Political Economy Theory and Experiments Lecture 4

> Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

Information Aggregation

- . One typical feature of democracies is voting.
- . Each citizen out of a large group is asked for her opinion.
- . Opinions are counted and each weighs the same.
- . Is democratic voting better than letting a single competent expert decide (enlightened autocracy)?
- . What are the information aggregation properties of voting?

. Condorcet supposed that voting will perform better than expert decision, as long as the number of voters is sufficiently large.

. This, even if every voter has low competence/information.

Condorcet Jury Theorem

The model

- . There are 2 alternatives $d \in \{0, 1\}$. One of them is "right".
- . The decision is made by majority vote.
- . Voters vote independently of each other, no abstention.
- . The a-priori probability (i.e. before voters get further information) of being right is the same for both alternatives.
- . Each voter has the same probability p to vote "correctly."
- . There is an odd number of voters n = 2m + 1, with $n \ge 3$.

Analysis

. The probability that in the case of n voters, exactly x of them make the right decision, depends on p and is given by:

$$b_n(x;p) = \begin{pmatrix} n \\ x \end{pmatrix} p^x (1-p)^{n-x}$$

with x = 0, 1, ..., n and $p \in (0, 1)$.

. The probability a majority vote selects the right decision is:

$$M_{2m+1}(p) \equiv \Pr(X \ge m+1) = \sum_{x=m+1}^{2m+1} b_{2m+1}(x;p)$$

. This function is symmetric: $M_{2m+1}(p) = 1 - M_{2m+1}(1-p)$.

. Thus, we have: $M_{2m+1}(1/2) = 1/2$.

. How does probability to make right decision by majority voting change with more voters?

. Suppose we add two voters to a group of size 2m - 1.

. Without additional voters, a majority of 2m - 1 (i.e. at least m voters) makes the right decision with probability $M_{2m-1}(p)$.

. Note that
$$M_{2m-1}(p) = \sum_{m=1}^{2m-1} b_{2m-1}(x; p)$$
.

. For 2m + 1 voters, there is a majority for the right decision,

. if at least m+1 of 2m-1 voters vote correctly,

. or if exactly m of 2m - 1 voters vote correctly and at least 1 of the 2 other voters votes correctly,

. or if exactly m-1 of 2m-1 voters vote correctly and both the 2 other voters vote correctly.

. Thus, we have:

$$M_{2m+1}(p) = M_{2m-1}(p) - b_{2m-1}(m; p) + b_{2m-1}(m; p)(p^2 + 2p(1-p)) + b_{2m-1}(m-1; p)p^2.$$

. Let $q \equiv 1 - p$. Since $b_{2m-1}(m-1;p) = b_{2m-1}(m;p)(q/p)$, we can simplify the above expression and get:

$$M_{2m+1}(p) = M_{2m-1}(p) + q(p-q)b_{2m-1}(m;p).$$
(1)

Condorcet Jury Theorem For p > (<)1/2, the majority function $M_{2m+1}(p)$ is monotonically increasing (resp. decreasing) in m and $\lim_{m\to\infty} M_{2m+1}(p) = 1 \ (= 0)$. $M_{2m+1}(1/2) = 1/2$, for all m. For $p \in (1/2, 1)$, we have: $M_{2m+1}(p) > p$.

. If n = 2m + 1 voters act independently and each one decides correctly with probability p > 1/2, then the probability for majority voting to get the right decision converges to 1 for $n \to \infty$.

. The convergence is fast, e.g. it is > 0,99 for p = 0.8 and n = 13.

. We have "vox populi, vox dei", i.e. majority voting will be almost never wrong if the number of voters is sufficiently large.

. It may be reasonable that a decision is made by a group even if every member of the group has lower competence (but p > 1/2) than a single "competent expert" who would decide alone.

. The proof is made by means of the recursion formula (1):

$$M_{2m+1}(p) = M_{2m-1}(p) + q(p-q)b_{2m-1}(m;p)$$

. For p > 1/2, $M_{2m+1}(p)$ increases monotonically in m, as q(p-q) is positive.

