EC9D31 Advanced Microeconomics
 Final Exam 2020-21 - Section A Questions and Answers

Question 1. Suppose preferences take the form:

$$
u\left(x_{1}, x_{2}\right)=\min \left\{2 x_{1}, x_{2} / 2\right\} .
$$

(a) Derive the Marshallian demands $x_{i}(p, m), i=1,2$. Are the goods Marshallian complements or substitutes? (5 marks)
(b) Derive the indirect utility function $v(p, m)$. Show that it is homogeneous of degree zero in prices and income. (4 marks)
(c) Derive the expenditure function $e(p, U)$. Show that it is homogenous of degree 1 in prices. (4 marks)
(d) Derive the Hicksian demands $h_{i}(p, U), i=1,2$. Are the goods Hicksian complements or substitutes? (4 marks)
(e) Suppose that a third good x_{3} becomes available, such that preferences take now the form

$$
u\left(x_{1}, x_{2}, x_{3}\right)=\min \left\{2 x_{1}+x_{2}, x_{3} / 2\right\} .
$$

Derive Marshallian demands, $x_{i}(p, m)$, and Hicksian demands, $h_{i}(p, U), i=$ $1,2,3$. [Hints. For what prices does the consumer simultaneously consume goods 1 and 3? What happens for all other prices?] (8 marks)

Answers to Q1 We proceed in sequence as follows.
(a) The optimal choice occurs at $2 x_{1}=x_{2} / 2$, and hence $x_{2}=4 x_{1}$, so that the budget constraint budget constraint $p_{1} x_{1}+p_{2} x_{2}=p_{1} x_{1}+p_{2}\left(4 x_{1}\right)=y$. Solving out, $x_{1}(p, y)=y /\left(p_{1}+4 p_{2}\right)$, and hence $x_{2}=4 y /\left(p_{1}+4 p_{2}\right)$.
(b) Substituting the Marshallian demands into the utility formula: $v(p, y)=2 x_{1}(p, y)=$ $2 y /\left(p_{1}+4 p_{2}\right)$.
(c) By setting $v=u$ and $y=e$ in $\mathrm{v}(\mathrm{p}, \mathrm{y})$ and solving for $\mathrm{e}(\mathrm{p}, \mathrm{u})$ we get $e(p, u)=$ $p_{1} u / 2+p_{2} 2 u=\left(p_{1} / 2+2 p_{2}\right) u$.
(d) Using Shepard Lemma $\frac{d e(p, u)}{d p_{1}}=u / 2=h_{1}(p, U)$ and $\frac{d e(p, u)}{d p_{2}}=2 u=h_{2}(p, U)$.
(e) At the optimum $x_{1}+2 x_{2}=x_{3} / 2$ and the consumer consumes $x_{1}=0$ if $p_{1}>p_{2} / 2$ and $x_{2}=0$ if $p_{1}<p_{2} / 2$.

In the first case, $2 x_{2}=x_{3} / 2$, and hence $x_{3}=4 x_{2}$, so that the budget constraint $p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}=p_{2} x_{2}+p_{3}\left(4 x_{2}\right)=y$.
Solving out, $x_{2}(p, y)=y /\left(p_{2}+4 p_{3}\right)$, and hence $x_{3}=4 y /\left(p_{2}+4 p_{3}\right)$ and $v(p, y)=$ $2 x_{2}(p, y)=2 y /\left(p_{2}+4 p_{3}\right)$.
Further, because $u=2 x_{2}$, it follows that $h_{2}=u / 2$, and hence that $x_{3}=2 u$ and $e(p, u)=p_{2} u / 2+p_{3} 2 u=\left(p_{2} / 2+2 p_{3}\right) u$.

In the second case, $x_{1}=x_{3} / 2$, so that the budget constraint $p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}=$ $p_{1} x_{1}+p_{3}\left(2 x_{1}\right)=y$.
Solving out, $x_{1}(p, y)=y /\left(p_{1}+2 p_{3}\right)$, and hence $x_{2}=2 y /\left(p_{1}+2 p_{3}\right)$ and $v(p, y)=$ $x_{2}(p, y)=y /\left(p_{2}+2 p_{3}\right)$.
Further, because $u=x_{1}$, it follows that $h_{1}=u, h_{3}=2 u$ and $e(p, u)=p_{1} u+$ $p_{3}(2 u)=\left(p_{1}+2 p_{3}\right) u$.

