EC9D3 Advanced Microeconomics, Part I: Lecture 6

Francesco Squintani

August, 2020

Pure Exchange Economy

A general pure exchange economy with / consumers is characterized by the following elements:

- i's endowment vectors:

$$
\omega^{i}=\left(\begin{array}{c}
\omega_{1}^{i} \\
\vdots \\
\omega_{L}^{i}
\end{array}\right) ;
$$

- i's (locally-non-satiated) preferences represented by a utility function

$$
u_{i}(\cdot)
$$

Pure Exchange Economy (2)

- Denote the total endowment of each commodity / as

$$
\bar{\omega}_{I}=\sum_{i=1}^{I} \omega_{I}^{i} \quad \forall I \in\{1, \ldots, L\}
$$

- Denote consumer i's excess demand vector for any given distribution of endowments $\omega=\left\{\omega^{1}, \ldots, \omega^{\prime}\right\}$ to be:

$$
z^{i}(p)=\left(\begin{array}{c}
x_{1}^{i}(p)-\omega_{1}^{i} \\
\vdots \\
x_{L}^{i}(p)-\omega_{L}^{i}
\end{array}\right)
$$

Pure Exchange Economy (3)

- Denote the vector of aggregate excess demands as

$$
Z(p)=\left(\begin{array}{c}
Z_{1}(p)=\sum_{i=1}^{l} z_{1}^{i}(p) \\
\vdots \\
Z_{L}(p)=\sum_{i=1}^{l} z_{L}^{i}(p)
\end{array}\right)
$$

- In this pure exchange economy we can define a Walrasian equilibrium by means of the vector of aggregate excess demands in the following manner.

Pure Exchange Economy (4)

Definition (Walrasian equilibrium)

It is defined by a vector of prices p^{*} and an induced allocation $x^{*}=\left\{x^{1, *}\left(p^{*}\right), \ldots, x^{l, *}\left(p^{*}\right)\right\}$ such that all markets clear:

$$
Z\left(p^{*}\right)=0
$$

or for every $I=1, \ldots, L$:

$$
Z_{l}\left(p^{*}\right)=\sum_{i=1}^{l}\left(x_{l}^{i, *}\left(p^{*}\right)-\omega_{l}^{i}\right)=0
$$

These L equations are not all independent, the reason being Walras Law.

Pure Exchange Economy (4)

- Indeed, each consumer Marshallian demand $x^{i, *}(p)$ will be such that the consumer's budget constraint will be binding:

$$
p^{*} x^{i, *}\left(p^{*}\right)=p^{*} \omega^{i}
$$

- If we sum these budget constraint across the consumers we get:

$$
\sum_{i=1}^{I} p^{*} x^{i, *}\left(p^{*}\right)=\sum_{i=1}^{I} p^{*} \omega^{i}
$$

or

$$
p^{*} Z\left(p^{*}\right)=0
$$

- This condition introduces a degree of freedom in the equilibrium price determination: if $L-1$ markets clear the L-th market also clears.

Walrasina Equilibrium in a Pure Exchange Economy

- An old approach to general equilibrium analysis consisted in counting equations and unknowns.
- A modern approach is the one introduced by Debreu (1959).
- It starts from an alternative definition of Walrasian equilibrium.

Definition (Walrasian Equilibrium)

A Walrasian equilibrium is a vector of prices p^{*} and an allocation of resources x^{*} associated to p^{*} such that:

$$
Z\left(p^{*}\right) \leq 0
$$

Walrasina Equilibrium in a Pure Exchange Economy (2)

Given the definition above we can prove the following Lemma.

Lemma

The Walrasian equilibrium price is such that $p_{I} \geq 0 \forall I \in\{1, \ldots, L\}$.

Proof: Assume by way of contradiction that there exists / such that $p_{l}<0$. The utility maximization problem is then:

$\max _{x}$	$u(x)$
s.t.	$\sum_{h \neq 1} p_{h} x_{h} \leq m-p_{I} x_{I}$

If $x_{l}>0$ then $p_{l} x_{l}<0$ therefore by increasing x_{l} we do not decrease the objective function $u(x)$.

Walrasina Equilibrium in a Pure Exchange Economy (3)

We can then increase $x_{h}, h \neq I$ also unboundedly and $u(x) \rightarrow+\infty$.

A contradiction to the existence of a solution to the utility maximization problem.

