Political Economy Theory and Experiments

Lecture 3

Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

. Downsian, citizen-candidate and probabilistic voting models are "prospective" theories.

. People vote only on the basis of credible electoral promises or candidate's ideologies.

. "Retrospective" models account for voters dismissing incumbents with poor performance, and retaining effective incumbents.

. Retrospective voting is modelled with repeated games and "simplified contracts."

. The principal (median voter) may only dismiss or retain an agent (politician), performance-based transfers are not allowed.

. In each period t = 0, 1, ..., an infinitely-lived principal chooses whether to retain her agent, or hire a new one.

- . Each agent is t employed at most 2 periods: t and t + 1.
- . Each agent's ability $a \in \{a_1, ..., a_K\}$, is private information, and drawn from distribution *p*. Assume $a_1 < ... < a_K$.
- . Each period, employed agent generates a random reward $r \in \mathbb{R}.$
- . Reward distribution F(r|e) depends on agent's effort $e \in [\underline{e}, \overline{e}]$.
- . F(r|e) has continuous density f(r|e) of compact support R.
- . $F(\cdot|e)$ is ranked in first-order stochastic dominance: for any r, if e > e', then F(r|e) < F(r|e').

- . Agent per-period payoff is u(e, a) if employed, and 0 otherwise.
- . *u* is continuous, strictly quasi-concave in *e*, and increasing in *a*:
 - . opportunity cost of taking higher actions lower for better types;
 - . for every k = 1, ..., K, there is a unique best effort e_k^* at the second period of employment.
- . For each ability type *a*, there is an effort e(a) with u(e, a) > 0.
- . The payoff function u is supermodular in (e, a): If (e, a) > (e', a'), then u(e, a) + u(e', a') > u(e', a) + u(e, a'). (I.e. $u_{12} > 0$, if u is twice continuously differentiable.)
- . The per-period principal's utility for reward r is v(r), strictly increasing in r.
- . The players' discount factors are $\delta_A \in [0, 1]$ and $\delta_P \in [0, 1)$.

. A strategy s^P for the principal specifies to dismiss (D) time-t agent or not (N), as a function of time-t history, for every time t.

. A strategy $s^{At} = (s_{k,\tau}^{At})_{\tau=0,1}$ for agent t specifies an effort e for both periods $\tau = 0, 1$ as a function of the time- $(t + \tau)$ history.

. Stationary anonymous strategies $({\it s}^{\it P}, \sigma^{\it A})$ are such that

- . time-t retention rule depends only on effort of time-t agent,
- . each agent's effort at au = 0 depends only on her type *a*,

. effort at $\tau = 1$ depends only on *a* and on reward *r* at $\tau = 0$.

- . s^P is a cut-off strategy if there exists an \bar{r} such that $s^P(r) = D$ if and only if $r < \bar{r}$.
- . A mixed strategy σ_A is type-monotonic if
 - . there exist $[\underline{e}_k, \overline{e}_k]$ s.t. $\overline{e}_k \leq \underline{e}_{k+1}$ for k = 1, ..., K 1, and $\sigma_{0k}^A([\underline{e}_k, \overline{e}_k]) = 1$ for all k;

. for all $r \in \mathbb{R}$, $s^A_{1k}(r) \leq s^A_{1,k+1}(r)$ for k = 1, ..., K - 1.

- . The utility specification covers canonical cases.
- . Agent is office motivated politician with two-term limit:
 - . u(e, a) = z c(e, a), z is the office benefit,
 - . c(e, a) is opportunity cost of effort *e* by politician of type *a*, it is continuous in *e*, decreasing in *a*, and submodular in (e, a).
- . The agent is an benevolent politician:

$$u(e,a) = \int v(r) dF(r|e) - c(e,a).$$

- . The agent's remuneration is a fixed share of profits s(r):
 - . the principal's share is v(r) = r s(r),
 - . the agent's utility is: $u(e, a) = \int s(r) dF(r|e) c(e, a)$.

Analysis

Proposition There exists an anonymous strategy equilibrium (s^P, σ^A) s.t. s^P is a cut-off strategy and σ^A is type-monotonic.

Sketch of Proof. Second-period effort of better agents is higher.

