Political Economy
 Theory and Experiments
 Lecture 4

Francesco Squintani
University of Warwick

email: f.squintani@warwick.ac.uk

Information Aggregation

One typical feature of democracies is voting.
. Each citizen out of a large group is asked for her opinion.
. Opinions are counted and each weighs the same.
. Is democratic voting better than letting a single competent expert decide (enlightened autocracy)?
. What are the information aggregation properties of voting?
. Condorcet supposed that voting will perform better than expert decision, as long as the number of voters is sufficiently large.

This, even if every voter has low competence/information.

Condorcet Jury Theorem

The model

. There are 2 alternatives $d \in\{0,1\}$. One of them is "right".
. The decision is made by majority vote.
. Voters vote independently of each other, no abstention.
The a-priori probability (i.e. before voters get further information) of being right is the same for both alternatives.
. Each voter has the same probability p to vote "correctly."
There is an odd number of voters $n=2 m+1$, with $n \geq 3$.

Analysis

The probability that in the case of n voters, exactly x of them make the right decision, depends on p and is given by:

$$
b_{n}(x ; p)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

with $x=0,1, \ldots, n$ and $p \in(0,1)$.
The probability a majority vote selects the right decision is:

$$
M_{2 m+1}(p) \equiv \operatorname{Pr}(X \geq m+1)=\sum_{x=m+1}^{2 m+1} b_{2 m+1}(x ; p)
$$

This function is symmetric: $M_{2 m+1}(p)=1-M_{2 m+1}(1-p)$.
Thus, we have: $M_{2 m+1}(1 / 2)=1 / 2$.
. How does probability to make right decision by majority voting change with more voters?

Suppose we add two voters to a group of size $2 m-1$.
. Without additional voters, a majority of $2 m-1$ (i.e. at least m voters) makes the right decision with probability $M_{2 m-1}(p)$.
. Note that $M_{2 m-1}(p)=\sum_{m}^{2 m-1} b_{2 m-1}(x ; p)$.
. For $2 m+1$ voters, there is a majority for the right decision,
. if at least $m+1$ of $2 m-1$ voters vote correctly, . or if exactly m of $2 m-1$ voters vote correctly and at least 1 of the 2 other voters votes correctly, . or if exactly $m-1$ of $2 m-1$ voters vote correctly and both the 2 other voters vote correctly.

Thus, we have:

$$
\begin{aligned}
M_{2 m+1}(p) & =M_{2 m-1}(p)-b_{2 m-1}(m ; p) \\
& +b_{2 m-1}(m ; p)\left(p^{2}+2 p(1-p)\right)+b_{2 m-1}(m-1 ; p) p^{2}
\end{aligned}
$$

. Let $q \equiv 1-p$. Since $b_{2 m-1}(m-1 ; p)=b_{2 m-1}(m ; p)(q / p)$, we can simplify the above expression and get:

$$
\begin{equation*}
M_{2 m+1}(p)=M_{2 m-1}(p)+q(p-q) b_{2 m-1}(m ; p) \tag{1}
\end{equation*}
$$

Condorcet Jury Theorem For $p>(<) 1 / 2$, the majority function $M_{2 m+1}(p)$ is monotonically increasing (resp. decreasing) in m and $\lim _{m \rightarrow \infty} M_{2 m+1}(p)=1(=0) . M_{2 m+1}(1 / 2)=1 / 2$, for all m. For $p \in(1 / 2,1)$, we have: $M_{2 m+1}(p)>p$.
. If $n=2 m+1$ voters act independently and each one decides correctly with probability $p>1 / 2$, then the probability for majority voting to get the right decision converges to 1 for $n \rightarrow \infty$.
. The convergence is fast, e.g. it is $>0,99$ for $p=0.8$ and $n=13$.
. We have "vox populi, vox dei", i.e. majority voting will be almost never wrong if the number of voters is sufficiently large.
. It may be reasonable that a decision is made by a group even if every member of the group has lower competence (but $p>1 / 2$) than a single "competent expert" who would decide alone.

