
University of Warwick, Department of Economics Spring 2012
EC941: Game Theory Prof. Francesco Squintani

Final Exam

Answer TWO questions. All questions carry equal weight. Time allowed 2 hours.

1. Consider the following Cournot duopoly. Firm 1 and 2 face the following inverse demand
function

p = a�Q � a� q1 � q2; a > 0;

where qi is the quantity produced by �rm i = 1; 2: Both �rms produce at the same constant

marginal cost c < a: Both �rms maximize a (convex) combination of pro�ts and revenues.

More precisely, �rm i maximizes

�iRi(q1; q2) + (1� �i)�i(q1; q2); i = 1; 2

where Ri and �i represent �rm i�s revenues and pro�ts respectively, and �i 2 (0; 1): Assume
that �1 > �2.

a. Prove that the amended Cournot duopoly coincides with the asymmetric Cournot

duopoly in which both �rms maximize pro�ts, �rm 1�s marginal cost is equal to (1�
�1)c, and �rm 2�s marginal cost is equal to (1� �2)c.

b. Show that at the (unique) Nash equilibrium �rm 1 produces a higher output than �rm

2.

Consider now the following simpli�ed version the Cournot duopoly. Firm 1 and 2 can only

produce two levels of output: a high output, qh, and a low output, ql. Firms�payo¤s are

given by the matrix below,

qh ql
qh (�N ;�N) (�D;�L)
ql (�L;�D) (�C ;�C)

where �D > �C > �N > �L. Assume that the two �rms interact repeatedly over an in�nite

horizon and have the same discount factor �; 0 < � < 1.
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c. Find the condition on the discount factor under which the strategy pair in which each

�rm uses the grim-trigger strategy is a subgame perfect equilibrium of the in�nitely

repeated game.

2. Consider the following procurement auction. A government agency is considering buying
a good from one of two �rms, 1 and 2. The agency�s valuation of the object, that is, its

willingness to pay for the object, is equal to 1. The two �rms submit simultaneously sealed-

bid o¤ers. The �rm o¤ering the lower price is awarded the contract at that price. That is, if

�rm 1 submits b1 and �rm 2 submits b2 and b1 < b2, then �rm 1 produces the good for the

buyer and receives a payment equal to b1. In the event of a tie, the contract is awarded by

�ipping a coin. The production cost is zero for both �rms. However, each �rm has to pay

a �xed cost in order to submit its bid. Upon submitting its o¤er, each �rm does not know

whether or not its competitor is taking part in the auction.

a. Show that there exists no Nash equilibrium in pure strategy in which �rms decide

whether to enter the competition or to stay out.

b. Show that, if �rms decide to submit an o¤er, the optimal pricing strategy involves an

equilibrium in mixed strategies.

c. Find the equilibrium probability of entering the competition and the equilibrium dis-

tribution function of the �rms�bids.

3. Consider the following all-pay auction. Two people submit sealed bids for an object
worth 2 to each of them. Each person�s bid may be any nonnegative number up to 2. The

winner is the person whose bid is higher; in the event of a tie each person receives half of

the object, which she values at 1. Each person pays her bid, regardless of whether she wins,

and has preferences represented by the expected amount of money she receives.

a. Show that the all-pay auction does not admit a Nash equilibrium in pure strategies.

b. Show that there exists an equilibrium in mixed strategies in which both players ran-

domize according to a uniform distribution on [0; 2].

4. Two people take turns removing stones from a pile of n stones. Each person may, on

each of her turns, remove either one stone or two stones. The person who takes the last
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stone is the winner; she gets $1 from her opponent. Find the subgame perfect equilibria of

the games that model this situation for n = 1 and n = 2: Find the winner in each subgame

perfect equilibrium for n = 3; using the fact that the subgame following player 1�s removal

of one stone is the game for n = 2 in which player 2 is the �rst-mover, and the subgame

following player 1�s removal of two stones is the game for n = 1 in which player 2 is the �rst

mover. Use the same technique to �nd the winner in each subgame perfect equilibrium for

n = 4; and, if you can, for an arbitrary value of n.

