Political Economy Theory and Experiments Lecture 8

> Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

Asymmetric information and conflict

- . Players i = A, B dispute a stake of value 1.
- . In case of war, *i* pays cost c_i and wins with probability p_i .
- . Win probabilities p_A and $p_B = 1 p_A$ are common knowledge.
- . If A knows c_B , it offers $x_B \ge p_B c_B$ and B accepts. A's share $x_A = p_A + c_B$ is greater than war payoff $p_A - c_A$.
- . Say $c_B \in \{c_L, c_H\}$ is unknown to A, with $\Pr(c_B = c_L) = q$.
- . The high offer $x_B = p_B c_L$ yields a low share $x_A = p_A + c_L$.

. The low offer $x_A = p_B - c_H$ yields high share $x_A = p_A + c_H$ with prob. 1 - q and war payoff $p_A - c_A$ with prob. q.

. If $(1-q)c_H - qc_A > c_L$, then A prefers to take the risk of the low offer, and war obtains with positive probability.

- . The private information in the above game is of private value.
- . Let's see a game where information is of interdependent value.
- . Player B's army strength a_B is either high or low, with $Pr(a_B = H) = q$.
- . If $a_B = H$, player B wins with probability $p_H > 1/2$, and if $a_B = L$, B wins with probability $p_L = 1 p_H$.
- . War shrinks the stake to $\theta < 1$. There are no private costs.

. A's high offer $x_B = p_H$ avoids war and yields $x_A = p_L$, low offer $x_B = p_L$ yields $x_A = p_H$ with prob. 1 - q and war with prob. q.

. If $(1-q)p_H + qp_L\theta > p_L$, then A prefers to take the risk of the low offer and war.

Mediation and private values (Fey and Ramsay 2009)

. Conflict is caused by asymmetric information of private value: cost of war, willingness to fight, ...

. Mechanisms aimed at sharing information and building trust reduce the risk of war.

. Bargaining through diplomatic channels may be effective.

. Peace talks act as a coordination device on possible agreements, and improve the chance of peace.

. Mediation does not improve chances of peace over unmediated peace talks.

The model

- . Each player *i*'s war cost $c_i \in \{c_L, c_H\}$ is private information.
- . Each player *i* wins war with probability $p_i = 1/2$.
- . By revelation principle, a mediation protocol without loss is:
 - . each player *i* privately reports $\hat{m}_i \in \{c_L, c_H\}$ to the mediator;
 - . with prob. $\rho(\hat{m}_A, \hat{m}_B)$, mediator proposes $x \in [0, 1]$ drawn from $F|\hat{m}_A, \hat{m}_B$, with prob. $1 \rho(\hat{m}_A, \hat{m}_B)$ mediator quits;
 - . A and B fight if mediator quits. Else, A and B settle iff they simultaneously accept $x_A = x$ and $x_B = 1 - x$.
- . There is also no loss in considering only equilibria in which:
 - . players reveal their types to the mediator, $c_i = \hat{m}_i$,
 - . and accept all split proposals (x, 1-x) made by the mediator.

. These equilibria are characterized by the following constraints:

IR. Ex-post individual rationality: for all c_A , c_B ,

$$x \ge p_A - c_A, \ 1 - x \ge p_B - c_B$$
, for all $x \in Supp(F|c_A, c_B)$.

IC*. Interim incentive compatibility: for all c_A , c'_A , c_B , c'_B ,

$$\begin{split} \sum_{c_B} [\rho(c_A, c_B) \int_0^1 x dF(x | c_A, c_B) + [1 - \rho(c_A, c_B)](p_A - c_A)] \operatorname{Pr}(c_B) \\ \geq \sum_{c_B} [\rho(c'_A, c_B) \int_0^1 \max\{x, p_A - c_A\} dF(x | c'_A, c_B) \\ + [1 - \rho(c'_A, c_B)](p_A - c_A)] \operatorname{Pr}(c_B); \end{split}$$

$$\begin{split} \sum_{c_A} [\rho(c_A, c_B) \int_0^1 (1-x) dF(x|c_A, c_B) \\ &+ [1-\rho(c_A, c_B)](p_B - c_B)] \operatorname{Pr}(c_A) \\ \geq \sum_{c_A} [\rho(c_A, c'_B) \int_0^1 \max\{1-x, p_B - c_B\} dF(x|c_A, c'_B) \\ &+ [1-\rho(c_A, c'_B)](p_B - c_B)] \operatorname{Pr}(c_A). \end{split}$$

- . Let us consider the following unmediated peace talks game:
 - . players i = A, B meet in peace talks and simultaneously exchange messages $\hat{m}_i \in \{c_L, c_H\}$ and $r_i \in [0, 1]$;
 - . depending on r_A , r_B , \hat{m}_A , \hat{m}_B , either the meeting is a success: a split proposal (x_A, x_B) is selected for possible ratification, or the meeting fails: $(x_A, x_B) = (0, 0)$;
 - . A and B simultaneously choose whether to accept or reject (x_A, x_B) . A and B settle if and only if they both accept.

Proposition The set of mediation mechanism (F, q) outcomes that satisfy IR and IC^{*} coincide with the set of equilibrium outcomes of the unmediated peace talks game.

Proof. By the revelation principle, unmediated talks cannot improve upon mediation.