. For p < 1/2, $M_{2m+1}(p)$ decreases monotonically in m, as q(p-q) is negative.

. For p = 1/2, $M_{2m+1}(p)$ is constant in m, as q(p-q) = 0.

. The proof for $\lim_{m\to\infty}M_{2m+1}(p)=1$ is made by expansion of the recursion formula. The calculation is very extensive.

. The property $\lim_{m\to\infty} M_{2m+1}(p) = 1$ can also be derived directly by the law of large numbers.

Extensions

. Is there really a "right" and a "wrong" decision? Voters may have different preferences.

. Voters differ in their competence and information. Each voter *i*'s signal's precision may take a different value p_i .

- . Voters observe common information: signals may be correlated.
- . The model assumes that voters vote "truthfully."
 - . Each voter *i* observes a signal $s_i \in \{0, 1\}$, which is "correct" with probability *p*. Then *i* votes $v_i = s_i$.
 - . Is this behavior compatible with equilibrium?

Strategic Voting (Austen-Smith and Banks, 1996)

- . 3 voters choose an alternative $d \in \{0, 1\}$ by majority.
- . Given unknown state $x \in \{0, 1\}$, each voter j's payoff is

$$u_j(x, d) = \begin{cases} 0 & \text{if } d = x \\ -1 & \text{if } d \neq x. \end{cases}$$

. The prior is favorable to the status quo: $\Pr(x=0) = \pi > 1/2$.

. Each j has a private signal $s_j \in \{0, 1\}$, $\Pr(s_j = x | x) = p > 1/2$, signals are independent across voter.

. Each j's voting strategy is a function $v_j : \{0, 1\} \rightarrow \{0, 1\}$ that maps each signal into a vote 0 or 1.

. I show that if π is large relative to p, then truthful voting is not a Bayesian equilibrium.

. Consider a voter *j* with signal $s_j = 1$. Suppose by contradiction that the other voters *k* and ℓ vote truthfully.

. Let r_j be probability of x = 1, given j's equilibrium information.

. Her expected payoff is $-r_j$ for d = 0 and $-(1 - r_j)$ for d = 1. Voter j prefers d = 0 if $r_j < 1/2$, and d = 1 if $r_j > 1/2$.

. *j*'s vote has no effect on *d*, unless one other voter votes $v_k = 0$ and the other one votes $v_\ell = 1$.

. Hence, voter j with $s_j = 1$ votes $v_j = 1$ if and only if

$$r_j = Pr(x = 1 | s_j = s_\ell = 1, s_k = 0) = \frac{(1-p)p^2(1-\pi)}{(1-p)p^2(1-\pi)+p(1-p)^2\pi} > \frac{1}{2}.$$

- . If π is large relative to p, then j votes $v_j = 0$ although $s_j = 1$.
- . This happens even if truthful voting would be Pareto superior,

$$r_j = Pr(x = 1 | s_j = s_k = s_\ell = 1) = \frac{p^3(1-\pi)}{p^3(1-\pi) + (1-p)^3\pi} > \frac{1}{2}.$$

The model

- . n+1 voters must make a decision d = 0, 1.
- . Each voter *i*'s payoff is $u(d, x, b_i)$,

 $x \in X = [0, 1]$ is an unknown state with full support density g, $b_i \in B = [-1, 1]$ is private information bias, full support density f.

. Let $v(x, b) \equiv u(1, x, b) - u(0, x, b)$ be the utility difference, v(x, b) is continuous and strictly increasing, v(-1, b) < 0 and v(1, b) > 0 for all b. . Each voter receives a signal $s \in \{\underline{s}, ..., \overline{s}\} \equiv S$, with full support probability p(s|x), continuous in s for all x.

. Monotone Likelihood Ratio Property: If s>s' and x>x', then p(s'|x')p(s|x)>p(s|x')p(s'|x).

. Given quorum $q \in [1/2, 1)$, each voter *i* votes $v_i = 0, 1$.

