Political Economy
 Theory and Experiments

Lecture 2

Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

Ideological candidates

Suppose candidates are not only motivated by winning elections.
. Like voters, politicians have policy preferences.
Although ideological, candidates who credibly commit to policy platforms "converge" to median, if voters preferences are known.
. Instead, I will show that platforms "diverge" if there is aggregate uncertainty on voters' preferences.
. Platforms also diverge if candidates who cannot commit to political platforms in conflict with their preferences.

Downsian elections with ideological candidates
. Suppose there are two candidates $i=L, R$ with ideologies b_{i} such that $b_{L}<m<b_{R}$, and $m-b_{L}<b_{R}-m$.

The utility of candidate i if policy x is implemented is $u_{i}\left(x, b_{i}\right)=L\left(\left|x-b_{i}\right|\right)$, with $L^{\prime}<0$.

Theorem The unique Nash Equilibrium is such that candidates i choose $x_{i}=m$, and tie (although candidates are ideological).

Proof. For any $x_{L} \neq x_{R}$, if $x_{i}<x_{j}$, candidate i 's vote share is $F\left(\frac{x_{L}+x_{R}}{2}\right)$, and candidate j 's is $1-F\left(\frac{x_{L}+x_{R}}{2}\right)$.
. Suppose that $x_{L}<m$, then candidate R wins and implements x_{R} by choosing x_{R} in $\left(x_{L}, 2 m-x_{L}\right)$.
. Hence, if $x_{L}<2 m-b_{R}, R$'s best response $B R_{R}\left(x_{L}\right)=\left\{b_{R}\right\}$, and if $2 m-b_{R}<x_{L}<m$, then $B R_{R}\left(x_{L}\right)$ is empty.
. But if $x_{R}=b_{R}$, then $B R_{L}\left(x_{R}\right)$ is empty.
. If $m<x_{L}<b_{R}$, then $B R_{R}\left(x_{L}\right)=\left[x_{L},+\infty\right)$.
. If $x_{L}>b_{R}$, then $B R_{R}\left(x_{L}\right)=\left\{b_{R}\right\}$.
. But if $x_{R}>x_{L}>m$ or $x_{R}=b_{R}$, then $x_{L} \notin B R_{L}\left(x_{R}\right)$.
. Hence, there is no Nash Equilibrium with $\left(x_{L}, x_{R}\right) \neq(m, m)$.
. Suppose that candidate i chooses $x_{i}=m$.
. Then, implemented policy is m regardless of x_{j}, and $B R_{j}\left(x_{i}\right)=(-\infty,+\infty)$.
. We conclude that the unique Nash Equilibrium is $x_{L}=x_{R}=m$, and the election is tied.

Aggregate uncertainty and policy-motivated candidates
. I consider a probabilistic voting model with aggregate uncertainty and policy motivated candidates.
. In unique symmetric equilibrium, candidates' platforms diverge.
. If voters update their preferences during campaigns, they are all ex ante better off when parties diverge to some extent.
. Voters are better off with moderate policy-motivated candidates than with office-motivated candidates.

This is in contrast with models where voters preferences are fixed.

Value of platform divergence

Each voter j with bliss point $b_{j} \in \mathbb{R}$ has utility $L\left(\left|b_{j}-x\right|\right)$, with $L^{\prime}<0, L^{\prime \prime}<0$, and $\lim _{z \downarrow 0} L^{\prime}(z)=0, \lim _{z \uparrow \infty} L^{\prime}(z)=-\infty$.

The ideal point b_{j} is decomposed as: $b_{j}=m+\delta_{j}+\varepsilon_{j}$:
. δ_{j} is the fixed j 's bias relative to the median platform m, the distribution of δ_{j} has compact support and zero median, . ε_{j} is i.i.d. with $E\left[\varepsilon_{j}\right]=0$, symm. density on compact support. . m is the random median platform, with c.d.f. F and median μ.
. Assume that F is symmetric and $\mu=0$.
Consider divergent platforms $x_{L}=-x$ and $x_{R}=x$, with $x \geq 0$.
Platform x_{L} wins if and only if $m<\frac{x_{L}+x_{R}}{2}=0$.