5. A seller imposes a reserve price r in a second-price sealed-bid auction where there are

two bidders. If both bids are below r; then the good is not sold; if one bid is above r and

the other one is not, then the winner pays the reserve price r; and if both bids are above

the reserve price, then the winner pays the second price. Each bidder i�s valuation vi is

distributed uniformly on [0; 1] :

a. Prove or disprove that bidding one�s own valuation is a Nash Equilibrium.

b. Prove or disprove that bidding one�s own valuation is weakly dominant.

c. Find the reserve price that maximizes the expected selling price, given that the bidders

play dominant strategies.
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Answers

1a. Firm i�s objective function can be rewritten as qi(a� qi � qj � (1� �i)c). Thus it is as
if �rm i were maximizing pro�t by producing at a marginal cost of (1� �i)c < c.
1b. The computation of the unique Nash equilibrium is a standard procedure that yields

(q�1; q
�
2) = (

a� c(1 + �2 � 2�1)
3

;
a� c(1 + �1 � 2�2)

3
). Since �1 > �2, then q

�
1 > q

�
2.

1c. The payo¤ structure is that of the Prisoner�s Dilemma. Suppose that the �row��rm

adopts the grim-trigger strategy. If the �column��rm chooses qh in one period, it gets �D

in that period and �N from the next period onwards. This yields an average discounted

payo¤ of �D(1� �) + ��N . The strategy of choosing ql yields the �column��rm an average

discounted payo¤ of �C . Then (ql; ql) is a Nash equilibrium of the in�nitely repeated game

IFF

�C � �D(1� �) + ��N , � � �D � �C
�D � �N :

2a. Suppose that both �rms enter with probability one. Then they will optimally submit
zero, and get negative expected pro�t (because of the entry cost). Then either �rm has an

incentive to deviate and stay out. Suppose that they stay out with probability one. Then

either �rm has an incentive to enter, submit one and get pro�t of 1 � c instead of zero (by
staying out). Finally, suppose that �rm 1 stays out and �rm 2 enters. The latter can get

1 � c in pro�t by submitting a bid equal to one. Then �rm 1 has an incentive to deviate,

that is, to enter and to slightly undercut �rm 2. This would yield �rm 1 strictly positive

pro�t instead of zero (by staying out).

2b. Suppose that, conditional on entering, both �rms submit bids (b1; b2) with probability
one. Notice that bids cannot be lower than c. If b1 = b2 = c, either �rm would pro�tably

deviate by staying out. If 1 � b1 > b2 > c, then �rm 1 would pro�tably undercut �rm 2.

2c. At a mixed strategy equilibrium, �rms have to be indi¤erent between entering and
staying out. Then the equilibrium expected payo¤ is zero. Consider now �rm 1�s problem.

It has to optimally choose the probability of staying out, q, and the distribution function

over bids, Q(�), so as to make �rm 2 indi¤erent between staying out and entering. Thus,

�rm 1 chooses the couple (q;Q(�)) such that

qx+ (1� q)[x(1�Q(x)]� c = 0;
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where x is �rm 2�s bid. At x = 1, Q(1) = 1 which implies q = c. Thus �rm 2�s expected

payo¤ by bidding x writes

cx+ (1� c)[x(1�Q(x))]� c = 0; x 2 [c; 1]:

Then,

Q(x) = 1� c(1� x)
(1� c)x;

which is indeed a continuous and strictly increasing function on [c; 1] satisfying Q(c) = 0

and Q(1) = 1.

3a. Let b1 and b2 be bidder 1�s and bidder 2�s o¤ers respectively. If b1 = b2 < 2, then either
player has an incentive to increase her bid. If b1 = b2 = 2, then either player can increase

her payo¤ by bidding zero. If b1 6= b2, then the bidder who has submitted the lower o¤er

can increase her payo¤ by bidding zero.

3b. Suppose that bidder 2 bids according to a uniform distribution on [0,2]. By bidding

x 2 [0; 2], bidder 1�s expected payo¤ writes

�x Pr(b2 > x) + (2� x) Pr(b2 � x) = �x(1�
x

2
) + (2� x)x

2
= 0:

If bidder 1 submits x > 2, she wins with probability 1 and gets a strictly negative payo¤.

3c. This is a standard textbook exercise (see Osborne (2003), p. 430).

4. For n = 1 the game has a unique subgame perfect equilibrium, in which player 1 takes

one stone. The outcome is that player 1 wins. For n = 2 the game has a unique subgame

perfect equilibrium in which

� player 1 takes two stones
� after a history in which player 1 takes one stone, player 2 takes one stone.
The outcome is that player 1 wins.