Lemma

Let $\left\{p^{*}, x^{*}\right\}$ be a Walrasian equilibrium then:
(1) if $p_{l}^{*}>0$ then $Z_{l}\left(p^{*}\right)=0$;
(2) if $Z_{l}\left(p^{*}\right)<0$ then $p_{l}^{*}=0$.

Walrasina Equilibrium in a Pure Exchange Economy (4)

Proof: Walras Law implies that

$$
p^{*} Z\left(p^{*}\right)=0
$$

or

$$
\sum_{l=1}^{L} p_{l}^{*} Z_{l}\left(p^{*}\right)=0
$$

By the previous lemma $p_{l}^{*} \geq 0$ while by the definition of Walrasian equilibrium we have

$$
Z_{l}\left(p^{*}\right) \leq 0
$$

From here the result.
We address next the problem of existence of a general equilibrium.

Existence of General Equilibrium

Definition (Fixed Point)

Consider a mapping $F: \mathbb{R}^{L} \rightarrow \mathbb{R}^{L}$, any x^{*} such that

$$
x^{*}=F\left(x^{*}\right)
$$

is a fixed point of the mapping F.

Theorem (Brouwer Fixed Point Theorem)

Let S be a compact and convex set, and

$$
F: S \rightarrow S
$$

a continuous mapping from S into itself. Then the mapping F has at least one fixed point in S.

Existence of General Equilibrium (2)

Consider a pure exchange economy without any externality.
Let $Z(p)$ be the vector of excess demands that satisfies the following assumptions on $Z(p)$:
(1) $Z(p)$ is single valued (it is a function).
(2) $Z(p)$ is continuous.
(3) $Z(p)$ is bounded.
(9) $Z(p)$ is homogeneous of degree 0 .
(0) Walras Law: $p Z(p)=0$.

Existence of General Equilibrium (3)

Theorem (Existence Theorem of Walrasian Equilibrium)

Under assumptions 1-5 there exists a Walrasian Equilibrium price vector p^{*} and an allocation x^{*} such that

$$
Z\left(p^{*}\right) \leq 0 .
$$

Proof: Let us normalize the set of prices we consider (Walras Law leaves us a degree of freedom in solving for the WE price vector p^{*}).

Consider the prices in the L dimensional Simplex:

$$
S=\left\{p \mid p \geq 0, \sum_{l=1}^{L} p_{l}=1\right\}
$$

Existence of General Equilibrium (4)

Notice that S is compact and convex. The strategy of the reminder of the proof is then:

- Define a continuous mapping from the Simplex S into itself.
- Use Brower Fixed Point Theorem to obtain a fixed point of such mapping.
- Show that such a fixed point is indeed a Walrasian Equilibrium price vector.

Existence of General Equilibrium (5)

Let $\beta>0$ and define

$$
t_{l}(p)=\max \left\{0, p_{l}+\beta Z_{l}(p)\right\}
$$

which we normalize to be in S :

$$
q_{l}(p)=\frac{t_{l}}{\sum_{l=1}^{L} t_{l}}
$$

The mapping from p into q is continuous by construction.

Existence of General Equilibrium (6)

Indeed,

- the mapping from p to $t(p)$ is continuous:
- $p_{l}+\beta Z_{l}(p)$ is continuous in p by assumption 2 ;
- a constant function is clearly continuous;
- the maximum of two continuous functions is also continuous.
- the mapping from t to $q(p)$ is continuous provided that $\sum_{l=1}^{L} t_{l} \neq 0$.

Existence of General Equilibrium (7)

Lemma

It is the case that

$$
\sum_{l=1}^{L} t_{l} \neq 0
$$

Proof: Notice that by construction $t_{l} \geq 0$ for every $I=1, \ldots, L$.
Therefore $\sum_{l=1}^{L} t_{l}=0$ if and only if $t_{l}=0$ for every $I=1, \ldots, L$.
Assume that this is the case.
Recall that

$$
t_{l}(p)=\max \left\{0, p_{l}+\beta Z_{l}(p)\right\}
$$

Existence of General Equilibrium (8)

From the very first Lemma above we know that $p_{l} \geq 0$ therefore

- for every I such that $p_{I}=0$ for $t_{l}=0$ we need $Z_{I}(p) \leq 0$.
- for every I such that $p_{I}>0$ for $t_{l}=0$ we need $Z_{l}(p)<0$.

