,*}$ with a strict inequality for some *i*.

This implies that the consumption bundles $x^{i,*}$ maximizes consumer *i*'s utility subject to budget constraint.

Indeed
$$\sum_{i=1}^{l} p^* x^{i,*} = \sum_{i=1}^{l} p^* \omega^i$$

Let now $\omega'^i = x^{i,*}$. This concludes the proof of the SWT.

Notice that the assumptions of the Second Welfare Theorem are the same that guarantee the existence of a Walrasian equilibrium.