Political Economy
 Theory and Experiments

Lecture 1

Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

Course Syllabus - Part 1: Elections

Lecture 1: Median Voter Theorems and Probabilistic Voting

Readings

P. Ordeshook 1986. Game Theory and Political Theory: An Introduction, Cambridge University Press, Chapter 4.
. A. Lyndbeck and J. Weibull 1993. "A model of political equilibrium in a representative democracy," Journal of Public Economics, 51(2): 195-209.

Lecture 2: Policy Motivated Candidates

Readings

. R. Calvert 1985. "Robustness of the multidimensional voting model: Candidate motivations, uncertainty, and convergence," American Journal of Political Science, 29(1): 69-95.
. D. Bernhardt, J. Duggan and F. Squintani 2009. "The case for responsible parties," American Political Science Review, 103(4): 570-587.
. M. Osborne and A. Slivinski 1996. "A model of political competition with citizen-candidates," Quarterly Journal of Economics, 111(1): 65-96.
. T. Besley and S. Coate 1997. "An economic model of representative democracy," Quarterly J. of Econ., 112: 85-114.

Lecture 3: Agency Models

Readings

. J. Banks and R. Sundaram 1998. "Optimal retention in agency problems," Journal of Economic Theory, 82(2): 293-323.
. J. Duggan 2000. "Repeated elections with asymmetric information," Economics and Politics, 12(2): 109-135.
. E. Maskin and J. Tirole 2004. "The politician and the judge: accountability in government," American Economic Review 94(4): 1034-54.

Lecture 4: Information Aggregation in Elections

Readings

. S. Berg 1993. "Condorcet's jury theorem, dependency among jurors," Social Choice and Welfare, 10: 87 - 95.
. D. Austen-Smith and J. Banks. 1996. "Information aggregation, rationality, and the Condorcet jury theorem," American Political Science Review, 90(1): 34-45.
T. Feddersen and W. Pesendorfer 1997. "Voting behavior and information aggregation in elections with private information," Econometrica, 65(5): 1029-1058.
T. Feddersen and W. Pesendorfer 1996. "The swing voter's curse," American Economic Review, 86(3): 408-424.

Part 2: Information Transmission

Lecture 5: Cheap Talk and Political Advice

Readings

. T. Gilligan and K. Krehbiel 1987. "Collective decision-making and standing committees: An informational rationale for restrictive amendment procedures," Journal of Law, Economics, and Organization, 3(2): 287-335.
. S. Morris 2001. "Political correctness," Journal of Political Economy 109(2): 231-265.
. N. Kartik and Y.K. Che. (2009): "Opinions as incentives," Journal of Political Economy 117(5): 815-860.

Lecture 6: Juries and committees

Readings

. T. Feddersen and W. Pesendorfer 1998. "Convicting the innocent: The inferiority of unanimous jury verdicts under strategic voting," American Political Science Review, 92(1): 23-35.
. U. Doraszelski, D. Gerardi and F. Squintani 2003.
"Communication and voting with double-sided information," Contributions to Theoretical Economics, 3(1) Art. 6.
. D. Austen-Smith and T. Feddersen 2006. "Deliberation, preference uncertainty, and voting rules," American Political Science Review, 100(2): 209-217.
. D. Gerardi and L. Yariv 2007. "Deliberative voting," Journal of Economic Theory, 134(1): 317-338.

Part 3: International Conflict

Lecture 7: Causes of Conflict

Readings
. J. D. Fearon 1995. "Rationalist explanations for war," International Organization 49(3): 379-414.
. M. Jackson and M. Morelli 2007. "Political bias and war," American Economic Review 97 (4): 1353-1373.
. S. Baliga and T. Sjöström 2012. "The hobbesian trap," in Oxford Handbook of the Economics of Peace and Conflict, M. Garfinkel and S. Skaperdas Eds., Oxford University Press.

