Warwick University Department of Economics

EC9D31 Advanced Microeconomics
 Final Exam 2021-22 - Section A

 Questions and Answers

 Questions and Answers}

Question 1. Consider the input requirement set

$$
V(y)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}+\min \left\{x_{2}, x_{3}\right\} \geq 3 y, x_{i} \geq 0, \text { for all } i=1,2,3\right\}
$$

(a) Does it correspond to a regular (closed and non-empty) input requirement set? marks)
(b) Does the technology satisfies free disposal? (5 marks)
(c) Is the technology convex? (5 marks)
(d) Prove in general that the convexity of the production possibility set Z implies that the production function $f(x)$ is (weakly) concave. (5 marks)
(e) State and prove the Constrained Envelope Theorem and Shepard's Lemma. (6 marks)

Answers to Q1 We proceed in sequence as follows.
(a) The input requirement set

$$
V(y)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}+\min \left\{x_{2}, x_{3}\right\} \geq 3 y, x_{i} \geq 0, \text { for all } i=1,2,3\right\}
$$

is closed because all defining inequalities are weak. It is non-empty because the condition $x_{1}+\min \left\{x_{2}, x_{3}\right\} \geq 3 y$ is not in conflict with $x_{i} \geq 0$.
(b) For what it concern free disposal this property is equivalent to the monotonicity of the production function:

$$
F\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+\min \left\{x_{2}, x_{3}\right\} .
$$

Consider an input vector $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \geq\left(x_{1}, x_{2}, x_{3}\right)$. By definition of inequality between vectors: $x_{i}^{\prime} \geq x_{i}$ for every $i \in\{1,2,3\}$. It then follows that $f\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \geq$ $f\left(x_{1}, x_{2}, x_{3}\right)$.
(c) As for convexity consider two input vectors, $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \in V(y)$ and $\left(x_{1}, x_{2}, x_{3}\right) \in V(y)$, by definition of $V(y)$ we have: $x_{1}^{\prime}+\min \left\{x_{2}^{\prime}, x_{3}^{\prime}\right\} \geq 3 y$ and $x_{1}+\min \left\{x_{2}, x_{3}\right\} \geq 3 y$. Consider now the input vector $\left(z_{1}, z_{2}, z_{3}\right)=\lambda\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)+(1-\lambda)\left(x_{1}, x_{2}, x_{3}\right)$ and $z_{1}+\min \left\{z_{2}, z_{3}\right\}$. Clearly

$$
z_{1}+\min \left\{z_{2}, z_{3}\right\}=\lambda x_{1}^{\prime}+(1-\lambda) x_{1}+\min \left\{\lambda x_{2}^{\prime}+(1-\lambda) x_{2}, \lambda x_{3}^{\prime}+(1-\lambda) x_{3}\right\}
$$

Consider first the case $\lambda x_{2}^{\prime}+(1-\lambda) x_{2} \leq \lambda x_{3}^{\prime}+(1-\lambda) x_{3}$ then

$$
\begin{gathered}
z_{1}+\min \left\{z_{2}, z_{3}\right\}=\lambda x_{1}^{\prime}+(1-\lambda) x_{1}+\lambda x_{2}^{\prime}+(1-\lambda) x_{2}=\lambda\left(x_{1}^{\prime}+x_{2}^{\prime}\right)+(1-\lambda)\left(x_{1}+x_{2}\right) \\
\geq \lambda\left(x_{1}^{\prime}+\min \left\{x_{2}^{\prime}, x_{3}^{\prime}\right\}\right)+(1-\lambda)\left(x_{1}+\min \left\{x_{2}, x_{3}\right\}\right) \geq 3 y
\end{gathered}
$$

A symmetric argument applies for the case $\lambda x_{3}^{\prime}+(1-\lambda) x_{3} \leq \lambda x_{2}^{\prime}+(1-\lambda) x_{2}$.
(d) Consider

$$
z=\binom{-x}{f(x)} \in Z, \quad z^{\prime}=\binom{-x^{\prime}}{f\left(x^{\prime}\right)} \in Z
$$

Convexity of Z implies that for every $0 \leq t \leq 1$

$$
t z+(1-t) z^{\prime}=\binom{-\left(t x+(1-t) x^{\prime}\right)}{t f(x)+(1-t) f\left(x^{\prime}\right)} \in Z
$$