Question 2. Consider a Cobb-Douglas Production function:

$$
f(x)=x_{1}^{\alpha} x_{2}^{\beta}
$$

where $\alpha>0, \beta>0$ and make no assumptions on $\alpha+\beta$.
(a) Set up the cost minimization problem and write up the Lagrangian. (5 marks)
(b) Derive the conditional factor demands $h_{1}(w, y)$ and $h_{2}(w, y)$. (5 marks)
(c) Find the 2×2 matrix of marginal price effects. Confirm the signs (and, where appropriate, relative magnitudes) of these effects. (5 marks)
(d) Find the cost function $c(w, y)$. Confirm its properties. (5 marks)
(e) Prove the following result: A technology exhibits CRS if and only if the production function $f(x)$ (if available) is homogeneous of degree 1. (5 marks)

Answers to Q2 We proceed in sequence as follows.
(a) The cost minimization problem is:

$$
\min _{x_{1}, x_{2}} w_{1} x_{1}+w_{2} x_{2} \quad \text { s.t. } \quad x_{1}^{\alpha} x_{2}^{\beta} \geq y .
$$

The consequent Lagrangian is:

$$
\mathcal{L}=w_{1} x_{1}+w_{2} x_{2}-\lambda\left(x_{1}^{\alpha} x_{2}^{\beta}-y\right)
$$

(b) The conditional factor demands are:

$$
h_{1}\left(w_{1}, w_{2}, y\right)=\left(\frac{\alpha}{w_{1}}\right)^{\frac{\beta}{\alpha+\beta}}\left(\frac{\beta}{w_{2}}\right)^{\frac{-\beta}{\alpha+\beta}} y^{\frac{1}{\alpha+\beta}}
$$

and

$$
h_{2}\left(w_{1}, w_{2}, y\right)=\left(\frac{\alpha}{w_{1}}\right)^{\frac{-\alpha}{\alpha+\beta}}\left(\frac{\beta}{w_{2}}\right)^{\frac{\alpha}{\alpha+\beta}} y^{\frac{1}{\alpha+\beta}} .
$$

(c) The matrix of marginal price effects is:

$$
\left[\begin{array}{cc}
\frac{\partial h_{1}}{\partial w_{1}} & \frac{\partial h_{1}}{\partial w_{2}} \\
\frac{\partial h_{2}}{\partial w_{1}} & \frac{\partial h_{2}}{\partial w_{2}}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{w_{1}} \frac{\beta}{\alpha+\beta} h_{1} & \frac{1}{w_{2}} \frac{\beta}{\alpha+\beta} h_{1} \\
\frac{1}{w_{1}} \frac{\alpha}{\alpha+\beta} h_{2} & -\frac{1}{w_{2}} \frac{\alpha}{\alpha+\beta} h_{2}
\end{array}\right] .
$$

(d) The cost function is:

$$
c(w, y)=w_{1} h_{1}(w, y)+w_{2} h_{2}(w, y)=y^{\frac{1}{\alpha+\beta}}(\alpha+\beta)\left(\frac{w_{1}}{\alpha}\right)^{\frac{\alpha}{\alpha+\beta}}\left(\frac{w_{2}}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}
$$

(e) Assume CRS: this implies that if $z \in Z$ then $t z \in Z$, for all $t \geq 0$. By definition, $z \in Z$ means $y \leq f(x)$ and $t z \in Z$ means $t y \leq f(t x)$. By definition of $f(x)$ choose z, and hence x and y, so that $y=f(x)$. We can then re-write the condition above as: $t f(x) \leq f(t x)$. We need to prove that the equality holds.
Suppose it does not. Then there exists y^{\prime} such that $t f(x)<y^{\prime}<f(t x)$ Now $y^{\prime}<f(t x)$ implies by definition of Z that $\binom{-t x}{y^{\prime}} \in Z$ and by CRS we get $\frac{1}{t}\binom{-t x}{y^{\prime}} \in Z$, or $\binom{-x}{\frac{1}{t} y^{\prime}} \in Z$ which means $(1 / t) y^{\prime} \leq f(x)$, or $y^{\prime} \leq t f(x)$.

This latter inequality contradicts $t f(x)<y^{\prime}$.
The opposite implication is an immediate consequence of the definition of homogeneity of degree 1 .