Lecture 8: Peace talks and mediation

Readings
. M. Fey and N. Ramsay 2009. "Mechanism design goes to war:
Peaceful outcomes with interdependent and correlated types," Review Economic Design 13: 233-250.
. J. Hörner, M. Morelli, and F. Squintani 2015. "Mediation and peace," Review of Economic Studies 82(4): 1483-1501.
. A. Meirowitz, M. Morelli, K. Ramsay, and F. Squintani 2019.
"Dispute resolution institutions and strategic militarization," Journal of Political Economy, 127(1): 378-418.
. A. Casella, E. Friedman, and M. Perez 2020. "Mediating conflict in the lab," NBER WP, No. 28137.

Part 4: Behavioural Political Economy

Lecture 9: Student Presentations

Readings

. P. Ortoleva and E. Snowberg (2015): "Overconfidence in political behavior," American Economic Review 105(2): 504-535.
. G. Levy and R. Razin (2015): "Correlation neglect, voting behavior, and information aggregation," Am. Econ. Rev. 105(4): 1634-45.
. B. Lockwood (2017): "Confirmation bias and electoral accountability," Quarterly J. of Political Science 11(4), 471-501.
. G. Levy, R. Razin and A. Young (2022): "Mis-specified politics and the recurrence of populism," Am. Econ. Rev, 112(3): 928-62.

Models of Elections

. Elections are modelled as non-cooperative games.
. There may be 2 or more office motivated candidates, possibly with different ideology or valence.
. Candidates' strategic decisions may include whether and when to run in the election, policy platform, campaign spending amount, ...
. Voters are ideologically differentiated.
. Their decisions may include whether and who to vote, and whether to support a candidate through activism or lobbyism.

Different electoral rules may be considered.
. Repetition and private information may play a role.

Downsian elections

. Two candidates $i=A, B$ care only about winning the election.
. Candidates i simultaneously commit to policies $x_{i} \in \mathbb{R}$ if elected.
. There is a continuum of voters.
. The payoff of a voter with ideology b if policy x is implemented is $u(x, b)=L(|x-b|)$, with $L^{\prime}<0$.
. Ideologies are distributed according to (continuous and strictly increasing) empirical cumulative distribution F, of median m.
. After candidates choose platforms, each citizen votes, and the candidate with the most votes wins.

If $x_{A}=x_{B}$, then the election is tied.

Office motivated politicians converge on median positions.
Theorem (Median Voter Theorem) The unique Nash Equilibrium of the Downsian election is such that candidates $i=A, B$ choose $x_{i}=m$, and tie the election.

Proof. We calculate candidate payoffs as function of $\left(x_{A}, x_{B}\right)$.
. Fix any $\left(x_{A}, x_{B}\right)$ such that $x_{A} \neq x_{B}$.
. Because $L^{\prime}<0$, each voter with ideology b votes for the candidate i that minimizes $\left|x_{i}-b\right|$.
. Hence, when $x_{i}<x_{j}$, candidate i 's vote share is $F\left(\frac{x_{A}+x_{B}}{2}\right)$, and candidate j 's is $1-F\left(\frac{x_{A}+x_{B}}{2}\right)$.
. Now, consider any profile $\left(x_{A}, x_{B}\right)$ such that $x_{i} \neq m$ for at least one candidate $i=1,2$.
. j 's best response is $B R_{j}=\left\{x_{j}:\left|x_{j}-m\right|<\left|x_{i}-m\right|\right\}$, by playing a best response, candidate j wins the election.
. But if j plays x_{j} such that $\left|x_{j}-m\right|<\left|x_{i}-m\right|$, i's best response cannot be x_{i}, as i can at least tie the election by playing m.
. Hence, there cannot be any Nash equilibrium where either candidate i plays $x_{i} \neq m$.
. Suppose now that both candidates play $x_{A}=x_{B}=m$.
. All voters are indifferent between x_{A} and x_{B} : the election is tied.
. If either candidate i deviates and plays $x_{i} \neq m$, then she loses the election.
. Hence, there is a unique Nash equilibrium: $x_{A}=x_{B}=m$.
. Median voter theorem corresponds to equilibrium of the "Hotelling" model of monopolistic competition.
. Producers choose to make identical products, in a model of monopolistic competition with horizontal differentiation.
. But lack of product differentiation hurts aggregate consumer welfare in Hotelling model, whereas convergence to the median benefits voters in Downsian model.
. E.g., if F is uniform on $[0,1]$, then consumer welfare is maximal in the Hotelling model with $x_{A}^{*}=1 / 4$, and $x_{B}^{*}=3 / 4$.
. And for general F, the optimal products x_{A}^{*} and x_{B}^{*} are similarly differentiated.

