Solutions to Assignment 1 EC9D3 Advanced Microeconomics

1. Let

$$
\hat{u}\left(x_{1}, x_{2}\right)=k\left(x_{1}-a\right)^{\alpha}\left(x_{2}-b\right)^{\beta}
$$

applying the logarithmic (monotonic) transformation (notice that in applying this monotonic transformation the consumption feasible set of the consumer is transformed in particular is reduced to $x_{1} \geq a$ and $x_{2} \geq b$) we obtain:

$$
\ln k+\alpha \ln \left(x_{1}-a\right)+\beta \ln \left(x_{2}-b\right)
$$

removing the constant $\ln k$ (also a monotonic transformation) we obtain

$$
\alpha \ln \left(x_{1}-a\right)+\beta \ln \left(x_{2}-b\right)
$$

dividing by $(\alpha+\beta)$ (a monotonic transformation, once again) we finally obtain

$$
\delta \ln \left(x_{1}-a\right)+(1-\delta) \ln \left(x_{2}-b\right)
$$

where $\delta=\alpha /(\alpha+\beta)$.
2. We shall start from the consumer's maximization of utility problem.
(i) the consumer's utility maximization problem is:

$$
\begin{aligned}
\max _{\left\{x_{1}, x_{2}\right\}} & \delta \ln \left(x_{1}-a\right)+(1-\delta) \ln \left(x_{2}-b\right) \\
\text { s.t. } & p_{1} x_{1}+p_{2} x_{2} \leq m
\end{aligned}
$$

which delivers as the optimal solution the following Marshallian demands:

$$
x_{1}(p, m)=a+\frac{\delta}{p_{1}}\left(m-a p_{1}-b p_{2}\right)
$$

and

$$
x_{2}(p, m)=b+\frac{1-\delta}{p_{2}}\left(m-a p_{1}-b p_{2}\right) .
$$

(ii) substituting the Marshallian demands just derived into the utility function we obtain the following indirect utility function.

$$
\begin{aligned}
v(p, m) & =\delta \ln \left[\frac{\delta}{p_{1}}\left(m-a p_{1}-b p_{2}\right)\right]+(1-\delta) \ln \left[\frac{1-\delta}{p_{2}}\left(m-a p_{1}-b p_{2}\right)\right]= \\
& =\ln \left(m-a p_{1}-b p_{2}\right)+\delta \ln \delta+(1-\delta) \ln (1-\delta)-\delta \ln p_{1}-(1-\delta) \ln p_{2}
\end{aligned}
$$

(iii) the consumer's expenditure minimization problem is:

$$
\begin{aligned}
\min _{\left\{x_{1}, x_{2}\right\}} & p_{1} x_{1}+p_{2} x_{2} \\
\text { s.t. } & \delta \ln \left(x_{1}-a\right)+(1-\delta) \ln \left(x_{2}-b\right) \geq U
\end{aligned}
$$

which delivers as the optimal solution the following Hicksian demands:

$$
h_{1}(p, U)=a+e^{U}\left[\frac{p_{2} \delta}{p_{1}(1-\delta)}\right]^{1-\delta}
$$

and

$$
h_{2}(p, U)=b+e^{U}\left[\frac{p_{1}(1-\delta)}{p_{2} \delta}\right]^{\delta}
$$

(iv) substituting the Hicksian demands just derived in the consumer's expenditure $p_{1} x_{1}+p_{2} x_{2}$ we derive the following expenditure function:

$$
\begin{aligned}
e(p, U) & =p_{1}\left\{a+e^{U}\left[\frac{p_{2} \delta}{p_{1}(1-\delta)}\right]^{1-\delta}\right\}+p_{2}\left\{b+e^{U}\left[\frac{p_{1}(1-\delta)}{p_{2} \delta}\right]^{\delta}\right\}= \\
& =a p_{1}+b p_{2}+[\delta+(1-\delta)] e^{U} \delta^{-\delta}(1-\delta)^{-(1-\delta)} p_{1}^{\delta} p_{2}^{(1-\delta)}= \\
& =a p_{1}+b p_{2}+e^{U} \delta^{-\delta}(1-\delta)^{-(1-\delta)} p_{1}^{\delta} p_{2}^{(1-\delta)}
\end{aligned}
$$

(v) The parameter a can be interpreted as the minimum feasible consumption of commodity x_{1} and b the minimum feasible consumption of commodity x_{2}.