The expected welfare of voter j is:

$$
\begin{aligned}
& W_{j}(x)=\int_{-\infty}^{0} L\left(\left|m+\delta_{j}+\varepsilon_{j}-x_{L}\right|\right) f(m) d m \\
& \quad+\int_{0}^{\infty} L\left(\left|m+\delta_{j}+\varepsilon_{j}-x_{R}\right|\right) f(m) d m \\
& =\int_{0}^{\infty}\left[L\left(\left|-m-\delta_{j}-\varepsilon_{j}+x\right|\right)+L\left(\left|m+\delta_{j}+\varepsilon_{j}-x\right|\right)\right] f(m) d m .
\end{aligned}
$$

$W_{j}(x)$ is concave as it is the sum of integrals of concave functions.
Proposition There exists a welfare-improving threshold $\bar{x}>0$ such that $W_{j}(x)>W_{j}(0)$ for all voters j whenever $0<x<\bar{x}$.

Proof: Compare the difference one m at a time:

$$
\begin{aligned}
& L\left(\left|\delta_{j}+\varepsilon_{j}-(m-x)\right|\right)+L\left(\left|\delta_{j}+\varepsilon_{j}-(-m+x)\right|\right) \\
& \quad \text { vs. } L\left(\left|\delta_{j}+\varepsilon_{j}-m\right|\right)+L\left(\left|\delta_{j}+\varepsilon_{j}-(-m)\right|\right)
\end{aligned}
$$

This is equivalent to comparing two lotteries with fixed $\delta_{j}+\varepsilon_{j}$:
even chance on

$-m+x, m-x$$\quad$ and \quad| even chance |
| :--- |
| on $-m, m$. |

Clearly, when $x<m$, policy convergence is a mean-preserving spread of divergence at $-x$ and $x \ldots$ and voter j is better off.
. For all $\delta_{j}, \varepsilon_{j}$ in the (compact) supports, $\left.\frac{\partial W_{j}}{\partial x}(x)\right|_{x=0}>0$.
. By strict concavity, there is unique $x(\delta, \varepsilon)>0$ such that $W_{j}(0)=W_{j}(x)$ and by continuity $\bar{x}=\min _{\delta, \varepsilon}\{x(\delta, \varepsilon)\}>0$.

The aggregate voter welfare W^{*} is strictly concave:

$$
\begin{aligned}
W^{*}(x)= & \int_{\delta, \varepsilon} \int_{0}^{\infty}\left[L\left(\left|-m-\delta_{j}-\varepsilon_{j}+x\right|\right)\right. \\
& \left.+L\left(\left|m+\delta_{j}+\varepsilon_{j}-x\right|\right)\right] d F(m) d H(\delta, \varepsilon)
\end{aligned}
$$

Proposition A first-order stochastic increase in $f(\cdot \mid m>0)$ induces an increase in the welfare-maximizing platform x^{*}.

Sketch of proof: For a greater spread in f, welfare is maximized by reducing payoff of moderate m and increasing payoff of extreme m.

Quadratic-normal case

. Assume L is quadratic, i.e., $L(z)=-z^{2}$.
. Say m is distributed normally with mean zero and variance σ^{2}.
. For each voter δ, ε, simplification yields:

$$
W_{\delta, \varepsilon}(x)=-2 \int_{0}^{\infty}(x-m)^{2} d F(m)-(\delta+\varepsilon)^{2}=W_{0,0}(x)-(\delta+\varepsilon)^{2} .
$$