- . Supermodularity of *u* implies also second-period payoff is higher.
- . Now, suppose the principal employs a cut-off strategy.
- . By FSD, higher effort yields higher expected principal reward.
- . Then, better agents' incentive to exert first period effort is higher.
- . A cut-off strategy is then a best response:
 - . it screens better agents in the first period,
 - . these better agents yield better rewards in the second period.

. Environment is "nice," if u and F are continuously differentiable, e_k^* is in the interior of $[\underline{e}, \overline{e}]$ and $u(\overline{e}, a_k) < 0$ for all k, and $\delta_A > 0$. for each a_k , k = 1, ..., K.

. Let r^* be the cut-off associated with the strategy s^P .

. Let $v_0(\sigma_0^A)$ be the expected principal reward in period 0, and $v_1(r, s_1^A)$ the reward in period 1.

Proposition When the environment is nice, in any anonimous equilibrium (s^P, σ^A) , r^* is interior, $s_{1k}^A(r) < s_{1,k+1}^A(r)$, $\underline{e}_{k+1} > \overline{e}_k$, $\underline{e}_k > s_{1k}^A(r)$ for k = 1, ..., K - 1, and $v_1(r^*, s_1^A) \ge v_0(\sigma_0^A)$.

. Screening makes each agent type exert more effort in first period.

. Screening leads to higher expected reward in second period.

. Without adverse selection, the equilibrium unravels.

Proposition If all agents have the same type, in equilibrium:

- . the agent's effort is e^* in both periods;
- . in a nice environment, the cutoff is $r^* \in {\min R, \max R}$.

Sketch of Proof. Effort must be weakly larger at $\tau = 0$ than $\tau = 1$.

. I prove it cannot be strictly larger with positive probability.

. If σ_{k0}^P placed positive probability on any effort $e > e^*$, then the principal's unique best response would be $r^* = \max R$.

. But then agent's unique optimal effort would be e^* at $\tau = 0$.

. Again by contradiction, if min $R < r^* < \max R$, then the agent's optimal first period effort would be weakly larger than e^* .

. But then principal's unique best response would be $r^* = \max R$.

. Without adverse selection, there is no possibility of selection.

. But then, there are no incentives for high performance either, because the only principal's instrument is retention choice.

. Nevertheless, the principal cannot be better off if "worse" types are added, and cannot be worse off if "better" types are added.

. Instead, the principal can improve with adverse selection, if we "average out" types as follows: $\sum_{k=1}^{K} p_k E(e_k^*) = E(e^*)$.

. Take any equilibrium of the model with adverse selection.

. As all types of agents choose (weakly) higher effort in first period, the first-period principal payoff is $v_0 \ge \sum_{k=1}^{K} p_k E(e_k^*) = E(e^*)$.

. Because $v_1(r^*) \ge v_0$ in equilibrium, also $v_1(r^*) \ge E(e^*)$.

. As v_1 increases in r, the payoff of the principal is strictly higher than without adverse selection.

- . There is a continuum of citizen candidates, indexed by ideology b.
- . Ideologies are private information and distributed according to the single peaked and symmetric density f on [-a, +a].
- . At any time t, the office holder selects a policy $x_t \in [-a, +a]$.
- . Candidates for office cannot make credible promises.

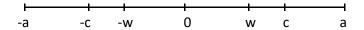
. At any time $t \ge 1$, the incumbent runs against challenger randomly drawn from f.

. The time-1 incumbent is randomly selected.

. The time-t utility of a citizen b depends on policy x_t , according to symmetric loss function $L(|b - x_t|)$, where L' < 0 and $L'' \le 0$.

. Utilities are discounted with factor δ .

Theorem As long as voters are not too risk averse (i.e., if |L''| is uniformly not too large), there is essentially a unique symmetric stationary PBE. The median voter is decisive.



. Incumbents with centrist b in [0, w] and extremists with b in [c, a] adopt their preferred policy x = b when in office.

. Centrist are reelected and extremists are voted out.

. Moderates with *b* in [*w*, *c*] compromise when in power. They adopt policy w and are reelected.

. Symmetrically for b < 0.