The proof is made by means of the recursion formula (1):

$$
M_{2 m+1}(p)=M_{2 m-1}(p)+q(p-q) b_{2 m-1}(m ; p)
$$

. For $p>1 / 2, M_{2 m+1}(p)$ increases monotonically in m, as $q(p-q)$ is positive.
. For $p<1 / 2, M_{2 m+1}(p)$ decreases monotonically in m, as $q(p-q)$ is negative.
. For $p=1 / 2, M_{2 m+1}(p)$ is constant in m, as $q(p-q)=0$.
. The proof for $\lim _{m \rightarrow \infty} M_{2 m+1}(p)=1$ is made by expansion of the recursion formula. The calculation is very extensive.
. The property $\lim _{m \rightarrow \infty} M_{2 m+1}(p)=1$ can also be derived directly by the law of large numbers.

Extensions

. Is there really a "right" and a "wrong" decision?
Voters may have different preferences.
. Voters differ in their competence and information.
Each voter i 's signal's precision may take a different value p_{i}.
Voters observe common information: signals may be correlated.
The model assumes that voters vote "truthfully."
. Each voter i observes a signal $s_{i} \in\{0,1\}$, which is "correct" with probability p. Then i votes $v_{i}=s_{i}$.
. Is this behavior compatible with equilibrium?

Strategic Voting (Austen-Smith and Banks, 1996)

3 voters choose an alternative $d \in\{0,1\}$ by majority.
. Given unknown state $x \in\{0,1\}$, each voter j 's payoff is

$$
u_{j}(x, d)= \begin{cases}0 & \text { if } d=x \\ -1 & \text { if } d \neq x\end{cases}
$$

. The prior is favorable to the status quo: $\operatorname{Pr}(x=0)=\pi>1 / 2$.
. Each j has a private signal $s_{j} \in\{0,1\}, \operatorname{Pr}\left(s_{j}=x \mid x\right)=p>1 / 2$, signals are independent across voter.
. Each j 's voting strategy is a function $v_{j}:\{0,1\} \rightarrow\{0,1\}$ that maps each signal into a vote 0 or 1 .
. I show that if π is large relative to p, then truthful voting is not a Bayesian equilibrium.

Consider a voter j with signal $s_{j}=1$. Suppose by contradiction that the other voters k and ℓ vote truthfully.
. Let r_{j} be probability of $x=1$, given j 's equilibrium information.
. Her expected payoff is $-r_{j}$ for $d=0$ and $-\left(1-r_{j}\right)$ for $d=1$. Voter j prefers $d=0$ if $r_{j}<1 / 2$, and $d=1$ if $r_{j}>1 / 2$.
. j 's vote has no effect on d, unless one other voter votes $v_{k}=0$ and the other one votes $v_{\ell}=1$.
. Hence, voter j with $s_{j}=1$ votes $v_{j}=1$ if and only if

$$
r_{j}=\operatorname{Pr}\left(x=1 \mid s_{j}=s_{\ell}=1, s_{k}=0\right)=\frac{(1-p) p^{2}(1-\pi)}{(1-p) p^{2}(1-\pi)+p(1-p)^{2} \pi}>\frac{1}{2}
$$

If π is large relative to p, then j votes $v_{j}=0$ although $s_{j}=1$.
This happens even if truthful voting would be Pareto superior,

$$
r_{j}=\operatorname{Pr}\left(x=1 \mid s_{j}=s_{k}=s_{\ell}=1\right)=\frac{p^{3}(1-\pi)}{p^{3}(1-\pi)+(1-p)^{3} \pi}>\frac{1}{2}
$$

Condorcet Jury Theorem (Feddersen and Pesendorfer, 1997)

The model
. $n+1$ voters must make a decision $d=0,1$.
. Each voter i 's payoff is $u\left(d, x, b_{i}\right)$,
$x \in X=[0,1]$ is an unknown state with full support density g,
$b_{i} \in B=[-1,1]$ is private information bias, full support density f.
. Let $v(x, b) \equiv u(1, x, b)-u(0, x, b)$ be the utility difference, $v(x, b)$ is continuous and strictly increasing, $v(-1, b)<0$ and $v(1, b)>0$ for all b.

Each voter receives a signal $s \in\{\underline{s}, \ldots, \bar{s}\} \equiv S$, with full support probability $p(s \mid x)$, continuous in s for all x.

Monotone Likelihood Ratio Property: If $s>s^{\prime}$ and $x>x^{\prime}$, then $p\left(s^{\prime} \mid x^{\prime}\right) p(s \mid x)>p\left(s \mid x^{\prime}\right) p\left(s^{\prime} \mid x\right)$.
. Given quorum $q \in[1 / 2,1)$, each voter i votes $v_{i}=0,1$.
The voting outcome is $d=1$ iff $\#\left\{i: v_{i}=1\right\} \geq(n+1) q$.
A mixed strategy for voter i is $\sigma_{i}: B \times S \rightarrow[0,1]$.
We consider weakly undominated symmetric Nash equilibria.