. By mean-variance analysis, $W^{*}(x)$ is a quadratic function:

$$
\begin{aligned}
W^{*}(x) & =-\int_{\delta, \varepsilon}\left[2 \int_{0}^{\infty}(x-m)^{2} d F(m)+(\delta+\varepsilon)^{2}\right] d H(\delta, \varepsilon) \\
& =-2 E\left[(x-m)^{2} \mid m>0\right]-E\left[(\delta+\varepsilon)^{2}\right] \\
& =-2(x-E[m \mid m>0])^{2}-V[m \mid m>0]-V[\delta]-V[\varepsilon] .
\end{aligned}
$$

The social optimum is then $x^{*}=E[m \mid m>0]=\sigma \sqrt{2 / \pi}$.
As W^{*} is symmetric around $x^{*}, \bar{x}=2 E[m \mid m>0]=2 \sigma \sqrt{\frac{2}{\pi}}$.

Model and equilibrium

Candidates L and R have ideal points $-b$ and $b>0$.
Office benefit $w \in \mathbb{R}_{+} \cup\{\infty\}$.
Pure policy motivation is $w=0$, pure office is $w=\infty$.
Candidate R^{\prime} s payoff from $\left(x_{L}, x_{R}\right)$ is

$$
\operatorname{Pr}(L \text { wins }) L\left(\left|b-x_{L}\right|\right)+\operatorname{Pr}(R \text { wins })\left(L\left(\left|b-x_{R}\right|+w\right) .\right.
$$

We focus on symmetric, pure strategy equilibria.
. We assume the hazard rate $\frac{f(m)}{1-F(m)}$ is weakly decreasing.
Let \bar{b} be the unique solution to $L^{\prime}(b)=-w f(0)$.

Proposition There is a unique symmetric equilibrium, $\left(-x^{e}, x^{e}\right)$, and this equilibrium satisfies $0 \leq x^{e}<b$. If $b \leq \bar{b}$, then $x^{e}=0$; and if $b>\bar{b}$, then x^{e} is the unique solution of the f.o.c.:

$$
-L^{\prime}(b-x)=[L(b-x)+w-L(x+b)] f(0)
$$

Proof: Suppose $x_{L}=-x$. Candidate R 's payoff for $x_{R} \geq 0$ is:

$$
F\left(\frac{x_{R}-x}{2}\right) L(b+x)+\left[1-F\left(\frac{x_{R}-x}{2}\right)\right]\left(L\left(b-x_{R}\right)+w\right) .
$$

. Differentiating w.r.t. x_{R} and setting $x_{R}=x$ we obtain the f.o.c.
The s.o.c. is satisfied as $\frac{f(m)}{1-F(m)}$ is weakly decreasing.
. Rearranging the f.o.c., I obtain: $\frac{L^{\prime}(b-x)}{L(b+x)-L(b-x)-w}=f(0)$.
. LHS is strictly decreasing in $x \in[0, b)$ by strict concavity of L : by intermediate value theorem, the solution $x^{e} \in(0, b)$.

Proposition Say L is a power function $L(z)=-z^{\alpha}$ with $\alpha>1$. If $b>\bar{b}$, then $\frac{\partial x^{e}}{\partial b}>0, \frac{\partial x^{e}}{\partial f(0)}<0, \frac{\partial x^{e}}{\partial w}<0$.
Platform divergence increases as parties are more polarized, likelihood of electoral tie decreases, office benefits decrease.

The limiting properties of equilibria are as follows:
. If $w=0$, then x^{e} is a solution of $\frac{L^{\prime}(b-x)}{L(b+x)-L(b-x)}=f(0)$.
. If $w \geq-\frac{L^{\prime}(b)}{f(0)}$, then $x^{e}=0$
. If $f(0) \rightarrow 0$, then $x^{e} \rightarrow$ solution of $\frac{L^{\prime}(b-x)}{L(b+x)-L(b-x)-b}=0$
. If $f(0) \rightarrow \infty$, then $x^{e} \rightarrow 0$
. If $b \rightarrow 0$, then $x^{e} \rightarrow 0$
. If L is a power function, then as $b \rightarrow \infty$, we have $x^{e} \rightarrow \frac{1}{2 f(0)}$.
. We now turn to relating voter welfare to candidates' ideologies.
. Let \bar{b} be the ideology such that the equilibrium platform $x^{e}=\bar{x}$
. If $0 \leq b \leq \bar{b}$, then platforms converge at zero.
. If $\bar{b}<b<\bar{b}$, then the ex ante welfare of all voters is higher with policy-motivates candidates than with platforms convergence. . If $b>\overline{\bar{b}}$, then ex ante welfare of some voters is strictly lower.