Matters are very different in the Downsian model.

Proposition If voters are risk averse, then the median platforms $x_{A}=x_{B}=m$ are preferred by a majority to any pair $x_{A}^{\prime}, x_{B}^{\prime}$. If $x_{A}^{\prime}, x_{B}^{\prime}$ is 'competitive', i.e. $\left|x_{A}^{\prime}-m\right|=\left|x_{B}^{\prime}-m\right|$, then x_{A} and x_{B} are unanimously preferred to $x_{A}^{\prime}, x_{B}^{\prime}$.

Proof. Each platform x_{i}^{\prime} in any competitive pair $x_{A}^{\prime}, x_{B}^{\prime}$, is voted by $1 / 2$ of voters.
. The pair $x_{A}^{\prime}, x_{B}^{\prime}$ is a 'bet' with expected value equal to m.
. If voters are risk averse, $L^{\prime \prime}<0$, then they all prefer the sure outcome $x_{A}=x_{B}=m$.
. Consider now any distribution F and platform $x_{A}^{\prime}, x_{B}^{\prime}$: the election selects the platform x_{i}^{\prime} closest to m.

Thus, a majority of voters prefers $x_{A}=x_{B}=m$ to $x_{A}^{\prime}, x_{B}^{\prime}$.

Proposition If the ideology distribution F is symmetric, $F(b)=1-F(2 m-b)$ for all b, and the loss function L is a power function, $L(|x-b|)=|x-b|^{n}$ for some integer n, then convergence to the median, $x_{A}=x_{B}=m$, maximizes "utilitarian" voter welfare $W(x)=-\int_{-\infty}^{+\infty} L(|b-x|) d F(b)$.

Proof. If F is symmetric around $m, F(b)=1-F(2 m-b)$ for all b, and L is a power function, then all central moments of F coincide with the median m (the zero-th moment).
. Solving $x^{*}=\arg \max _{x}\left\{W(x)=-\int_{-\infty}^{+\infty}|x-b|^{n} d F(b)\right\}$, we obtain that $x^{*}=m$.
. When F is symmetric, there are also fairness considerations that make median convergence appealing.
. But when F is not symmetric, median convergence does not maximize utilitarian welfare W unless L is a linear function.

Ordinal preferences

. Consider a compact policy space X and a set of voters $N=\{1, \ldots, n\}$, with n odd.
. Preferences are single-peaked on space X with linear order $>$, if for each voter j there is a policy b_{j} such that for all $x, y \in X$,
. if $b_{j} \geq y>x$, then $y \succ_{j} x$, . if $x>y \geq b_{j}$, then $x \succ_{j} y$.
. Preferences are single-crossing on space X with linear order $>$, for voter index permutation $p: N \rightarrow N$, whenever if $x>y$ and $p(j)>p(i)$, or if $x<y$ and $p(j)<p(i)$, then $x \succ_{p(i)} y$ implies $x \succ_{p(j)} y$.
. A policy x that defeats any other policy y is a Condorcet winner.

Theorem Say that an odd number of voters vote among two candidates. If policy x is the Condorcet winner, then both candidates choose x in equilibrium.

Theorem (Black, 1948; Gans and Smart, 1996) If an odd number of voters have single-peaked or single-crossing preferences, then the Condorcet winner is the ideal point of the median voter m.

There are preference profiles with no Condorcet winners.

$$
\begin{aligned}
& \text { 1: } x \succ y \succ z \\
& \text { 2: } y \succ z \succ x \\
& \text { 3: } z \succ x \succ y
\end{aligned}
$$

. The two results are independent: single-crossing condition does not imply single-peakedness, nor vice-versa.