However, the latter case contradicts Walras Law:

Denote

$$
A(p)=\left\{I \leq L \mid p_{I}=0\right\}
$$

and

$$
B(p)=\left\{I \leq L \mid p_{l}>0\right\},
$$

Existence of General Equilibrium (9)

By Walras Law:

$$
0=\sum_{l=1}^{L} p_{l} Z_{l}(p)=\sum_{l \in A(p)} p_{l} Z_{l}(p)+\sum_{l \in B(p)} p_{l} Z_{l}(p)
$$

Since by definition of $A(p)$

$$
\sum_{l \in A(p)} p_{l} Z_{l}(p)=0
$$

Walras Law implies:

$$
\sum_{I \in B(p)} p_{l} Z_{l}(p)=0
$$

This is a contradiction of $p_{I}>0$ and $Z_{l}(p)<0$ for every $I \in B(p)$.

Existence of General Equilibrium (10)

Therefore the mapping from p into q is continuous and maps a compact and convex set in itself.

Brower Fixed Point Theorem applies which means that there exists a fixed point p^{*} such that $q\left(p^{*}\right)=p^{*}$.

We still need to show that such a point is a Walrasian Equilibrium price vector.

Consider first $I \in A\left(p^{*}\right)$ then $p_{l}^{*}=0$ by definition of $A\left(p^{*}\right)$.

Further, being p^{*} a fixed point $q_{l}\left(p^{*}\right)=p_{l}^{*}=0$ which implies by definition of $t_{l}\left(p^{*}\right)$ and boundedness of $Z(p)$ that $t_{l}\left(p^{*}\right)=0$, hence $Z_{l}\left(p^{*}\right) \leq 0$.

Existence of General Equilibrium (11)

Therefore $Z_{l}\left(p^{*}\right) \leq 0$ for every $I \in A\left(p^{*}\right)$.
Consider now $I \in B\left(p^{*}\right)$ then $p_{l}^{*}>0$ by definition of $B\left(p^{*}\right)$.
Therefore by definition of $t_{l}\left(p^{*}\right)$:

$$
q_{l}\left(p^{*}\right)=p_{l}^{*}=\frac{p_{l}^{*}+\beta Z_{l}\left(p^{*}\right)}{\sum_{l \in B\left(p^{*}\right)}^{t_{l}\left(p^{*}\right)}}
$$

multiplying both sides by $Z_{l}\left(p^{*}\right)$ we get:

$$
p_{l}^{*} Z_{l}\left(p^{*}\right)=\frac{p_{l}^{*} Z_{l}\left(p^{*}\right)+\beta\left[Z_{l}\left(p^{*}\right)\right]^{2}}{\sum_{l \in B\left(p^{*}\right)} t_{l}\left(p^{*}\right)}
$$

Existence of General Equilibrium (12)

which summed over $I \in B\left(p^{*}\right)$ gives:

$$
\sum_{l \in B\left(p^{*}\right)} p_{l}^{*} Z_{l}\left(p^{*}\right)=\frac{\sum_{l \in B\left(p^{*}\right)} p_{l}^{*} Z_{l}\left(p^{*}\right)+\beta \sum_{l \in B\left(p^{*}\right)}\left[Z_{l}\left(p^{*}\right)\right]^{2}}{\sum_{l \in B\left(p^{*}\right)} t_{l}\left(p^{*}\right)}
$$

Walras Law

$$
\sum_{l \in B\left(p^{*}\right)} p_{l}^{*} Z_{l}\left(p^{*}\right)=0 \Rightarrow \frac{\beta \sum_{l \in B\left(p^{*}\right)}\left[Z_{l}\left(p^{*}\right)\right]^{2}}{\sum_{l \in B\left(p^{*}\right)} t_{l}\left(p^{*}\right)}=0
$$

From Lemma 2 and $t_{l}\left(p^{*}\right)=0$ for every $I \in A\left(p^{*}\right)$

$$
\sum_{l=1}^{L} t_{l}=\sum_{l \in A\left(p^{*}\right)} t_{l}+\sum_{l \in B\left(p^{*}\right)} t_{l}=\sum_{l \in B\left(p^{*}\right)} t_{l} \neq 0 \Rightarrow \sum_{I \in B\left(p^{*}\right)}\left[Z_{l}\left(p^{*}\right)\right]^{2}=0
$$

or $Z_{l}\left(p^{*}\right)=0$ for every $I \in B\left(p^{*}\right)$.

Existence of General Equilibrium (13)

In other words, we have proved that under assumptions 1-5 there exists a Walrasian Equilibrium price vector p^{*} and an allocation $x^{*}\left(p^{*}\right)$ such that:

- for every $I \in A\left(p^{*}\right)$ - for every I such that $p_{I}^{*}=0$ - we have that

$$
Z_{l}\left(p^{*}\right) \leq 0
$$

- while for every $I \in B\left(p^{*}\right)$ - for every I such that $p_{I}^{*}>0$ - we have that

$$
Z_{l}\left(p^{*}\right)=0
$$

Notice that in equilibrium there exist excess demands only of commodities that are free (whose equilibrium price is zero).