Proposition In the quadratic-normal model, $\bar{b}=\infty$:

$$
\lim _{b \rightarrow \infty} x^{e}=\frac{1}{2 f(0)}=\sigma \sqrt{\frac{\pi}{2}}<2 \sigma \sqrt{\frac{2}{\pi}}=2 E[m \mid m>0]=\bar{x}
$$

All voters are always better off with policy-motivates candidates.

Citizen candidate models

. Key assumption of Downsian models is that politicians can commit to any policy platform, regardless of their preferences.
. Convergence to median obtains with office-motivated candidates, but also with policy motivations (if voters' preferences are known).
. What happens if politicians cannot commit and can only implement their preferred policy?
. Say voters vote for the candidate with platform they prefer.
. Then, there exist equilibria in which two or more candidates differentiate platforms.
. If voters coordinate not to vote for losing candidates, then exactly two candidates run in the election.

Osborne and Slivinski 1996

. Policy space is $X=\mathbb{R}$ and there is a continuum of citizens i.
. The citizens' ideal platforms b_{i} empirical distribution F is continuous with unique median m.
. Each citizen i chooses to run or not in the election, $e_{i} \in\{E, N\}$.
. If a citizen i enters, she becomes a "candidate" with platform $x_{i}=b_{i}$ (citizens cannot commit to a different platform).

After all citizens have simultaneously chosen on entry, they vote.
. Voting is "sincere:" each voter i with bliss point b_{i} votes for the candidate(s) j whose platform x_{j} is closest to b_{i}.

Votes are split equally if multiple candidates platforms coincide.
. A citizen who chooses E incurs the cost $c>0$, and derives benefit $w>0$ if she wins.
. Let the platform of the election winner be x_{W}.
. If citizen i with ideal platform b_{i} chooses N then i 's payoff is

$$
u_{i}(N, e)=-\left|x_{W}-b_{i}\right|
$$

If citizen i with ideal platform b_{i} chooses E, then her payoff is $u_{i}(E, e)=w-c$ if she wins, and $u_{i}(E, e)=-\left|x_{W}-b_{i}\right|-c$ if she loses.

If no citizen enters, then they all obtain the payoff of $-\infty$.

Results

. There exist equilibria with one, two or more candidates.
. In multi-candidate equilibria platforms may diverge.
Proposition There is a one-candidate equilibrium iff $w \leq 2 c$.
If $c \leq w \leq 2 c$, then the candidate's platform is $x_{w}=m$.
If $w<c$, then $x_{W} \in\left[m-\frac{c-w}{2}, m+\frac{c-w}{2}\right]$.
. If $w>2 c$, then a second candidate would enter even just to tie.
. If $x=m$, then no entrant can defeat the candidate.
. If $w<c$, and $\left|m-x_{W}\right| \leq \frac{c-w}{2}$, then no-one who can defeat the candidate would strictly benefit by entering.

