EC9D31 Advanced Microeconomics Final Exam 2022-23 - Section A
 Questions and Answers

Question 1. Suppose preferences take the form:

$$
u\left(x_{1}, x_{2}\right)=\alpha x_{1}+(1-\alpha) x_{2}, \text { with } \alpha \in(0,1)
$$

(a) Derive the Marshallian demands $x_{i}(p, m), i=1,2$. Are the goods Marshallian complements or substitutes? (4 marks)
(b) Derive the indirect utility function $v(p, m)$. (4 marks)
(c) Derive the Hicksian demands $h_{i}(p, U), i=1,2$. (4 marks)
(d) Derive the expenditure function $e(p, U)$. (4 marks)
(e) Suppose that a third good x_{3} becomes available, such that preferences take now the form

$$
u\left(x_{1}, x_{2}, x_{3}\right)=\alpha x_{1}+(1-\alpha) \min \left\{x_{2}, x_{3}\right\} .
$$

Derive the Marshallian demands, $x_{i}(p, m), i=1,2,3$, and the indirect utility function $v(p, m)$. (9 marks)

Answers to Q1 We proceed in sequence as follows.
(a) Because goods are perfect substitutes, the consumer either only buys good 1 (if the price of good 2 is high relative to its value), or only good 2 . The optimal choice is $x_{2}=$ m / p_{2} and $x_{1}=0$ if $p_{2} / p_{1}<(1-\alpha) / \alpha, x_{1}=m / p_{1}$ and $x_{2}=0$ if $p_{2} / p_{1}>(1-\alpha) / \alpha$, and any allocation $\left(x_{1}, x_{2}\right) \geq 0$ such that $p_{1} x_{1}+p_{2} x_{2}=m$, when $p_{2} / p_{1}=(1-\alpha) / \alpha$.
(b) Substituting the Marshallian demands into the utility formula:

$$
v(p, m)=\max \left\{\alpha m / p_{1},(1-\alpha) m / p_{2}\right\} .
$$

(c) The optimal choice is $x_{2}=u /(1-\alpha)$ and $x_{1}=0$ if $p_{2} / p_{1}<(1-\alpha) / \alpha, x_{1}=u / \alpha$ and $x_{2}=0$ if $p_{2} / p_{1}>(1-\alpha) / \alpha$, and any allocation $\left(x_{1}, x_{2}\right) \geq 0$ such that $\alpha x_{1}+$ $(1-\alpha) x_{2}=u$, when $p_{2} / p_{1}=(1-\alpha) / \alpha$.
(d) Substituting the Hicksian demands into the utility formula: $e(p, u)=u \min \left\{p_{1} / \alpha, p_{2} /(1-\alpha)\right\}$.
(e) Now, the consumer either only buys good 1 , or she buys goods 2 and 3 in equal amounts. Hence, the optimal choice is $x_{1}=0$ and $x_{2}=x_{3}$ such that $p_{2} x_{2}+p_{3} x_{3}=m$, i.e., $x_{2}=x_{3}=m /\left(p_{2}+p_{3}\right)$, if $\left(p_{2}+p_{3}\right) / p_{1}<(1-\alpha) / \alpha$, and $x_{1}=m / p_{1}$ and $x_{2}=x_{3}=0$ if $\left(p_{2}+p_{3}\right) / p_{1}>(1-\alpha) / \alpha$, and finally any allocation $\left(x_{1}, x_{2}, x_{3}\right) \geq 0$ such that $x_{2}=x_{3}$ and $p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}=m$, when $\left(p_{2}+p_{3}\right) / p_{1}=(1-\alpha) / \alpha$. The indirect utility function is $v(p, m)=\max \left\{\alpha m / p_{1},(1-\alpha) m /\left(p_{2}+p_{3}\right)\right\}$.

Question 2. There are two consumers A and B with the following utility functions and endowments, with $\omega_{1}>0, \omega_{2}>0,0<\alpha<1$ and $0<\beta<2 \omega_{1} / \sqrt{\alpha \omega_{2}}$:

$$
\begin{aligned}
& u_{A}=x_{1 A}^{\alpha} x_{2 A}^{1-\alpha}, \quad \boldsymbol{\omega}_{A}=\left(0, \omega_{2}\right) \\
& u_{B}=x_{1 B}+\beta \sqrt{x_{2 B}}, \quad \boldsymbol{\omega}_{B}=\left(\omega_{1}, 0\right) .
\end{aligned}
$$

(a) Derive the Marshallian demands $x_{i}(p, m), i=A, B$. (7 marks)
(b) Calculate the market clearing prices and the equilibrium allocations. (5 marks)
(c) Explain how the Walrasian equilibrium price of good 1 changes with $\alpha, \beta, \omega_{1}$ and ω_{2}. (5 marks)
(d) Explain how consumer A and B 's demand for goods 1 and 2 changes with α, β, ω_{1} and ω_{2}. (8 marks)

Answers to Question 2. We proceed in sequence as follows.
(a) Let p be the price of good 1 and normalize $p_{2}=1$. Given price p, consumer A chooses \mathbf{x}_{A} so that

$$
\max \left\{\alpha \ln x_{1 A}+(1-\alpha) \ln x_{2 A}\right\} \quad \text { s.t. } \quad p x_{1 A}+x_{2 A}=\omega_{2} .
$$

Hence,

$$
\max \left\{\alpha \ln x_{1 A}+(1-\alpha) \ln \left(\omega_{2}-p x_{1 A}\right)\right\},
$$

first-order conditions are:

$$
\frac{\alpha}{x_{1 A}}=p \frac{1-\alpha}{\omega_{2}-p x_{1 A}}
$$

solving out, $x_{1 A}=\alpha \omega_{2} / p$, substituting back, we obtain: $x_{2 A}=\omega_{2}(1-\alpha)$.