Properties of Walrasian Equilibrium

Recall that $x=\left\{x^{1}, \ldots, x^{\prime}\right\}$ denotes an allocation.

Definition

An allocation x Pareto dominates an alternative allocation \bar{x} if and only if:

$$
u_{i}\left(x^{i}\right) \geq u_{i}\left(\bar{x}^{i}\right) \quad \forall i \in\{1, \ldots, I\}
$$

and for some i :

$$
u_{i}\left(x^{i}\right)>u_{i}\left(\bar{x}^{i}\right) .
$$

Pareto Efficiency

In other words, the allocation x makes no one worse-off and someone strictly better-off.

Definition

An allocation x is feasible in a pure exchange economy if and only if:

$$
\sum_{i=1}^{I} x_{l}^{i} \leq \bar{\omega}_{I} \quad \forall I \in\{1, \ldots, L\} .
$$

Definition

An allocation x is Pareto efficient if and only if it is feasible and there does not exist an other feasible allocation that Pareto-dominates x.

Pareto Efficiency (2)

Pareto Efficiency (3)

A standard way to identify a Pareto-efficient allocation is to introduce a benevolent central planner that has the authority to re-allocate resources across consumers so as to exhaust any gains-from-trade available.

Result

An allocation x^{*} is Pareto-efficient if there exists a vector of weights $\lambda=\left(\lambda^{1}, \ldots, \lambda^{\prime}\right)$ such that x^{*} solves the following problem:

$$
\begin{array}{cl}
\max _{x^{1}, \ldots, x^{\prime}} & \sum_{i=1}^{I} \lambda^{i} u_{i}\left(x^{i}\right) \tag{1}\\
\text { s.t } & \sum_{i=1}^{I} x^{i} \leq \bar{\omega}
\end{array}
$$

Pareto Efficiency (4)

Proof: We start from the only if:
Assume by way of contradiction that the allocation \hat{x} that solves (1) is not Pareto efficient.

Then there exists a feasible allocation \tilde{x} and at least an individual i such that

$$
u_{i}\left(\tilde{x}^{i}\right)>u_{i}\left(\hat{x}^{i}\right), \quad u_{j}\left(\tilde{x}^{i}\right) \geq u_{j}\left(\hat{x}^{j}\right) \forall j \neq i
$$

If then follows that, given $\left(\lambda^{1}, \ldots, \lambda^{\prime}\right)$, the allocation \tilde{x} is feasible in problem (1) and achieves a higher maximand.

This observation contradicts the assumption that \hat{x} solves problem (1).
We come back to the if later on.

First Welfare Theorem

Theorem (First Fundamental Theorem of Welfare Economics)

Consider a pure exchange economy such that consumers' preferences are weakly monotonic.

Assume that this economy is such that there exists a Walrasian equilibrium $\left\{p^{*}, x^{*}\right\}$.

Then the allocation x^{*} is a Pareto-efficient allocation.

Proof: Assume that the theorem is not true.

First Welfare Theorem (2)

Contradiction hypothesis: There exists an allocation x such that

$$
\sum_{i=1}^{l} x^{i} \leq \bar{\omega}
$$

and

$$
u_{i}\left(x^{i}\right) \geq u_{i}\left(x^{i, *}\right) \quad \forall i \leq I
$$

and for some $i \leq I$

$$
u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)
$$

First Welfare Theorem (3)

Claim

Then

$$
p^{*} x^{i} \geq p^{*} x^{i, *} \quad \forall i \leq I
$$

Proof: Assume that this is not true and there exists $i \leq I$ such that

$$
p^{*} x^{i}<p^{*} x^{i, *}
$$

From

$$
p^{*} x^{i, *}=p^{*} \omega^{i}
$$

we then get

$$
p^{*} x^{i}<p^{*} \omega^{i}
$$

First Welfare Theorem (4)

This implies that there exists $\varepsilon>0$ such that if we denote e^{T} the vector $e^{T}=(1, \ldots, 1)$

$$
p^{*}\left(x^{i}+\varepsilon e\right)<p^{*} \omega^{i}
$$

Monotonicity of preferences then implies that

$$
u_{i}\left(x^{i}+\varepsilon e\right)>u_{i}\left(x^{i}\right)
$$

which together with the contradiction hypothesis gives:

$$
u\left(x^{i}+\varepsilon e\right)>u_{i}\left(x^{i, *}\right)
$$

This contradicts $x^{i, *}=x^{i}\left(p^{*}\right)$.