Proposition In any 2-candidate equilibrium the platforms are $x_{A}=m-e$ and $x_{B}=m+e$ for some $e \in(0, \bar{e}(F)]$.
Any such equilibrium exists if and only if $2 e \geq c-w / 2$, $c \geq|m-s(e, F)|$ and either $e<\bar{e}(F)$ or $e=\bar{e}(F) \leq 3 c-w$.
. $s(e, F)$ is the platform such that A and B still tie their votes
if a third candidate C enters with $x_{C}=s(e, F)$.
. $\bar{e}(F)$ is the value of e such that A and B lose to C iff $e>\bar{e}(F)$.
. If $e>\bar{e}(F)$, then a third candidate enters and wins.
. If $e=\bar{e}(F)>3 c-w$, then a third candidate enters and ties.
. If $e<c-w / 2$, then one of the two candidates drops out.
. If $c<|m-s(e, F)|$, then an entrant may want to enter and lose.

Proposition Every 3-candidate equilibrium is such that:
. either the election is a 3-way tie, and the platforms are $x_{A}=t_{1}-e_{1}, x_{B}=t_{1}+e_{1}=t_{2}-e_{2}, x_{C}=t_{2}+e_{2}$ for some $e_{1}, e_{2} \geq 0$, where $t_{1}=F^{-1}(1 / 3), t_{2}=F^{-1}(2 / 3)$,
. or candidates A and C tie the election and B loses for sure, and the platforms are $x_{A}<x_{B}<x_{C}$.
. A necessary condition for 3 -way tie is $w \geq 3 c+2\left|e_{1}-e_{2}\right|$.
. In the 2-way tie equilibrium, candidate 2 enters to lose the election and induce a tie.
. If B did not enter, her worst candidate would win for sure.
A necessary conditions for 2-way tie is $w \geq 4 c$ and $c<t_{2}-t_{1}$:
. if $c>t_{2}-t_{1}$, then B would not enter,
if $w<4 c$, then one of the two winning candidates drops out.

. Candidate B enters to lose the election.
. B's entry makes A and C tie: $q\left(x_{A}+x_{B}\right) / 2=r\left[1-\left(x_{B}+x_{C}\right) / 2\right]$.
. By entering B steals more votes to A than to C.
. B is closer to C than to 1: $x_{C}-x_{B}<x_{B}-x_{A}$.

Proposition A necessary condition for the existence of an equilibrium in which $k \geq 3$ candidates tie for first place is $w \geq k c$. A necessary condition for the existence of an equilibrium in which there are three or more candidates is $w \geq 3 c$.

There may be multiple candidates elections.
. These equilibria generalize the logic of the 3-way tie equilibrium in the previous proposition.
. Each pair of contiguous candidates is symmetrically located around an ideologically k-tile, $t_{1}, t_{2}, \ldots, t_{k-1}$.

Besley and Coate 1997

. Besley and Coate 1997 assume that voters vote strategically.
. Voters do not waste vote on candidates who are ideologically close to their bliss point, but have no chance to win.
. As there is a continuum of voters, no voter is pivotal.
This assumption requires coordination among voters.
. There are no equilibria in which 3 or more candidates tie election.
. There are no equilibria in which a candidate enters the election and loses for sure.
. These equilibria are upset by strategic voters who vote second best candidate, to break a tie with a candidate they dislike more.

Summary

. I have introduced policy motivation in spatial models of elections.
. Suppose candidates have policy preferences in the aggregate uncertainty probabilistic model.
. Because of uncertainty, equilibrium platforms diverge.
. If voters' preferences may change during campaigns, then platform divergence improves electorate welfare.
. Suppose candidates have policy preferences, cannot credibly commit to platforms, and choose whether to run or not.

There exist equilibria where platforms "diverge" from the median.
. Candidate may enter elections in the expectation of losing, only to steal votes from perspective winner.

Next Lecture

. I will present agency models of election.
. Voters do not care about electoral promises.
. They retain effective incumbents, and dismiss incumbents with poor performance to elect the challenger.
. If candidates' valence and ideologies are known, retention rules are ineffective.
. If candidates' valence or ideologies are uncertain, such retention rules encourage high effort/platform moderation.
. Politicians seeking re-election may choose to pander.
. Independent bureaucracy is immune to pandering.