- . Let U_b be the (normalized) equilibrium value for citizen b.
- . The equilibrium obeys the following indifference equations:

$$L(w) = U_0, \quad L(c-w) = \delta U_c.$$

- . The continuation utility of a voter *b* for electing challenger is:
 $$\begin{split} U_b &= \int_{-a}^{-c} [L(x-b)(1-\delta) + \delta U_b] dF(x) + \int_{-c}^{-w} L(c+b) dF(x) \\ &+ \int_{-w}^{w} L(x-b) dF(x) + \int_{w}^{c} L(c-b) dF(x) + \int_{c}^{a} [L(x-b)(1-\delta) + \delta U_b] dF(x). \end{split}$$
- . Thresholds w and c are determined by 2 conditions:

$$L(w) = 2 \int_{c}^{a} [L(x)(1-\delta) + \delta L(w)] dF(x) + 2 \int_{w}^{c} L(w) dF(x) + 2 \int_{0}^{w} L(x) dF(x).$$
(1)

. Median voter is decisive and indifferent between a random challenger and reelecting incumbent who implements policy w.

$$\begin{split} L(c-w) &= \delta \{ \int_{-a}^{-c} [L(c-x)(1-\delta) + \delta L(c+w)] dF(x) \\ &+ \int_{-c}^{-w} L(c+w) dF(x) + \int_{-w}^{w} L(c-x) dF(x) \\ &+ \int_{w}^{c} L(c-w) dF(x) + \int_{c}^{a} [L(c-x)(1-\delta) + \delta L(c-w)] dF(x) \}. \end{split}$$

. Candidate c is indifferent between implementing policy w forever, or policy c once and then be replaced by random challenger.

. It cannot be that w = 0 and c = a, or else any incumbent with b > 0 would deviate from equilibrium and pick policy x = b.

. Further, if c = a, then it would need to be that w = 0. Else the median voter would not retain an incumbent with policy w, as this would be her worst possible equilibrium policy.

. Conversely, if w = 0, then it would need to be that c = a.

. Hence, it must be that c < a and w > 0.

. The proof that c > w is also by contradiction.

The judge and the politician (Maskin and Tirole 2004)

- . Politicians have an incentive to align with the majority's will.
- . This ensures representation, but may lead to pandering.
- . Independent bureaucrats need not worry about re-election.
- . Elected officers turn out to yield higher welfare if and only if their re-election concerns are not too strong.
- . This condition is tighter the costlier information acquisition is.

. When considering minority rights, independent bureaucracy may become more effective even if politicians do not pander.

The basic case

- . There are two periods t = 1, 2.
- . At each time t, there is a state $x_t \in \{0, 1\}$, and the policy maker chooses $y_t \in \{0, 1\}$.
- . Median voter's payoff is $u_V(y_1, y_2) = \sum_{t=1,2} \beta^{t-1} (1 |y_t x_t|).$
- . Voter believes that $x_t = 1$ with prob. p > 1/2 for both t = 1, 2.
- . The policy maker knows x_t for both t = 1, 2.
- . With probability r, policy maker is congruent and his policy payoff is $u_C(y_1, y_2) = gu_V(y_1, y_2)$.

. With probability 1 - r, he is not congruent, his policy payoff is $u_N(y_1, y_2) = -gu_V(y_1, y_2)$.

. The policy maker enjoys benefit w for being in office.

. Under direct democracy (DD), the decision is $y_t = 1$ for both t = 1, 2, because p > 1/2. Voter's welfare is $W^{DD} = (1 + \beta)p$.

. The independent bureaucrat need not worry about reelection. The voter's welfare is $W^{IB}=(1+\beta)r.$

. Elected politicians stand for re-election between periods t = 1, 2.

. At time t = 2, he chooses his preferred action. Hence, office motivation is determined by $\delta \equiv \beta \frac{g+w}{\sigma}$.

. If $\delta > 1$, policy maker panders, he picks $y_1 = 1$ for re-election.

. Welfare of representative democracy (RD) is $W^{RD} = p + \beta r$.

. Representative democracy is dominated by either independent bureaucracy or direct democracy.

. When $\delta < 1$, politician picks his preferred y_1 .

. Voter beliefs:
$$r|1 = \frac{pr}{pr + (1-p)(1-r)}$$
, $r|0 = \frac{(1-p)r}{(1-p)r + p(1-r)}$.

. Because r|0 < r < r|1, politician is re-elected iff $y_1 = 1$.