First Welfare Theorem (5)

Claim

Since for some i we have $u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)$ then for the same i

$$
p^{*} x^{i}>p^{*} x^{i, *}
$$

Proof: Assume this is not the case.
Then there exists a consumption bundle x^{i} which is affordable for i :

$$
p^{*} x^{i} \leq p^{*} x^{i, *}=p^{*} \omega^{i}
$$

and yields a higher level of utility: $u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)$.
This is a contradiction of the hypothesis $x^{i, *}=x^{i}\left(p^{*}\right)$.

First Welfare Theorem (6)

Adding up these conditions across consumers we obtain:

$$
\sum_{i=1}^{I} p^{*} x^{i}>\sum_{i=1}^{I} p^{*} x^{i, *}
$$

or

$$
\sum_{i=1}^{l} p^{*} x^{i}>\sum_{i=1}^{l} p^{*} x^{i, *}=p^{*} \bar{\omega}
$$

a contradiction of the feasibility of the allocation x.

Notice that the hypothesis necessary for this Theorem are not enough to guarantee the existence of a Walrasian equilibrium.

The Converse Question

So far we assumed:

- perfectly competitive markets;
- every commodity has a corresponding market (no-externalities).

Consider now the converse question.
Suppose you have a pure exchange economy and you want the consumer to achieve a given Pareto-efficient allocation.

Is there a way to achieve this allocation in a fully decentralized (hands-off) way?

Answer: redistribution of endowments.

Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem)

Let A and B be two disjoint and convex set in \mathbb{R}^{N}. Then there exists a vector $p \in \mathbb{R}^{N}$ such that

$$
p x \geq p y
$$

for every $x \in A$ and every $y \in B$.

In other words there exists an hyperplane identified by the vector p that separates the set A and the set B.

Second Welfare Theorem

Theorem (Second Fundamental Theorem of Welfare Economics)

Consider a pure exchange economy with (weakly) convex, continuos and strongly monotonic consumers' preferences.

Let x^{*} be a Pareto-efficient allocation such that $x_{,}^{i, *}>0$ for every $I \leq L$ and every $i \leq I$. Then there exists an endowment re-allocation ω^{\prime} such that:

$$
\sum_{i=1}^{I} \omega^{\prime i}=\sum_{i=1}^{I} \omega^{i}
$$

and for some p^{*} the vector $\left\{p^{*}, x^{*}\right\}$ is a Walrasian equilibrium given ω^{\prime}.

Second Welfare Theorem (2)

Proof: Consider

$$
B^{i}=\left\{x^{i} \in \mathbb{R}_{+}^{L} \mid u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)\right\}
$$

Notice that B^{i} is convex since preferences are convex by assumption (utility function is quasi-concave).

Let

$$
B=\sum_{i=1}^{l} B^{i}=\left\{z \in \mathbb{R}_{+}^{L} \mid z=\sum_{i=1}^{l} x^{i}, x^{i} \in B^{i}\right\}
$$

Second Welfare Theorem (3)

Claim

B is convex.

Proof: Take $z, z^{\prime} \in B$.
Now $z \in B$ implies $z=\sum_{i=1}^{l} x^{i}$ and $z^{\prime} \in B$ implies $z^{\prime}=\sum_{i=1}^{l} x^{\prime i}$.
Therefore

$$
\begin{aligned}
{\left[\lambda z+(1-\lambda) z^{\prime}\right] } & =\lambda \sum_{i=1}^{l} x^{i}+(1-\lambda) \sum_{i=1}^{l} x^{\prime i} \\
& =\sum_{i=1}^{l}\left[\lambda x^{i}+(1-\lambda) x^{\prime i}\right] \in B
\end{aligned}
$$

since $\left[\lambda x^{i}+(1-\lambda) x^{\prime i}\right] \in B^{i}$ by convexity of B^{i}.

Second Welfare Theorem (4)

Claim

$$
v=\sum_{i=1}^{1} x^{i, *} \notin B
$$

Proof: Assume that this is not the case: $v \in B$.