Analysis

. A voter i's vote influences the election outcome iff one vote is pivotal: exactly $q n$ of the other n voters voted $v=1$.

The "average" probability that a voter votes 1 in state x is

$$
\tau(x, \sigma)=\sum_{s=\underline{s}}^{\bar{s}} p(s \mid x) \int_{B} \sigma(b, s) f(b) d b .
$$

The probability that a vote is pivotal in state x is:

$$
\operatorname{Pr}(p i v \mid x, \sigma)=\binom{n}{q n} \tau(x, \sigma)^{q n}(1-\tau(x, \sigma))^{n-q n} .
$$

. When $0<\tau(x, \sigma)<1$, we have $\operatorname{Pr}(\operatorname{piv} \mid x, \sigma)>0$ for all x.
. Densities of state x conditional on event piv, and on signal s are:

$$
\begin{aligned}
& g(x \mid \operatorname{piv}, \sigma)=\frac{\operatorname{Pr}(\operatorname{piv} \mid x, \sigma) g(x)}{\int_{X} \operatorname{Pr}(\operatorname{piv} \mid x, \sigma) g(x) d x} \\
& g(x \mid s, \operatorname{piv}, \sigma)=\frac{p(s \mid x) g(x \mid \operatorname{piv}, \sigma)}{\int_{X} p(s \mid x) g(x \mid \operatorname{piv}, \sigma) d x}
\end{aligned}
$$

. As s satisfies MLRP, $g(x \mid s, p i v, \sigma)$ is first-order stochastically increasing in s, and $E[v(b, x) \mid s, p i v, \sigma]$ increases in s.
. Hence, every voting equilibrium σ is characterized by ordered cutpoints $\left(b_{s}\right)_{s \in S}$ such that $-1<b_{\bar{s}}<\ldots<b_{\underline{s}}<1$ and

$$
E\left[v\left(b_{s}, x\right) \mid s, p i v, \sigma\right]=0 \text { for all } s
$$

. For all $s, \sigma(b, s)=0$ if $b<b_{s}$ and $\sigma(b, s)=1$ if $b>b_{s}$, and $0<\tau(x, \sigma)<1$ increases in x. The election is informative.

Suppose that the number of voters grows to infinity.
. Then, the expected fraction of voters who vote informatively in equilibrium must converge to zero, and the election must be close.

Theorem 1 Let $\left(\sigma^{n}\right)_{n \geq 1}$ be a sequence of voting equilibria, and let $\left(\left(b_{s}\right)_{S}^{n}\right)_{n \geq 1}$ be the corresponding cutpoints. Then $b_{\underline{s}}^{n}-b_{s}^{n} \rightarrow 0$.

Sketch of Proof: In equilibrium, each voter chooses as if she was pivotal, i.e., as if $q n$ out of n voters voted $v=1$.
. Equilibrium beliefs about $\tau(x, \sigma)$ must be concentrated around q.
. Beliefs about the state x must concentrate on states x^{\prime} such that $\tau\left(x^{\prime}, \sigma\right)$ is close to q, regardless of what the true state x is.
. Regardless of the state, the election must be close.
. If the fraction of voters who voted informatively did not vanish, then the election would not be close for all states.
. Large elections almost always choose the alternative that would have been chosen if the state x were common knowledge.
. Let $b^{*}=F^{-1}(q)$ be expected bias of the "pivotal" voter.
. Let x^{*} be the marginal state such that $v\left(b^{*}, x\right)=0$.
Theorem Every sequence of voting equilibria $\left(\sigma^{n}\right)_{n \geq 1}$ is such that $\operatorname{Pr}\left(x<x^{*}, d^{n}=1\right) \rightarrow 0$ and $\operatorname{Pr}\left(x>x^{*}, d^{n}=0\right) \rightarrow 0$.
The probability of a decision contrary to the pivotal voter's preference vanishes as n grows to infinity.

Sketch of Proof: Conditional on pivotal voting, the distribution over states puts almost all weight close to one state x^{n}.
. If $v\left(b^{*}, x^{n}\right)<\varepsilon<0$, then the fraction of votes for 1 in state x^{n} would be boundedly smaller than q : election would not be close.
. We conclude that $x^{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.