By definition of $f(x)$ this means:

$$
t f(x)+(1-t) f\left(x^{\prime}\right) \leq f\left(t x+(1-t) x^{\prime}\right)
$$

for every $0 \leq t \leq 1$, the definition of a concave $f(x)$.
(e) Consider the problem:

$$
\max _{x} f(x) \text { s.t. } g(x, a)=0
$$

The Lagrangian is: $\mathcal{L}(x, \lambda, a)=f(x)-\lambda g(x, a)$. The Constrained Envelope Theorem states that

$$
\frac{d \mathcal{L}(a)}{d a}=-\lambda^{*}(a) \frac{\partial g\left(x^{*}, a\right)}{\partial a}
$$

To prove it, we proceed as follows. The necessary FOC are:

$$
f^{\prime}\left(x^{*}\right)-\lambda^{*} \frac{\partial g\left(x^{*}, a\right)}{\partial x}=0
$$

$$
g\left(x^{*}(a), a\right)=0
$$

Substituting $x^{*}(a)$ and $\lambda^{*}(a)$ in the Lagrangian we get:

$$
\mathcal{L}(a)=f\left(x^{*}(a)\right)-\lambda^{*}(a) g\left(x^{*}(a), a\right)
$$

Differentiating, we get:

$$
\begin{aligned}
\frac{d \mathcal{L}(a)}{d a}= & {\left.\left[f^{\prime *}\right)-\lambda^{*} \frac{\partial g\left(x^{*}, a\right)}{\partial x}\right] \frac{d x^{*}(a)}{d a} } \\
& -g\left(x^{*}(a), a\right) \frac{d \lambda^{*}(a)}{d a}-\lambda^{*}(a) \frac{\partial g\left(x^{*}, a\right)}{\partial a} \\
& =-\lambda^{*}(a) \frac{\partial g\left(x^{*}, a\right)}{\partial a}
\end{aligned}
$$

Where the final simplifications follow from the necessary FOC.
Shepard's Lemma states, for every input l :

$$
z_{l}(w, y)=-\frac{\partial c(w, y)}{\partial w_{l}}
$$

The proof is as follows.

$$
c(w, y)=\mathcal{L}(w, y)=w z(w, y)-\lambda[f(z(w, y))-y]
$$

By the constrained envelope theorem, we obtain:

$$
\frac{\partial c(w, y)}{\partial w_{l}}=-z_{l}(w, y)
$$

Question 2. There are two consumers A and B with the following utility functions and endowments, with $\omega_{1} \geq \omega_{2}, \alpha \in[0,1]$ and $\beta \in[0,1]$:

$$
\begin{aligned}
& u_{A}=\alpha \ln x_{1 A}+(1-\alpha) \ln x_{2 A}, \quad \boldsymbol{\omega}_{A}=\left(0, \omega_{2}\right) \\
& u_{B}=\beta \sqrt{x_{1 B}}+x_{2 B}, \quad \boldsymbol{\omega}_{B}=\left(\omega_{1}, 0\right)
\end{aligned}
$$

(a) Derive the Marshallian demands $x_{i}(p, m), i=A, B$. (5 marks)
(b) Calculate the market clearing prices and the equilibrium allocations. (5 marks)
(c) Explain how the Walrasian equilibrium price of good 1 changes with $\alpha, \beta, \omega_{1}$ and ω_{2}. (5 marks)
(d) Explain how consumer A 's demand for goods 1 and 2 changes with $\alpha, \beta, \omega_{1}$ and ω_{2}. (5 marks)
(e) Explain how consumer B 's demand for goods 1 and 2 changes with $\alpha, \beta, \omega_{1}$ and ω_{2}. (5 marks)

Answers to Q2 We proceed in sequence as follows.
(a) Let p be the price of good 1 and normalize $p_{2}=1$.