This means that there exist $/$ consumption bundles $\hat{x}^{i} \in B^{i}$ such that

$$
v=\sum_{i=1}^{I} x^{i, *}=\sum_{i=1}^{I} \hat{x}^{i}
$$

Second Welfare Theorem (5)

Now, Pareto-efficiency of x^{*} implies that v is feasible:

$$
v=\sum_{i=1}^{l} \hat{x}^{i}=\sum_{i=1}^{l} \omega^{i}
$$

and by definition of B^{i}

$$
u_{i}\left(\hat{x}^{i}\right)>u_{i}\left(x^{i, *}\right)
$$

for every $i \leq 1$.

This contradicts the Pareto-efficiency of x^{*}.

Second Welfare Theorem (6)

Claim

There exists a p^{*} such that:

$$
p^{*} z \geq p^{*} v=p^{*} \sum_{i=1}^{l} x^{i, *}=p^{*} \sum_{i=1}^{l} \omega^{i} \quad \forall z \in B
$$

Proof: It follows directly from the Separating Hyperplane Theorem.
Indeed, the sets $\{v\}$ and the set B satisfy the assumptions of the theorem.

We still need to show that the p^{*} we have obtained is indeed a Walrasian equilibrium.

Second Welfare Theorem (7)

Claim

$$
p^{*} \geq 0
$$

Proof: Denote $e_{n}^{T}=(0, \ldots, 0,1,0, \ldots, 0)$ where the digit 1 is in the n-th position, $n \leq L$.

Notice that strict monotonicity of preferences implies:

$$
v+e_{n} \in B
$$

therefore from Claim 3 we have that:

$$
p^{*}\left(v+e_{n}\right) \geq p^{*} v
$$

Second Welfare Theorem (8)

In other words:

$$
p^{*}\left(v+e_{n}-v\right) \geq 0
$$

or

$$
p^{*} e_{n} \geq 0
$$

which is equivalent to:

$$
p_{n}^{*} \geq 0
$$

Second Welfare Theorem (9)

Claim

For every consumer $i \leq 1$

$$
u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)
$$

implies

$$
p^{*} x^{i} \geq p^{*} x^{i, *}
$$

Proof: Let $\theta \in(0,1)$. Consider the allocation

$$
z^{i}=x^{i}(1-\theta)
$$

and

$$
z^{h}=x^{h, *}+\frac{x^{i} \theta}{l-1} \quad \forall h \neq i
$$

the allocation z is a redistribution of resources from i to every h.

Second Welfare Theorem (10)

For a small θ by strict monotonicity we have that z is Pareto-preferred to x^{*}. Hence by the previous Claim:

$$
p^{*} \sum_{i=1}^{I} z^{i} \geq p^{*} \sum_{i=1}^{I} x^{i, *}
$$

or

$$
p^{*}\left[x^{i}(1-\theta)+\sum_{h \neq i} x^{h, *}+x^{i} \theta\right]=p^{*}\left[x^{i}+\sum_{h \neq i} x^{h, *}\right] \geq p^{*} \sum_{i=1}^{l} x^{i, *}
$$

which implies $p^{*} x^{i} \geq p^{*} x^{i, *}$.

Second Welfare Theorem (11)

Claim

For some agent i

$$
u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)
$$

implies

$$
p^{*} x^{i}>p^{*} x^{i, *}
$$

Proof: From the previous Claim we have $p^{*} x^{i} \geq p^{*} x^{i, *}$. Therefore we just have to rule out $p^{*} x^{i}=p^{*} x^{i, *}$. Continuity of preferences implies that for some scalar ξ close to 1 we have

$$
u_{i}\left(\xi x^{i}\right)>u_{i}\left(x^{i, *}\right)
$$

and by the previous Claim $p^{*} \xi x^{i} \geq p^{*} x^{i, *}$. If now $p^{*} x^{i}=p^{*} x^{i, *}>0$ from $p^{*}>0$ and $x^{i, *}>0$ it follows that $p^{*} \xi x^{i}<p^{*} x^{i, *}$: a contradiction.

Second Welfare Theorem (12)

The previous Claims imply that whenever $u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)$ then $p^{*} x^{i}>p^{*} x^{i, *}$ with a strict inequality for some i.

This implies that the consumption bundles $x^{i, *}$ maximizes consumer i 's utility subject to budget constraint.

Indeed $\sum_{i=1}^{I} p^{*} x^{i, *}=\sum_{i=1}^{l} p^{*} \omega^{i}$
Let now $\omega^{\prime i}=x^{i, *}$. This concludes the proof of the SWT.

Notice that the assumptions of the Second Welfare Theorem are the same that guarantee the existence of a Walrasian equilibrium.