Swing voter's curse (Feddersen and Pesendorfer, 1996)

. Elections aggregate individual preferences and information.
. Information of common value, but some voters are not informed.
. Uninformed voters abstain, to avoid swinging the election against common interest.
. In fact, many voters do not vote, although the cost of voting is often negligible.
. Strategic abstention delivers first best.
. The winning candidate is the same as if all voters knew all voters' information.

The model

. There are 2 states $\omega=0,1$, with $\pi=\operatorname{Pr}(\omega=0) \geq 1 / 2$, and 2 party candidates $j=0,1$, with platforms $x_{j}=0,1$.
There are $N+1$ possible voters, each votes with prob. $1-p_{A}$.
. With prob. p_{0} (prob. p_{1}), a voter is partisan for party 0 (party 1).
. With probability $p_{n}=1-p_{0}-p_{1}$ the voter is independent: her utility is $u_{n}(x, \omega)=-|x-\omega|$.

Each voter receives a signal $s \in S=\{0, a, 1\}$.
. With probability $1-q$, s is uninformative and equal to a.
. When signal s is informative, $\operatorname{Pr}(s=\omega \mid \omega)=p>1 / 2$.
Each voter chooses $v \in\{0, A, 1\}$, where A is abstention.
. I focus on symmetric Nash equilibria: voters with same type and signal vote the same candidate.
. In equilibrium, type-0 (type-1) voters vote $v_{0}=0\left(v_{1}=1\right)$.
. All informed independents vote according to their signal:
$v_{n}(s)=s$ if $s=0,1$.
. The mixed strategy of uninformed independent agents (UIAs) is $\sigma=\left(\sigma_{0}, \sigma_{1}, \sigma_{A}\right) \in \Delta^{3}$.

Equilibrium

. Given the strategy σ, let $\rho_{\omega, j}(\sigma)$ be the probability of a vote for j if the state is ω is as follows

$$
\begin{array}{lc}
\rho_{\omega, j}(\sigma)=p_{j}+p_{n}(1-q) \sigma_{j}+p_{n} q(1-p) & \text { if } \omega \neq x_{j} \\
\rho_{\omega, j}(\sigma)=p_{j}+p_{n}(1-q) \sigma_{j}+p_{n} q p & \text { if } \omega=x_{j} .
\end{array}
$$

. Let $\rho_{\omega, A}(\sigma)$ be the probability of an abstention if the state is ω :

$$
\rho_{0, A}(\sigma)=\rho_{1, A}(\sigma)=\rho_{A}(\sigma)=p_{n}(1-q) \sigma_{A}+p_{A}
$$

. For any voter, the probability of a tie among the other voters is:

$$
P_{T}^{\omega, \sigma}=\sum_{\ell=0}^{N / 2} \frac{N!}{\ell!!!(N-2 \ell)!} \rho_{\omega, A}(\sigma)^{N-2 \ell} \rho_{\omega, 0}(\sigma)^{\ell} \rho_{\omega, 1}(\sigma)^{\ell} .
$$

The probability that candidate j is down by 1 vote is:

$$
P_{j}^{\omega, \sigma}=\sum_{\ell=0}^{(N / 2)-1} \frac{N!}{(\ell+1)!\ell!(N-2 \ell-1)!} \rho_{\omega, A}(\sigma)^{N-2 \ell-1} \rho_{\omega, 1-j}(\sigma)^{\ell+1} \rho_{\omega, j}(\sigma)^{\ell}
$$

. Let $E u_{n}(v, \sigma)$ be an UIA expected payoff of voting v, when the other voters use σ :

$$
\begin{aligned}
E u_{n}(1, \sigma)-E u_{n}(A, \sigma) & =\frac{1}{2}\left[(1-\pi)\left(P_{T}^{1, \sigma}+P_{1}^{1, \sigma}\right)-\pi\left(P_{T}^{0, \sigma}+P_{1}^{0, \sigma}\right)\right] \\
E u_{n}(0, \sigma)-E u_{n}(A, \sigma)= & \frac{1}{2}\left[\pi\left[P_{T}^{0, \sigma}+P_{0}^{0, \sigma}\right]-(1-\pi)\left[P_{T}^{1, \sigma}+P_{0}^{1, \sigma}\right]\right] . \\
E u_{n}(1, \sigma)-E u(0, \sigma)= & (1-\pi)\left[P_{T}^{1, \sigma}+\frac{1}{2}\left(P_{1}^{1, \sigma}+P_{0}^{1, \sigma}\right)\right] \\
& -\pi\left[P_{T}^{0, \sigma}+\frac{1}{2}\left(P_{1}^{0, \sigma}+P_{0}^{0, \sigma}\right)\right] .
\end{aligned}
$$