Preferences may be single crossing but not single peaked.

$$
\begin{aligned}
& 1: x \succ y \succ z \\
& 2: x \succ z \succ y \\
& 3: z \succ y \succ x
\end{aligned}
$$

are single crossing on order $x<y<z$ but not single peaked:
$z \succ_{2} y \Rightarrow z \succ_{3} y, x \succ_{2} z \Rightarrow x \succ_{1} z, x \succ_{2} y \Rightarrow x \succ_{1} y$.
(Not single peaked for any $>$ as each x, y, z is the worst for a voter.)
Preferences may be single peaked but not single crossing.

$$
\begin{aligned}
& \text { 1:w }: w \succ \succ y \succ z \\
& \text { 2: } x \succ y \succ z \succ w \\
& 3: y \succ x \succ w \succ z
\end{aligned}
$$

are single peaked on $w<x<y<z$, but not single crossing: for $2<3, z \succ_{2} w$ but $z \nsucc_{3} w$; for $3<2, y \succ_{3} x$ but $y \nsucc_{2} x$.

Multi-dimensional policy spaces

. Policy platforms are usually multi-dimensional.
. But often multidimensional policy can be projected on a left-right unidimensional space on which voters can be ordered.
. Consider a compact policy space $X \subset \mathbb{R}^{d}$ and set of voters N.
. The voters in $j \in N$ have "intermediate preferences" if every j 's payoff can be written as $L_{j}(x)=J(x)+K\left(p_{j}\right) H(x)$ for some voter index permutation p, where K is monotonic, whereas $H(x)$ and $J(x)$ are common to all voters.

Proposition Say that an odd number of voters with intermediate preferences vote among two candidates. Then both candidates choose policy $x\left(p_{m}\right)$, the ideal point of the voter i with median p_{m}.

Suppose agents preferences can be represented by $L\left(\left\|x-b_{i}\right\|\right)$, where b_{i} is vector describing i 's bliss point in this policy space.
. L decreasing and concave in the Euclidean distance $\left\|x-b_{i}\right\|$.
Theorem (Plott, 1967) There exists a Condorcet winner policy in the interior of a multidimensional policy space X if and only if there is a policy m median in all directions.
. The existence of a median in all direction requires strong symmetry assumptions on the distribution of individual ideal points.
. The 'top cycle' of X is the set of all alternatives $x \in X$ such that for each $y \neq x$, there are c_{1}, \ldots, c_{K} such that $x=c_{1} \succ c_{2} \succ \ldots$ $\succ c_{K}=y$, where \succ represents a preference by a majority.

Theorem (McKelvey 1976) In a multi-dimensional policy space, if there is no Condorcet winner, then the top cycle is the whole set of alternatives.

Example Consider the divide the dollar game with 3 voters.
. Set of alternatives is $X=\left\{\left(x_{1}, x_{2}, x_{3}\right) \geq 0: x_{1}+x_{2}+x_{3}=1\right\}$.
. Each voter i 's payoff is increasing in x_{i}.
. The top cycle is $T C=X \backslash\{(1,0,0),(0,1,0),(0,0,1)\}$.
. In fact, every $x \in X$ is defeated by at least one among $(1 / 2,0,1 / 2),(1 / 2,1 / 2,0)$ and $(0,1 / 2,1 / 2)$.
. If $x>0$, then $x \succ(0, \varepsilon, 1-\varepsilon) \succ(1 / 2,0,1 / 2)$ for some small
$\varepsilon>0$ and similarly for $(1 / 2,1 / 2,0)$ and ($0,1 / 2,1 / 2$).
. If exactly two entries of x are positive, then x beats some $x^{\prime}>0$, which then indirectly beats all other alternatives.

Agenda setting

Suppose there are no candidates.
. Voters choose among a finite set of fixed alternatives X.
. The choice is made by sequential pairwise elimination.
E.g., voters choose x vs. y, winner is matched to z, and so on.
. The 'agenda' is the sequence in which alternatives are voted.
. If there is a Condorcet winner, it is selected for all agenda.
. If voters vote sincerely on each alternative, then for every policy
x in the top cycle set, there exist agenda that select x.
. By McKelvey theorem, the top cycle is X : the agenda-setter can determine the outcome.
. If voters are strategic and know the agenda, the game is solved by backward induction.
. The Banks set includes all alternatives in X that survive successive elimination by strategic voters for some agenda.
. If there is a "status quo" \bar{x} in X, it is voted last against the penultimate surviving alternative in the agenda.