Question 3. There are two consumers A and B with the following utility functions and endowments, with $\omega_{1} \geq \omega_{2}, \alpha \in[0,1]$ and $\beta \geq 1$:

$$
\begin{aligned}
& u_{A}=\alpha \ln x_{1 A}+(1-\alpha) \ln x_{2 A}, \quad \boldsymbol{\omega}_{A}=\left(0, \omega_{2}\right) \\
& u_{B}=\min \left\{\beta x_{1 B},(1-\beta) x_{2 B}\right\}, \quad \boldsymbol{\omega}_{B}=\left(\omega_{1}, 0\right)
\end{aligned}
$$

(a) Derive the Marshallian demands $x_{i}(p, m), i=A, B$. (5 marks)
(b) Calculate the market clearing prices and the equilibrium allocations. (5 marks)
(c) Explain how the Walrasian equilibrium price of good 1 varies with α and β. (5 marks)
(d) Calculate the effect of an increase in ω_{1} or ω_{2} on the equilibrium price of good 1. (5 marks)
(e) In general, an allocation $\left(x_{1}, x_{2}, \ldots, x_{L}\right)$ in an exchange economy is said to be Pareto-efficient if there does not exist another feasible allocation $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{L}^{\prime}\right)$ such that: (a) $u_{l}\left(x_{l}^{\prime}\right) \geq u_{l}\left(x_{l}\right)$, for all l; and (b) $u_{l}\left(x_{l}\right)>u_{l}\left(x_{l}\right)$, for some l. Prove that a Walrasian equilibrium allocation $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{L}^{*}\right)$ is Pareto-efficient. (5 marks)

Answers to Q3 We proceed in sequence as follows.
(a) Let p be the price of good 1 and normalize $p_{2}=1$.

Given price p, consumer A chooses \mathbf{x}_{A} so that

$$
\max \alpha \ln x_{A}^{1}+(1-\alpha) \ln x_{A}^{2} \quad \text { s.t. } \quad p x_{A}^{1}+x_{A}^{2}=\omega_{2} .
$$

Hence,

$$
\max \alpha \ln x_{A}^{1}+\left(\omega_{2}-\alpha\right) \ln \left(\omega_{2}-p x_{A}^{1}\right)
$$

first-order conditions are:

$$
\frac{\alpha}{x_{A}^{1}}=p \frac{(1-\alpha)}{\omega_{2}-p x_{A}^{1}},
$$

solving out, $x_{A}^{1}=\alpha \omega_{2} / p$, substituting back, we obtain: $x_{A}^{2}=\omega_{2}(1-\alpha)$.
Given price p, consumer B chooses \mathbf{x}_{B} so that

$$
\max \min \left\{\beta x_{B}^{1},(1-\beta) x_{B}^{2}\right\} \quad \text { s.t. } \quad p x_{B}^{1}+x_{B}^{2}=p \omega_{1} .
$$

The consumer chooses $\beta x_{B}^{1}=(1-\beta) x_{B}^{2}$, solving this together with $p x_{B}^{1}+x_{B}^{2}=$ $p \omega_{1}$ yields:

$$
x_{B}^{1}=\frac{p(1-\beta) \omega_{1}}{p(1-\beta)+\beta}, x_{B}^{2}=p \beta \frac{\omega_{1}}{p(1-\beta)+\beta}
$$

(b) Market clearing condition, therefore, is:

$$
x_{A}^{1}+x_{B}^{1}=\frac{\alpha \omega_{2}}{p}+\frac{p(1-\beta) \omega_{1}}{p(1-\beta)+\beta}=\omega_{1}
$$

Hence the equilibrium price is:

$$
p=\frac{\alpha \beta \omega_{2}}{\beta \omega_{1}-\alpha \omega_{2}(1-\beta)}
$$

and the equilibrium allocations are

$$
\begin{aligned}
& x_{A}^{1}=\omega_{1}-\alpha \omega_{2} \frac{(1-\beta)}{\beta}, \quad x_{A}^{2}=\omega_{2}(1-\alpha), \\
& x_{B}^{1}=\alpha \omega_{2} \frac{1-\beta}{\beta}, x_{B}^{2}=\alpha \omega_{2} .
\end{aligned}
$$