. Welfare is
$$W^{RD} = r(1 + p\beta + (1 - p)\beta r) + (1 - r)p\beta r$$
.

. Representative democracy dominates independent bureaucracy, and it dominates direct democracy if $p < \frac{r+r^2\beta}{\beta-2r\beta+2r^2\beta+1}$

- . Say now that acquiring information costs c.
- . The independent bureaucrat investigates if c < (1-p)g (1).
- . A congruent politician investigates if (1) and: $p(g + \beta(g + w c)) + (1 p)g c \ge pg + \beta(g + w c).$

. Representative democracy is penalized by costly information, because pandering does not require costly information.

The feedback case

- . With prob. q, voter learns x_1 between t = 1 and t = 2.
- . The equilibrium with no feedback holds if $\delta(1-2q)\geq 1.$
- . If $\delta q > 1$, then there is an equilibrium in which:
 - . the politician chooses $y_1 = x_1$ regardless of his type,
 - . if the electorate does not learn x_1 , incumbent is re-elected.
- . The voter welfare is $W^{RD} = 1 + \beta r$.
- . If $\delta q < 1$, then there is a mixed strategy equilibrium:
 - . congruent politicians choose $y_1 = x_1$,
 - . non-congruent politicians play $y_1 = 1$ if $x_1 = 0$, and play $y_1 = 0$ with prob. $\sigma = \frac{1}{\rho} - 1$ if $x_1 = 1$.

. The voter welfare is $W^{RD} = r + (1-r)(2p-1) + \beta r > W^{IB}$.

Divided electorate

. Suppose $p \in [0,1]$, and aggregate voter welfare is

$$W(y_t, x_t) = \begin{cases} 0 & \text{if } y_t = 0 \\ B > 0 & \text{if } y_t = x_t = 1 \\ L < 0 & \text{if } y_t = 1 - x_t = 1 \end{cases}$$

- . The majority prefers $y_t = 1$, and minority prefers $y_t = 0$.
- . Direct democracy welfare is $W^{DD} = (1 + \beta)[pB + (1 p)L].$
- . Office holder type $b \in \{M, m, W\}$, with prob. r^M , r^m , r^W .
- . *M* sides with majority, *m* with the minority, *W* picks $y_t = x_t$.
- . Independent bureaucracy welfare is

$$W^{IB} = (1+\beta)[r_M(pB+(1-p)L)+r_WpB].$$

. Representative democracy is analogous to previous case.

. If $\delta > 1$, then politician panders and chooses $y_1 = 1$.

. Representative democracy welfare is:

 $W^{RD} = pB + (1-p)L + \beta[r_M(pB + (1-p)L) + r_W pB].$

. Representative democracy is either dominated by direct democracy or by independent bureaucracy.

. If $\delta < 1$, then the politician does not pander.

. She is reelected if of type b = m or if b = W and $x_t = 0$.

. Representative democracy welfare is:

 $W^{RD} = [r_M(pB + (1-p)L) + r_W pB] + r_M \beta (pB + (1-p)L)$ $+ r_W p\beta pB + (r_W(1-p) + r_m)\beta [r_M(pB + (1-p)L) + r_W pB].$

. Independent bureaucracy dominates if p is small, direct democracy if p large, representative democracy if p intermediate.

Summary

- . I have presented agency models of election.
- . Voters do not care about electoral promises.

. They retain effective incumbents, and dismiss incumbents with poor performance to elect the challenger.

. If candidates' valence and ideologies are known, retention rules are ineffective.

. If candidates' valence or ideologies are uncertain, such retention rules encourage high effort/platform moderation.

. Independent bureaucracy is immune to pandering.

. Representative democracy dominates bureaucracy when it does not lead to pandering (Maskin and Tirole 2004).

Next Lecture

. I will consider how well elections aggregate information.

. If voters vote truthfully, then they select the "best" alternative by the law of large numbers.

. The fraction of voters who vote informatively in equilibrium converges to zero in large elections, and the election must be close.

. Nevertheless the chosen alternative is the same that would be chosen if all information became common knowledge.

. I will present a model in which voters have different information about candidates' valence.

. There exists an equilibrium in which informed non-partisan voters are pivotal, and the "best" candidate is elected.