The inclusion of status quo further restricts the set of alternatives "available" to the agenda setter.

Probabilistic voting

. In Downsian elections, winning probabilities jump discontinuously because voters preferences are known.
. Probabilistic voting models smooth out discontinuities by adding "noise" to voters' preferences.
. If candidates maximize probability to win, then platforms converge to the expected median platform.
. If candidates maximize vote share, then platforms converge to an weighted average platform.
. Platforms may converge also in multi-dimensional policy spaces.

Aggregate uncertainty (Calvert 1985)

Candidates maximize the probability of winning majority.
Voters' preferences do not vary independently.
. Median platform depends on a random common state.
Each voter j with bliss point $b_{j} \in \mathbb{R}$ has utility $L\left(\left|x-b_{j}\right|\right)$, with $L^{\prime}<0, L^{\prime \prime}<0$, and $\lim _{z \downarrow 0} L^{\prime}(z)=0, \lim _{z \uparrow \infty} L^{\prime}(z)=-\infty$.

Each ideal point b_{j} is decomposed as: $b_{j}=m+\delta_{j}+e_{j}$:
δ_{j} is the fixed j 's bias relative to the median platform m, the empirical distribution of δ_{j} across j has median zero;
. m is the random median platform, with c.d.f. F and median μ;
. e_{j} is noise, i.i.d. over j, with symmetric density and $E\left[e_{j}\right]=0$.

As in the Downsian model there are two candidates, $i=A, B$ who care only about winning the election.

Candidates i simultaneously commit to policies $x_{i} \in \mathbb{R}$ if elected.
. After candidates choose platforms, each voter votes, and the candidate with the most votes wins.
. If $x_{A}=x_{B}$, then the election is tied.
Proposition In the unique Nash equilibrium of the probabilistic model with aggregate uncertainty, the candidates $i=1,2$ choose x_{i} equal to the median μ of the distribution of the median policy m and tie the election.

Proof: Suppose that $x_{i}<x_{j}$, then candidate i wins the election if $m<\left(x_{A}+x_{B}\right) / 2$ and j wins if $m>\left(x_{A}+x_{B}\right) / 2$.

The probability $q_{i}\left(x_{i}, x_{j}\right)$ that i wins the election is

$$
q_{i}\left(x_{i}, x_{j}\right)= \begin{cases}F\left(\frac{x_{A}+x_{B}}{2}\right) & \text { if } x_{i}<x_{j} \\ 1 / 2 & \text { if } x_{i}=x_{j} \\ 1-F\left(\frac{x_{A}+x_{B}}{2}\right) & \text { if } x_{i}>x_{j}\end{cases}
$$

. Given x_{j}, candidate i chooses x_{i} to maximize $q_{i}\left(x_{i}, x_{j}\right)$.
Suppose that $x_{j}<\mu$. Then, $q_{i}\left(x_{i}, x_{j}\right)>1 / 2$ and strictly decreasing in x_{i} for $x_{i}>x_{j}$. i 's best response is empty.
. Likewise, if $x_{j}>\mu$, then i 's best response is empty.
. If $x_{j}=\mu$, then $q_{i}\left(x_{i}, x_{j}\right)<1 / 2$ and strictly increasing in x_{i} for $x_{i}<x_{j}, q\left(\mu, x_{j}\right)=1 / 2$, and $q_{i}\left(x_{i}, x_{j}\right)<1 / 2$ and strictly decreasing in x_{i} for $x_{i}>x_{j}$. i's best response is $x_{i}=\mu$.

Hence, there is a unique equilibrium: $x_{A}=x_{B}=\mu$.

Vote share maximization (Lyndbeck and Weibull 1993)

. There are G groups of voters g with s_{g} share of voters in each g.
. Candidates $i=A, B$ simultaneously announce platforms x_{i} in \mathbb{R}^{d}.
. The payoff of voter k in group g is: $u_{k}(x, i)=L_{g}(x)+\eta_{k i}$
. L_{g} is a continuously differentiable loss function, strictly decreasing in the distance $\left\|x-b_{g}\right\|$ from a bliss point b_{g} in \mathbb{R}^{d}.
. $\eta_{k i}$ are non-policy benefits for k if i is in power.
. Let $\varepsilon_{k}=\eta_{k B}-\eta_{k A}$, drawn independently across individuals, with cumulative distribution H_{g} on \mathbb{R} and density h_{g}.
. Let $q_{g i}$ be fraction of voters in g that vote candidate $i=A, B$.
. Candidate i picks x_{i} to maximize vote share $q_{i}=\sum_{g=1}^{G} s_{g} q_{g i}$.