For n = 3, the subgame following the history in which player 1 takes one stone is the

game for n = 2 in which player 2 is the �rst mover, so player 2 wins. The subgame following

the history in which player 1 takes two stones is the game for n = 1 in which player 2 is the

�rst mover, so player 2 wins. Thus there is a subgame perfect equilibrium in which player 1

takes one stone initially, and one in which she takes two stones initially. In both subgame

perfect equilibria player 2 wins.

For n = 4, the subgame following the history in which player 1 takes one stone is the

game for n = 3 in which player 2 is the �rst-mover, so player 1 wins. The subgame following
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the history in which player 1 takes two stones is the game for n = 2 in which player 2 is the

�rst-mover, so player 2 wins. Thus in every subgame perfect equilibrium player 1 takes one

stone initially, and wins. Continuing this argument for larger values of n, we see that if n

is a multiple of 3 then in every subgame perfect equilibrium player 2 wins, while if n is not

a multiple of 3 then in every subgame perfect equilibrium player 1 wins. We can prove this

claim by induction on n. The claim is correct for n = 1, 2, and 3, by the arguments above.

Now suppose it is correct for all integers through n - 1. I will argue that it is correct for n.

First suppose that n is divisible by 3. The subgames following player 1�s removal of one

or two stones are the games for n - 1 and n - 2 inwhich player 2 is the �rst-mover. Neither

n - 1 nor n - 2 is divisible by 3, so by hypothesis player 2 is the winner in every subgame

perfect equilibrium of both of these subgames. Thus player 2 is the winner in every subgame

perfect equilibrium of the whole game. Now suppose that n is not divisible by 3. As before,

the subgames following player 1�s removal of one or two stones are the games for n - 1 and

n - 2 in which player 2 is the �rst-mover. Either n - 1 or n - 2 is divisible by 3, so in one of

these subgames player 1 is the winner in every subgame perfect equilibrium. Thus player 1

is the winner in every subgame perfect equilibrium of the whole game.

5a & 5b. The argument that for each player a bid equal to her valuation weakly dominates
all other bids (and hence it is a Nash Equilibrium) is the same as the one in the absence

of a reserve price. Consider the following scheme, which compares player i�s payo¤s to the

bid vi with her payo¤s to a bid bi < vi (top table), and to a bid bi > vi (bottom table), as

a function of the highest of the other players�bids, denoted b. In each case, for all bids of

the other players, player i�s payo¤s to vi are at least as large as her payo¤s to the other bid,

and for bids of the other players such that b is in the middle column of each table, player

i�s payo¤s to vi are greater than her payo¤s to the other bid. Thus player i�s bid vi weakly

dominates all her other bids.

b < bi or b = bi & bi wins bi < b < vi or b = bi & bi loses b > vi
bi < vi vi � b 0 0
bi = vi vi � b vi � b 0

b < vi vi < b < bi or b = bi & bi wins b > bi or b = bi & bi loses
bi = vi vi � b 0 0
bi > vi vi � b vi � b 0

5c. Consider the expected price at which the object is sold when the reserve price is r.
Because this is a second prince auction, the dominant strategy for a player of type x is to

bid x: Hence the expected revenue for the auctioneer is:

ER = rPr (x1 < r; x2 � r)+rPr (x1 � r; x1 < r)+E [minfx1; x2gjx1 > r; x2 > r] Pr (x1 > r; x2 > r) ;
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where xi is the type of player i:

To calculate ER; note that

rPr (x1 < r; x2 � r) = rPr (x1 � r; x1 < r) = r � r (1� r) = r2 � r3;

and that the density of min fx1; x2g is 2 (1� x) ;

Pr fmin fx1; x2g � xg = 1� Pr fx1 > x; x2 > xg = 1� (1� x)2;

Thus

E [minfx1; x2gjx1 > r; x2 > r] Pr (x1 > r; x2 > r) =
Z 1

r

x � 2 (1� x) dx = 2

3
r3 � r2 + 1

3
:

Wrapping up, we obtain:

ER (r) = 2(r2 � r3) + 2
3
r3 � r2 + 1

3
= �4

3
r3 + r2 +

1

3
:

The �rst order condition is:

ER0 (r) = �2r (2r � 1) = 0

which yields r = 0 and r = 1=2 as solutions. The associated second order conditions are:

ER00 (0) = 2 and ER00 (1=2) = �2: Hence, the optimal reserve price is r = 1=2; which yields
expected revenue of 5=12: Whereas a reserve price of 0 yields expected revenue of 1=3:
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