Proposition Suppose $p_{A}>0, q>0, N \geq 2$ and N even. For any symmetric σ s.t no voter plays a strictly dominated strategy, $E u_{n}(1, \sigma)=E u_{n}(0, \sigma)$ implies $E u_{n}(1, \sigma)<E u_{n}(A, \sigma)$.
. An UIA strictly prefers to abstain whenever indifferent between voting for 1 or 0 , and no voter uses a strictly dominated strategy.

This is the swing voter's curse.

To consider large elections, define a sequence of games with $N+1$ voters and associated strategy profiles $\left\{\sigma^{N}\right\}_{N=0}^{\infty}$.

Proposition Suppose $q>0, p_{n}(1-q)<\left|p_{0}-p_{1}\right|$ and $p_{A}>0$. Let $\left\{\sigma^{N}\right\}_{N=0}^{\infty}$ be a sequence of equilibria.
. If $p_{n}(1-q)<p_{0}-p_{1}$ then $\lim _{N \rightarrow \infty} \sigma_{1}^{N}=1$, i.e., all UIAs vote for candidate 1 .
. If $p_{n}(1-q)<p_{1}-p_{0}$ then $\lim _{N \rightarrow \infty} \sigma_{0}^{N}=1$, i.e., all UIAs vote for candidate 0 .
. The swing voter's curse can lead to large scale abstention by the UIAs in large elections.
. This happens when the expected fraction of UIAs is too small to compensate for a candidate partisan advantage.
. Instead, when the fraction of UIAs is large enough to offset partisan bias, there are no pure strategy equilibria.
. UIAs mix between abstention and voting against the difference in partisan support to compensate exactly.
. The equilibrium winning candidate is approximately the same as the candidate that would win if voters had perfect information.

Proposition Suppose $q>0, p_{n}(1-q) \geq\left|p_{0}-p_{1}\right|$ and $p_{A}>0$. Let $\left\{\sigma^{N}\right\}_{N=0}^{\infty}$ be a sequence of equilibria.
. If $p_{n}(1-q) \geq p_{0}-p_{1}>0$ then UIAs mix between voting for candidate 1 and abstaining, with $\lim \sigma_{1}^{N}=\frac{p_{0}-p_{1}}{p_{n}(1-q)}$.
. If $p_{n}(1-q) \geq p_{1}-p_{0}>0$ then UIAs mix between voting for candidate 0 and abstaining, with $\lim \sigma_{1}^{N}=\frac{p_{1}-p_{0}}{p_{n}(1-q)}$.
. If $p_{0}-p_{1}=0$ then UIAs abstain: $\lim \sigma_{A}^{N}=1$.
. For every ϵ there exists an N such that for $\bar{N}>N$ the probability that equilibrium fully aggregates information is greater than $1-\epsilon$.

Summary

. I have considered how well elections aggregate information.
. If voters vote truthfully, then they select the "best" alternative by the law of large numbers.
. The fraction of voters who vote informatively in equilibrium converges to zero in large elections, and the election must be close.
. Nevertheless the chosen alternative is the same that would be chosen if all information became common knowledge.
. I have presented a model in which voters have different information about candidates' valence.
. There exists an equilibrium in which informed non-partisan voters are pivotal, and the "best" candidate is elected.

Next lecture

. We will review models of cheap talk and political advice.
Congress may benefit from committing not to amend a committee's bill proposal, and put it to vote against the status quo.
. Unless the status quo is in line with the committee's bias, it disciplines the committee's proposal. (Gilligan and Krehbiel 1987).
. If an expert's loyalty is uncertain, repeated information transmission yields reputational concerns.
. Reputational concerns may lead to more disclosure but also to "political correctness" and conformism (Morris 2001).
. When information is verifiable, beliefs divergent from the DM act as incentives for information acquisition (Che and Kartik 2009).
. This incentive is reinforced by preference divergences, and dominates information withholding unless beliefs diverge too much.