Results

. Each voter k in group g votes for A if $L_{g}\left(x_{A}\right)-L_{g}\left(x_{B}\right)>\varepsilon_{k}$.
. Vote share for A in group g is $q_{g A}=H_{g}\left(L_{g}\left(x_{A}\right)-L_{g}\left(x_{B}\right)\right)$.
Suppose that

- $q_{A}=\sum_{g=1}^{G} s_{g} H_{g}\left(L_{q}\left(x_{A}\right)-L_{q}\left(x_{B}\right)\right)$ is strictly concave in x_{A}
. $q_{B}=\sum_{g=1}^{G} s_{g}\left[1-H_{g}\left(L_{q}\left(x_{A}\right)-L_{q}\left(x_{B}\right)\right)\right]$ str. concave in x_{B}.
Then the equilibrium $\left(x_{A}, x_{B}\right)$ solves the FOC:

$$
\begin{aligned}
& \sum_{g=1}^{G} \operatorname{s}_{g} h_{g}\left(L_{q}\left(x_{A}\right)-L_{q}\left(x_{B}\right)\right) D L_{g}\left(x_{A}\right)=0 \\
& \sum_{g=1}^{G} \operatorname{sg}_{g} h_{g}\left(L_{q}\left(x_{A}\right)-L_{q}\left(x_{B}\right)\right) D L_{g}\left(x_{B}\right)=0,
\end{aligned}
$$

where $D L_{g}\left(x_{i}\right)=\left(\frac{\partial L_{g}}{\partial x_{i 1}}, \ldots ., \frac{\partial L_{g}}{\partial x_{i n}}\right)^{T}$.

Proposition If a pure strategy equilibrium $\left(x_{A}, x_{B}\right)$ of probabilistic voting model exists, then $x_{A}=x_{B}=x$ such that

$$
\sum_{g=1}^{G} s_{g} h_{g}(0) D L_{g}(x)=0
$$

. Nash-equilibrium corresponds to solution to maximization of weighted utilitarian social welfare function:

$$
\sum_{g=1}^{G} w_{g} D L_{g}(x)=0
$$

with group weights $w_{g}=s_{g} h_{g}(0)$.
. Group weight corresponds to group size s_{g} and responsiveness to policy changes $h_{g}(0)$, i.e. share of unbiased voters/swing voters.

When do pure strategy equilibria exist?
Strict concavity of q_{i} in x_{i} for $i=A, B$ is hard to check.
. A sufficient condition is that for each group g, $H_{g}\left(L_{g}\left(x_{A}\right)-L_{g}\left(x_{B}\right)\right)$ is strictly concave in x_{A} and x_{B}.

Summary

. We have reviewed Downsian and probabilistic elections.
. Two office-motivates candidates credibly commit to platforms.
. Then, voters vote for the preferred platform candidate.
. If policies are uni-dimensional, candidates' platforms "converge" to the policy preferred by the median voter.

If the policy space is multi-dimensional, anything goes.
. If there are no candidates and alternatives are voted sequentially, the agenda setter is a dictator unless voters are strategic.
. Equilibrium exist in multi-dimensional policy spaces, if candidates maximize vote shares and voters' preferences are uncertain.

This equilibrium is Pareto efficient for the electorate.

Next lecture

. I will introduce policy motivation in spatial models of elections.
. Suppose candidates have policy preferences in the aggregate uncertainty probabilistic model.
. Because of uncertainty, equilibrium platforms diverge.
. If voters' preferences may change during campaigns, then platform divergence improves electorate welfare.
. Suppose candidates have policy preferences, cannot credibly commit to platforms, and choose whether to run or not.

There exist equilibria where platforms "diverge" from the median.
. Candidate may enter elections in the expectation of losing, only to steal votes from perspective winner.