Given price p, consumer A chooses \mathbf{x}_{A} so that

$$
\max \left\{\alpha \ln x_{1 A}+(1-\alpha) \ln x_{2 A}\right\} \quad \text { s.t. } \quad p x_{1 A}+x_{2 A}=\omega_{2}
$$

Hence,

$$
\max \left\{\alpha \ln x_{1 A}+(1-\alpha) \ln \left(\omega_{2}-p x_{1 A}\right)\right\},
$$

first-order conditions are:

$$
\frac{\alpha}{x_{1 A}}=p \frac{(1-\alpha)}{\omega_{2}-p x_{1 A}}
$$

solving out, $x_{1 A}=\alpha \omega_{2} / p$, substituting back, we obtain: $x_{2 A}=\omega_{2}(1-\alpha)$. Given price p, consumer B chooses \mathbf{x}_{B} so that

$$
\max \beta x_{1 B}+(1-\beta) x_{2 B} \quad \text { s.t. } \quad p x_{1 B}+x_{2 B}=p \omega_{1} .
$$

The consumer chooses $x_{1 B}=0, x_{2 B}=p \omega_{1}$ for $p>\beta /(1-\beta)$, and $x_{1 B}=\omega_{1}, x_{2 B}=0$ for $p<\beta /(1-\beta)$. For $p=\beta /(1-\beta)$, the consumer chooses any pair $x_{1 B}, x_{2 B}$ such that $p x_{1 B}+x_{2 B}=p \omega_{1}$.
(b) Market clearing condition, therefore, is:

$$
x_{1 A}+x_{1 B}=\frac{\alpha \omega_{2}}{p}+x_{1 B}=\omega_{1}
$$

which is satisfied only for:

$$
p=\frac{\beta}{1-\beta}
$$

which is the equilibrium price is. So, the equilibrium allocations are

$$
\begin{aligned}
& x_{1 A}=\frac{\alpha \omega_{2}(1-\beta)}{\beta}, \quad x_{2 A}=\omega_{2}(1-\alpha) \\
& x_{1 B}=\omega_{1}-\alpha \omega_{2} \frac{1-\beta}{\beta}, \quad x_{2 B}=\alpha \omega_{2} .
\end{aligned}
$$

(c) The price p of good 1 is:

$$
p=\frac{\beta}{1-\beta},
$$

differentiating with respect to β, I obtain:

$$
\frac{\partial p}{\partial \beta}=\frac{1}{(1-\beta)^{2}}>0
$$

The equilibrium price of good 1 is constant in α, ω_{1} and ω_{2}, and increases in β.
(d) Differentiating $x_{1 A}$ and $x_{2 A}$ with respect to $\alpha, \beta, \omega_{1}$ and ω_{2}, I obtain:

$$
\begin{aligned}
\frac{\partial x_{1 A}}{\partial \alpha} & =\frac{1-\beta}{\beta} \omega_{2}>0, \frac{\partial x_{1 A}}{\partial \beta}=-\frac{\alpha}{\beta^{2}} \omega_{2}<0, \frac{\partial x_{1 A}}{\partial \omega_{2}}=\frac{\alpha}{\beta}(1-\beta)>0 \\
\frac{\partial x_{2 A}}{\partial \alpha} & =-\omega_{2}, \frac{\partial x_{2 A}}{\partial \omega_{2}}=1-\alpha
\end{aligned}
$$

The demand $x_{1 A}$ increases in α, decreases in β and ω_{2}, and is constant in ω_{1}. The demand $x_{2 A}$ increases in ω_{2}, decreases in α, and is constant in β and ω_{1}.
(e) Differentiating $x_{1 B}$ and $x_{2 B}$ with respect to $\alpha, \beta, \omega_{1}$ and ω_{2}, I obtain:

$$
\begin{aligned}
\frac{\partial x_{1 B}}{\partial \alpha} & =-\frac{1-\beta}{\beta} \omega_{2}<0, \frac{\partial x_{1 B}}{\partial \beta}=\frac{\alpha}{\beta^{2}} \omega_{2}>0, \frac{\partial x_{1 B}}{\partial \omega_{1}}=1, \frac{\partial x_{1 B}}{\partial \omega_{2}}=-\frac{\alpha}{\beta}(1-\beta)<0 \\
\frac{\partial x_{2 B}}{\partial \alpha} & =\omega_{2}, \frac{\partial x_{2 B}}{\partial \omega_{2}}=\alpha
\end{aligned}
$$

The demand $x_{1 B}$ increases in β, and ω_{1}, and decreases in α and ω_{2}. The demand $x_{2 B}$ increases in α and ω_{2}, and is constant in β and ω_{1}.