- . The voting outcome is d = 1 iff $\#\{i : v_i = 1\} \ge (n+1)q$.
- . A mixed strategy for voter *i* is $\sigma_i : B \times S \rightarrow [0, 1]$.
- . We consider weakly undominated symmetric Nash equilibria.

Analysis

. A voter *i*'s vote influences the election outcome iff one vote is pivotal: exactly qn of the other n voters voted v = 1.

. The "average" probability that a voter votes 1 in state x is

$$\tau(x,\sigma) = \sum_{s=\underline{s}}^{\underline{s}} p(s|x) \int_{B} \sigma(b,s) f(b) db.$$

. The probability that a vote is pivotal in state x is:

$$\Pr(piv|x,\sigma) = \binom{n}{qn} \tau(x,\sigma)^{qn} (1-\tau(x,\sigma))^{n-qn}.$$

. When $0 < \tau(x, \sigma) < 1$, we have $\Pr(piv|x, \sigma) > 0$ for all x.

. Densities of state x conditional on event *piv*, and on signal s are:

$$g(x|piv,\sigma) = \frac{\Pr(piv|x,\sigma)g(x)}{\int_X \Pr(piv|x,\sigma)g(x)dx},$$

$$g(x|s,piv,\sigma) = \frac{p(s|x)g(x|piv,\sigma)}{\int_X p(s|x)g(x|piv,\sigma)dx}.$$

. As s satisfies MLRP, $g(x|s, piv, \sigma)$ is first-order stochastically increasing in s, and $E[v(b, x)|s, piv, \sigma]$ increases in s.

. Hence, every voting equilibrium σ is characterized by ordered cutpoints $(b_s)_{s\in S}$ such that $-1 < b_{\overline{s}} < ... < b_{\underline{s}} < 1$ and

$$E[v(b_s, x)|s, piv, \sigma] = 0$$
 for all s.

. For all s, $\sigma(b, s) = 0$ if $b < b_s$ and $\sigma(b, s) = 1$ if $b > b_s$, and $0 < \tau(x, \sigma) < 1$ increases in x. The election is informative. . Suppose that the number of voters grows to infinity.

. Then, the expected fraction of voters who vote informatively in equilibrium must converge to zero, and the election must be close.

Theorem 1 Let $(\sigma^n)_{n\geq 1}$ be a sequence of voting equilibria, and let $((b_s)_s^n)_{n\geq 1}$ be the corresponding cutpoints. Then $b_s^n - b_{\overline{s}}^n \to 0$.

Sketch of Proof: In equilibrium, each voter chooses as if she was pivotal, i.e., as if qn out of n voters voted v = 1.

. Equilibrium beliefs about $\tau(x, \sigma)$ must be concentrated around q.

. Beliefs about the state x must concentrate on states x' such that $\tau(x', \sigma)$ is close to q, regardless of what the true state x is.

. Regardless of the state, the election must be close.

. If the fraction of voters who voted informatively did not vanish, then the election would not be close for all states.

. Large elections almost always choose the alternative that would have been chosen if the state *x* were common knowledge.

. Let $b^* = F^{-1}(q)$ be expected bias of the "pivotal" voter.

. Let x^* be the marginal state such that $v(b^*, x) = 0$.

Theorem Every sequence of voting equilibria $(\sigma^n)_{n\geq 1}$ is such that $\Pr(x < x^*, d^n = 1) \to 0$ and $\Pr(x > x^*, d^n = 0) \to 0$. The probability of a decision contrary to the pivotal voter's preference vanishes as *n* grows to infinity.

Sketch of Proof: Conditional on pivotal voting, the distribution over states puts almost all weight close to one state x^n .

. If $v(b^*, x^n) < \varepsilon < 0$, then the fraction of votes for 1 in state x^n would be boundedly smaller than q: election would not be close.

. We conclude that $x^n \to x^*$ as $n \to \infty$.

Swing voter's curse (Feddersen and Pesendorfer, 1996)

- . Elections aggregate individual preferences and information.
- . Information of common value, but some voters are not informed.

. Uninformed voters abstain, to avoid swinging the election against common interest.