(c) The price p of good 1 is:

$$
p=\frac{\alpha \beta \omega_{2}}{\beta \omega_{1}-\alpha \omega_{2}(1-\beta)},
$$

differentiating with respect to α and β, I obtain:

$$
\begin{aligned}
\frac{\partial}{\partial \alpha}\left(\frac{\alpha \beta \omega_{2}}{\beta \omega_{1}-\alpha \omega_{2}(1-\beta)}\right) & =\frac{\beta^{2} \omega_{1} \omega_{2}}{\left(\beta \omega_{1}-\alpha \omega_{2}(1-\beta)\right)^{2}}>0 \\
\frac{\partial}{\partial \beta}\left(\frac{\alpha \beta \omega_{2}}{\beta \omega_{1}-\alpha \omega_{2}(1-\beta)}\right) & =-\frac{\alpha^{2} \omega_{2}^{2}}{\left(\beta \omega_{1}-\alpha \omega_{2}(1-\beta)\right)^{2}}<0
\end{aligned}
$$

The equilibrium price of good 1 increases in α and decreases in β.
(d) Differentiating with respect to ω_{1} and ω_{2}, I obtain:

$$
\begin{gathered}
\frac{\partial}{\partial \omega_{1}}\left(\frac{\alpha \beta \omega_{2}}{\beta \omega_{1}-\alpha \omega_{2}(1-\beta)}\right)=-\frac{\alpha \beta^{2} \omega_{2}}{\left(-\alpha \omega_{2}+\beta \omega_{1}+\alpha \beta \omega_{2}\right)^{2}}<0, \\
\frac{\partial}{\partial \omega_{2}}\left(\frac{\alpha \beta \omega_{2}}{\beta \omega_{1}-\alpha \omega_{2}(1-\beta)}\right)=\frac{\alpha \beta^{2} \omega_{1}}{\left(-\alpha \omega_{2}+\beta \omega_{1}+\alpha \beta \omega_{2}\right)^{2}}>0
\end{gathered}
$$

The equilibrium price of good 1 decreases in ω_{1} and increases in ω_{2}.
(e) Assume that the result is not true. There exists an allocation x such that $\sum_{i=1}^{I} x^{i} \leq \bar{\omega}, u_{i}\left(x^{i}\right) \geq u_{i}\left(x^{i, *}\right)$ for all i and $u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)$ for some i.
Then, let's first show that, for all i,

$$
\begin{equation*}
p^{*} x^{i} \geq p^{*} x^{i, *} \tag{1}
\end{equation*}
$$

Assume that this is not true and there exists i such that $p^{*} x^{i}<p^{*} x^{i, *}$. From $p^{*} x^{i, *}=p^{*} \omega^{i}$ we then get $p^{*} x^{i}<p^{*} \omega^{i}$. This implies that there exists $\varepsilon>0$ such that if we denote e^{T} the vector $e^{T}=(1, \ldots, 1)$, then $p^{*}\left(x^{i}+\varepsilon e\right)<p^{*} \omega^{i}$. Monotonicity of preferences then implies that $u_{i}\left(x^{i}+\varepsilon e\right)>u_{i}\left(x^{i}\right)$ which together with the contradiction hypothesis gives: $u\left(x^{i}+\varepsilon e\right)>u_{i}\left(x^{i, *}\right)$. This contradicts $x^{i, *}=x^{i}\left(p^{*}\right)$.
Since for some i we have $u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)$ then let's show that, for the same i,

$$
\begin{equation*}
p^{*} x^{i}>p^{*} x^{i, *} . \tag{2}
\end{equation*}
$$

Assume this is not the case. Then there exists a consumption bundle x^{i} which is affordable for i : $p^{*} x^{i} \leq p^{*} x^{i, *}=p^{*} \omega^{i}$ and yields a higher level of utility: $u_{i}\left(x^{i}\right)>u_{i}\left(x^{i, *}\right)$. This is a contradiction of the hypothesis $x^{i, *}=x^{i}\left(p^{*}\right)$.
Adding up Conditions (1) and (2) across consumers we obtain: $\sum_{i=1}^{I} p^{*} x^{i}>$ $\sum_{i=1}^{I} p^{*} x^{i, *}$ or $\sum_{i=1}^{I} p^{*} x^{i}>\sum_{i=1}^{I} p^{*} x^{i, *}=p^{*} \bar{\omega}$. This is a contradiction of the feasibility of the allocation x.