Given price p, consumer B chooses \mathbf{x}_{B} so that

$$
\max \left\{x_{1 B}+\beta \sqrt{x_{2 B}}\right\} \quad \text { s.t. } \quad p x_{1 B}+x_{2 B}=p \omega_{1}
$$

Hence,

$$
\max \left\{\omega_{1}-x_{2 B} / p+\beta \sqrt{x_{2 B}}\right\}
$$

first-order conditions are:

$$
-1 / p+\beta /\left(2 \sqrt{x_{2 B}}\right)=0
$$

solving out, $x_{2 B}=p^{2} \beta^{2} / 4$, substituting back, we obtain: $x_{1 B}=\omega_{1}-p \beta^{2} / 4$.
(b) Market clearing condition, therefore, is:

$$
x_{1 A}+x_{1 B}=\alpha \omega_{2} / p+\omega_{1}-p \beta^{2} / 4=\omega_{1}
$$

which is satisfied only for:

$$
p=2 \sqrt{\alpha \omega_{2}} / \beta
$$

excluding of course the negative solution. Hence, the equilibrium price is $p=$ $2 \sqrt{\alpha \omega_{2}} / \beta$.

So, the equilibrium allocations are:

$$
\begin{aligned}
& x_{1 A}=\frac{\sqrt{\alpha \omega_{2}}}{2} \beta, \quad x_{2 A}=\omega_{2}(1-\alpha), \\
& x_{1 B}=\omega_{1}-\sqrt{\alpha \omega_{2}} \beta / 2, \quad x_{2 B}=\alpha \omega_{2} .
\end{aligned}
$$

(c) The price p of good 1 is:

$$
p=\frac{2 \sqrt{\alpha \omega_{2}}}{\beta}
$$

differentiating with respect to $\alpha, \omega_{1}, \omega_{2}$, and β, I obtain:

$$
\frac{\partial p}{\partial \alpha}=\frac{1}{\beta} \frac{\omega_{2}}{\sqrt{\alpha \omega_{2}}}>0, \frac{\partial p}{\partial \beta}=-2 \frac{\sqrt{\alpha \omega_{2}}}{\beta^{2}}<0, \frac{\partial p}{\partial \omega_{1}}=0, \frac{\partial p}{\partial \omega_{2}}=\frac{\alpha}{\beta \sqrt{\alpha \omega_{2}}}>0
$$

The equilibrium price of good 1 is constant in ω_{1}, increases in α and ω_{2}, and decreases in β.
(d) Differentiating $x_{1 A}$ and $x_{2 A}$ with respect to $\alpha, \beta, \omega_{1}$ and ω_{2}, I obtain:

$$
\begin{aligned}
\frac{\partial x_{1 A}}{\partial \alpha} & =\frac{1}{4} \beta \frac{\omega_{2}}{\sqrt{\alpha \omega_{2}}}>0, \frac{\partial x_{1 A}}{\partial \beta}=\frac{1}{2} \sqrt{\alpha \omega_{2}}>0, \frac{\partial x_{1 A}}{\partial \omega_{1}}=0, \frac{\partial x_{1 A}}{\partial \omega_{2}}=\frac{1}{4} \alpha \frac{\beta}{\sqrt{\alpha \omega_{2}}}>0 \\
\frac{\partial x_{2 A}}{\partial \alpha} & =-\omega_{2}<0, \frac{\partial x_{2 A}}{\partial \beta}=0, \frac{\partial x_{2 A}}{\partial \omega_{1}}=0, \frac{\partial x_{2 A}}{\partial \omega_{2}}=(1-\alpha)>0
\end{aligned}
$$

The demand $x_{1 A}$ increases in α, β and ω_{2}, and is constant in ω_{1}. The demand $x_{2 A}$ increases in ω_{2}, decreases in α, and is constant in β and ω_{1}.

Differentiating $x_{1 B}$ and $x_{2 B}$ with respect to $\alpha, \beta, \omega_{1}$ and ω_{2}, I obtain:

$$
\begin{aligned}
\frac{\partial x_{1 B}}{\partial \alpha} & =-\frac{1}{4} \beta \frac{\omega_{2}}{\sqrt{\alpha \omega_{2}}}<0, \frac{\partial x_{1 B}}{\partial \beta}=-\frac{1}{2} \sqrt{\alpha \omega_{2}}<0, \frac{\partial x_{1 B}}{\partial \omega_{1}}=1, \frac{\partial x_{1 B}}{\partial \omega_{2}}=-\frac{1}{4} \alpha \frac{\beta}{\sqrt{\alpha \omega_{2}}}<0 \\
\frac{\partial x_{2 B}}{\partial \alpha} & =\omega_{2}>0, \frac{\partial x_{2 B}}{\partial \beta}=0, \frac{\partial x_{2 B}}{\partial \omega_{1}}=0, \frac{\partial x_{2 B}}{\partial \omega_{2}}=\alpha>0 .
\end{aligned}
$$

The demand $x_{1 B}$ decreases in α, β, and ω_{2}, and increases in ω_{1}. The demand $x_{2 B}$ increases in α and ω_{2}, and is constant in β and ω_{1}.