. In fact, many voters do not vote, although the cost of voting is often negligible.

. Strategic abstention delivers first best.

. The winning candidate is the same as if all voters knew all voters' information.

The model

. There are 2 states $\omega = 0, 1$, with $\pi = \Pr(\omega = 0) \ge 1/2$, and 2 party candidates j = 0, 1, with platforms $x_j = 0, 1$.

- . There are N + 1 possible voters, each votes with prob. $1 p_A$.
- . With prob. p_0 (prob. p_1), a voter is partisan for party 0 (party 1).
- . With probability $p_n = 1 p_0 p_1$ the voter is independent: her utility is $u_n(x, \omega) = -|x - \omega|$.
- . Each voter receives a signal $s \in S = \{0, a, 1\}$.
- . With probability 1 q, s is uninformative and equal to a.
- . When signal s is informative, $\Pr(s=\omega|\omega)=p>1/2.$
- . Each voter chooses $v \in \{0, A, 1\}$, where A is abstention.

. I focus on symmetric Nash equilibria: voters with same type and signal vote the same candidate.

. In equilibrium, type-0 (type-1) voters vote $v_0 = 0$ ($v_1 = 1$).

. All informed independents vote according to their signal: $v_n(s) = s$ if s = 0, 1.

. The mixed strategy of uninformed independent agents (UIAs) is $\sigma=(\sigma_0,\sigma_1,\sigma_A)\in\Delta^3.$

Equilibrium

. Given the strategy $\sigma,$ let $\rho_{\omega,j}(\sigma)$ be the probability of a vote for j if the state is ω is as follows

$$\rho_{\omega,j}(\sigma) = p_j + p_n(1-q)\sigma_j + p_nq(1-p) \quad \text{if } \omega \neq x_j,$$

$$\rho_{\omega,j}(\sigma) = p_j + p_n(1-q)\sigma_j + p_nqp \quad \text{if } \omega = x_j.$$

. Let $\rho_{\omega,A}(\sigma)$ be the probability of an abstention if the state is ω : $\rho_{0,A}(\sigma) = \rho_{1,A}(\sigma) = \rho_A(\sigma) = \rho_n(1-q)\sigma_A + p_A.$

. For any voter, the probability of a tie among the other voters is:

$$P_T^{\omega,\sigma} = \sum_{\ell=0}^{N/2} \frac{N!}{\ell! \ell! (N-2\ell)!} \rho_{\omega,\mathcal{A}}(\sigma)^{N-2\ell} \rho_{\omega,0}(\sigma)^{\ell} \rho_{\omega,1}(\sigma)^{\ell}.$$

. The probability that candidate j is down by 1 vote is:

$$P_j^{\omega,\sigma} = \sum_{\ell=0}^{(N/2)-1} \frac{N!}{(\ell+1)!\ell!(N-2\ell-1)!} \rho_{\omega,\mathcal{A}}(\sigma)^{N-2\ell-1} \rho_{\omega,1-j}(\sigma)^{\ell+1} \rho_{\omega,j}(\sigma)^{\ell}.$$

. Let $Eu_n(v, \sigma)$ be an UIA expected payoff of voting v, when the other voters use σ :

$$\begin{split} & \mathsf{E}u_n(1,\sigma) - \mathsf{E}u_n(A,\sigma) = \frac{1}{2}[(1-\pi)(\mathsf{P}_T^{1,\sigma} + \mathsf{P}_1^{1,\sigma}) - \pi(\mathsf{P}_T^{0,\sigma} + \mathsf{P}_1^{0,\sigma})] \\ & \mathsf{E}u_n(0,\sigma) - \mathsf{E}u_n(A,\sigma) = \frac{1}{2}[\pi[\mathsf{P}_T^{0,\sigma} + \mathsf{P}_0^{0,\sigma}] - (1-\pi)[\mathsf{P}_T^{1,\sigma} + \mathsf{P}_0^{1,\sigma}]]. \\ & \mathsf{E}u_n(1,\sigma) - \mathsf{E}u(0,\sigma) = (1-\pi)[\mathsf{P}_T^{1,\sigma} + \frac{1}{2}(\mathsf{P}_1^{1,\sigma} + \mathsf{P}_0^{1,\sigma})] \\ & -\pi[\mathsf{P}_T^{0,\sigma} + \frac{1}{2}(\mathsf{P}_1^{0,\sigma} + \mathsf{P}_0^{0,\sigma})]. \end{split}$$