We need to assume that $m>p_{1} a+p_{2} b$ in order for the consumer to be in his/her consumption set.

3. Answers:

(i) The Marshallian demand function for commodity C can be obtained substituting the expressions (1) and (2) in the binding budget constraint and solving for C.
(ii) Yes they are. Consider, in fact, the value of (1) and (2) at $\left(\lambda p_{A}, \lambda p_{B}, \lambda p_{C}, \lambda m\right)$.
(iii) The Slutsky decomposition and the symmetry of the substitution matrix imply:

$$
\begin{aligned}
\frac{\partial h_{A}}{\partial p_{B}} & =\frac{\partial x_{A}}{\partial p_{B}}+\frac{\partial x_{A}}{\partial m} x_{B}=\frac{\alpha_{2}}{p_{C}}+\frac{\alpha_{3}}{p_{C}} x_{B}= \\
& =\frac{\partial h_{B}}{\partial p_{A}}=\frac{\partial x_{B}}{\partial p_{A}}+\frac{\partial x_{B}}{\partial m} x_{A}=\frac{\beta_{1}}{p_{C}}+\frac{\beta_{3}}{p_{C}} x_{A}
\end{aligned}
$$

or

$$
\frac{\alpha_{2}}{p_{C}}+\frac{\alpha_{3}}{p_{C}} x_{B}=\frac{\beta_{1}}{p_{C}}+\frac{\beta_{3}}{p_{C}} x_{A}
$$

which must hold for every A and B. Therefore if $x_{A}=1$ and $x_{B}=1$ we get

$$
\begin{equation*}
\alpha_{2}+\alpha_{3}=\beta_{1}+\beta_{3} \tag{1}
\end{equation*}
$$

and if $x_{A}=1$ and $x_{B}=2$ we get

$$
\begin{equation*}
\alpha_{2}+2 \alpha_{3}=\beta_{1}+\beta_{3} . \tag{2}
\end{equation*}
$$

Equations (1) and (2) imply $\alpha_{3}=0$ therefore

$$
\eta_{A, m}=\frac{\partial x_{A}}{\partial m} \frac{m}{x_{A}}=\frac{\alpha_{3}}{p_{C}} \frac{m}{x_{A}}=0 .
$$

4. Answers:

(i) Substituting the values of prices and demands in the expression of the Marshallian demand for A we get:

$$
\alpha+\beta+\gamma+100=2
$$

which implies:

$$
\beta=-\alpha-\gamma-98
$$

Moreover, from Slutsky equation for commodity A we obtain:

$$
\frac{\partial h_{A}}{\partial p_{A}}=\frac{\partial x_{A}}{\partial p_{A}}+\frac{\partial x_{A}}{\partial m} x_{A}=\frac{\beta}{p_{C}}+\frac{10}{p_{C}} x_{A}=\beta+20 \leq 0
$$

that implies

$$
\beta<-20 .
$$

(ii) Given that B and C are complements we obtain from:

$$
\sum_{l=1}^{L} p_{l} \frac{\partial h_{l}}{\partial p_{i}}=0
$$

(for every $i=1, \ldots, L$), that A and B are necessarily substitutes as well as A and C. Therefore, Slutsky decomposition yields:

$$
\frac{\partial h_{A}}{\partial p_{B}}=\frac{\partial x_{A}}{\partial p_{B}}+\frac{\partial x_{A}}{\partial m} x_{B}=\frac{\gamma}{p_{C}}+\frac{10}{p_{C}} x_{B}=\gamma+30>0
$$

which implies $\gamma>-30$. Moreover:

$$
\frac{\partial h_{A}}{\partial p_{C}}=\frac{\partial x_{A}}{\partial p_{C}}+\frac{\partial x_{A}}{\partial m} x_{C}=-\beta \frac{p_{A}}{p_{C}^{2}}-\gamma \frac{p_{B}}{p_{C}^{2}}-10 \frac{m}{p_{C}^{2}}+\frac{10}{p_{C}} x_{C}=-\beta-\gamma-50>0
$$

which implies $\gamma<-50-\beta$.