Question 4. There are three individuals in society, $\{1,2,3\}$, three alternatives, $\{x, y, z\}$, and the domain of preferences is unrestricted. Suppose that the social preference relation, R, is given by pairwise majority voting (where voters break any indifferences by voting for x first then y then z) if this results in a transitive social order. If this
does not result in a transitive social order the social order is $x P y P z$. Let f denote the social welfare function that this defines.
(a) Consider the following profiles, where P_{i} is individual i 's strict preference relation: Individual 1: $x P_{1} y P_{1} z$
Individual 2: $y P_{2} z P_{2} x$
Individual 3: $z P_{3} x P_{3} y$
What is the social order? (3 marks)
(b) What would be the social order if individual 1's preferences in (a) were instead $y P_{1} z P_{1} x$? or instead $z P_{1} y P_{1} x$? (5 marks)
(c) Prove that f satisfies the Pareto property, WP. (3 marks)
(d) Prove that f is non-dictatorial. (3 marks)
(e) Conclude that f does not satisfy IIA. (3 marks)
(f) Prove the following result: A social welfare rule is majoritarian if and only if it is neutral, anonymous, and positively responsive. (8 marks)

Answers to Q4 We proceed in sequence as follows.
(a) The preferences $x P_{1} y P_{1} z, y P_{2} z P_{2} x, z P_{3} x P_{3} y$ determine a Condorcet cycle, hence the social order is $x P y P z$.
(b) With preferences $y P_{1} z P_{1} x, y P_{2} z P_{2} x, z P_{3} x P_{3} y$, the social order is $y P z P x$. With preferences $z P_{1} y P_{1} x, y P_{2} z P_{2} x, z P_{3} x P_{3} y$, the social order is $z P y P x$
(c) The social choice function f satisfies Weak Pareto: if $x P_{i} y$ for all i, then x and y cannot be part of a Condorcet cycle, and $x P y$. Thus, $y \neq f(R)$.
(d) The social choice function f is not dictatorial: consider any agent i and pair of alternatives x, y such that $x P_{i} y$. Consider the profile of opponents' preferences R_{-i} such that y is at the top of R_{j} and x is at the bottom, for all $j \neq i$. Then x and y cannot be part of a Condorcet cycle, and $y P x$.
(e) The social choice function f cannot satisfy IIA, or else this would be a violation of Arrow impossibility theorem.
(f) Suppose that there are only two alternatives: x is the status quo, and y is the alternative. Each individual preference $R(i)$ is indexed as q in $\{-1,0,1\}$, where 1
is a strict preference for x. The social welfare rule is a functional $F(q(1), \ldots, q(N))$ in $\{-1,0,1\}$.
The social rule F is anonymous if for every permutation $p, F(q(1), \ldots, q(N))=$ $F(q(p(1)), \ldots, q(p(N)))$.
The social rule F is neutral if $F(q)=-F(-q)$.
The rule F is positively responsive if $q \geq q^{\prime}, q \neq q^{\prime}$ and $F\left(q^{\prime}\right) \geq 0$ imply that $F(q)=1$.

A social welfare rule F is majoritarian if:
. $F(q)=1$ if and only if: $n^{+}(q)=\#\{i: q(i)=1\}>n^{-}(q)=\#\{i: q(i)=-1\}$,
. $F(q)=-1$ if and only if $n^{+}(q)<n^{-}(q)$,
. $F(q)=0$ if and only if $\left.n^{+}(q)=n^{-}(q)\right)$.
May's Theorem A social welfare rule is majoritarian if and only if it is neutral, anonymous, and positively responsive.

Proof: Clearly, majority rule satisfies the 3 axioms.
By anonimity $F(q)=G\left(n^{+}(q), n^{-}(q)\right)$. If $n^{+}(q)=n^{-}(q)$, then $n^{+}(-q)=$ $n^{-}(-q)$, and so, by neutrality, $F(q)=G\left(n^{+}(q), n^{-}(q)\right)=G\left(n^{+}(-q), n^{-}(-q)\right)=$ $F(-q)=-F(q)$. This implies that $F(q)=0$. If $n^{+}(q)>n^{-}(q)$, pick q^{\prime} with $q^{\prime}<q$ and $n^{+}\left(q^{\prime-}\left(q^{\prime}\right)\right.$. Because $F\left(q^{\prime}\right)=0$, by positive responsiveness, it follows that $F(q)=1$. When $n^{+}(q)<n^{-}(q)$, it follows that $n^{+}(-q)>n^{-}(-q)$, hence $F(-q)=1$ and by neutrality, $F(q)=-1$.