Proposition Suppose $p_A > 0$, q > 0, $N \ge 2$ and N even. For any symmetric σ s.t no voter plays a strictly dominated strategy, $Eu_n(1, \sigma) = Eu_n(0, \sigma)$ implies $Eu_n(1, \sigma) < Eu_n(A, \sigma)$.

. An UIA strictly prefers to abstain whenever indifferent between voting for 1 or 0, and no voter uses a strictly dominated strategy.

. This is the swing voter's curse.

. To consider large elections, define a sequence of games with N + 1 voters and associated strategy profiles $\{\sigma^N\}_{N=0}^{\infty}$.

Proposition Suppose q > 0, $p_n(1-q) < |p_0 - p_1|$ and $p_A > 0$. Let $\{\sigma^N\}_{N=0}^{\infty}$ be a sequence of equilibria.

. If $p_n(1-q) < p_0-p_1$ then $\lim_{N\to\infty}\sigma_1^N=1,$ i.e., all UIAs vote for candidate 1.

. If $p_n(1-q) < p_1-p_0$ then $\lim_{N\to\infty}\sigma_0^N=1,$ i.e., all UIAs vote for candidate 0.

. The swing voter's curse can lead to large scale abstention by the UIAs in large elections.

. This happens when the expected fraction of UIAs is too small to compensate for a candidate partisan advantage.

. Instead, when the fraction of UIAs is large enough to offset partisan bias, there are no pure strategy equilibria.

. UIAs mix between abstention and voting against the difference in partisan support to compensate exactly.

. The equilibrium winning candidate is approximately the same as the candidate that would win if voters had perfect information.

Proposition Suppose q > 0, $p_n(1-q) \ge |p_0 - p_1|$ and $p_A > 0$. Let $\{\sigma^N\}_{N=0}^{\infty}$ be a sequence of equilibria. . If $p_n(1-q) \ge p_0 - p_1 > 0$ then UIAs mix between voting for candidate 1 and abstaining, with $\lim \sigma_1^N = \frac{p_0 - p_1}{p_n(1-q)}$. . If $p_n(1-q) \ge p_1 - p_0 > 0$ then UIAs mix between voting for candidate 0 and abstaining, with $\lim \sigma_1^N = \frac{p_1 - p_0}{p_n(1-q)}$. . If $p_0 - p_1 = 0$ then UIAs abstain: $\lim \sigma_A^N = 1$.

. For every ϵ there exists an N such that for $\bar{N} > N$ the probability that equilibrium fully aggregates information is greater than $1 - \epsilon$.

. I have considered how well elections aggregate information.

. If voters vote truthfully, then they select the "best" alternative by the law of large numbers.

. The fraction of voters who vote informatively in equilibrium converges to zero in large elections, and the election must be close.

. Nevertheless the chosen alternative is the same that would be chosen if all information became common knowledge.

. I have presented a model in which voters have different information about candidates' valence.

. There exists an equilibrium in which informed non-partisan voters are pivotal, and the "best" candidate is elected.

Next lecture

. We will review models of cheap talk and political advice.

. Congress may benefit from committing not to amend a committee's bill proposal, and put it to vote against the status quo.

. Unless the status quo is in line with the committee's bias, it disciplines the committee's proposal. (Gilligan and Krehbiel 1987).

. If an expert's loyalty is uncertain, repeated information transmission yields reputational concerns.

. Reputational concerns may lead to more disclosure but also to "political correctness" and conformism (Morris 2001).

. When information is verifiable, beliefs divergent from the DM act as incentives for information acquisition (Che and Kartik 2009).

. This incentive is reinforced by preference divergences, and dominates information withholding unless beliefs diverge too much.