- . There is no gain in mediation as information is of private value.
- . Knowing opponent's type c_j does not change *i*'s expected payoff.
- . The mediator role is only to randomly select split proposals.
- . In equilibrium, un-mediated peace talks replicate optimal random selection of split proposals with a "jointly controlled lottery:"

. i = A, B reveals $\hat{m}_i = c_i$ and randomizes r_i uniformly on [0, 1];

- . for every $\textit{r}_{\textit{A}},\textit{r}_{\textit{B}} \in [0,1],$ let $\varphi(\textit{r}_{\textit{A}},\textit{r}_{\textit{B}}) \equiv \textit{r}_{\textit{A}} + \textit{r}_{\textit{B}} \lfloor\textit{r}_{\textit{A}} + \textit{r}_{\textit{B}} \rfloor;$
- . if $\varphi(r_A, r_B) \leq \rho(\hat{m}_A, \hat{m}_B)$, then the meeting is a success: split $(x, 1-x) = F^{-1}(\frac{\varphi(r_A, r_B)}{\rho(\hat{m}_A, \hat{m}_B)} | \hat{m}_A, \hat{m}_B)$ is selected, A and B accept split (x, 1-x) and settle;

. if $\varphi({\it r}_{A},{\it r}_{B})>\rho(\hat{m}_{A},\hat{m}_{B}),$ then meeting fails, A and B fight.

. Mixing $r_A, r_B \sim U[0, 1]$ is an equilibrium because, if j chooses $r_j \sim U[0, 1]$, then $\varphi(r_A, r_B) \sim U[0, 1]$, regardless of i's strategy.

Proposition Mediation (and unmediated peace talks) cannot achieve peace with probability one.

. War is the punishment for a high cost type to pretend that its war cost is low.

. Suppose by contradiction that a mediation mechanism (F, q) achieves peace with probability one.

. Then the IC^* constraints are violated, because there is no "punishment" for a lying high cost type.

- . Suppose that players bargain with a Nash demand game.
- . Players i = A, B simultaneously make demand x_i .
- . If $x_A + x_B > 1$, then war initiates.
- . If $x_A + x_B \leq 1$, each i gets $x_i [1 + \frac{1 x_A x_B}{x_A + x_B}]$.

. The best equilibrium is such that player *i* of type c_H demands $p_i - c_H$ and player *i* of type c_L demands $1 - (p_j - c_H)$.

- . Pairs of c_L types fight with probability one.
- . Peace talks reduce prob. of war among c_L types to $\rho(c_L, c_L)$.

. Coordination by means of peace talks improves chance of peace relative to bargaining through standard diplomatic channels.

. Conflict is caused by asymmetric information of interdependent value: military strength, strength of alliances, foreign support, ...

- . Communications through diplomatic channels reduces risk of war.
- . The organization of peace talks improves the chance of peace.

. And mediation further improves chances of peace over unmediated peace talks.

. Arbitration need not improve peace chances over mediation.

The model

- . Players A and B dispute a stake of value 1.
- . In case of war then the value shrinks to $\theta < 1$.

. Each player *i*'s strength $a_i \in \{L, H\}$ is private information, with $Pr(a_i = H) = q$ independently across players.

. If $a_A = a_B$ then each *i* wins with prob. = 1/2, otherwise the stronger wins with prob. p > 1/2, where $p\theta > 1/2$.

. We reparametrize the model:

 $\tau \equiv q/(1-q)$ is the odds ratio of H vs. L type; $w \equiv \frac{p\theta-1/2}{1/2-\theta/2}$, is the benefit/cost ratio of war for H type. . τ increases in q, whereas w increases in p and θ .

Unmediated peace talks

- . A, B meet in peace talks and exchange $\hat{m}_i \in \{h, \ell\}$, $r_i \in [0, 1]$.
- . Based on (\hat{m}_A, \hat{m}_B) and $\varphi(r_A, r_B)$, proposal (x_A, x_B) is selected.
- . A, B simultaneously choose whether to accept (x_A, x_B) or not.
- . In the optimal separating equilibrium:
 - . Given messages (h, h), players coordinate on peace with split (1/2, 1/2) with prob. ρ_H , and on war with prob. $1 \rho_H$.
 - . Given messages (h, ℓ) players coordinate on (b, 1-b), b > 1/2, with prob. ρ_M , and on war with prob. $1 \rho_M$.
 - . Given messages (ℓ, ℓ) players coordinate (1/2, 1/2) with prob. ρ_L and war with prob. $1 \rho_L$.

. The best separating equilibrium $(b, \rho_L, \rho_M, \rho_H)$ maximizes

 $V = (1 - q)^2 \rho_L + 2q(1 - q)\rho_M + q^2 \rho_H$

subject to sequential rationality (ex-post IR) constraints and to truthtelling (interim IC^*) constraints.

Proposition In the unique best separating equilibrium, for $\tau < w$, *LL* dyads do not fight, $\rho_L = 1$, *HH* dyads fight with probability $1 - \rho_H > 0$, and the *L*-type IC^{*} constraint binds.

. If $w \ge 1$ and/or $\tau \ge \frac{1}{1+w}$, then *H*-type IC^{*} does not bind and $b = p\theta$; if $\tau < w/2$, then $\rho_H = 0$ and $\rho_M \in (0, 1)$; if $\tau \ge w/2$ (which covers $\tau \ge \frac{1}{1+w}$), then $\rho_H \in (0, 1)$ and $\rho_M = 0$.

. If w < 1 and $\tau < \frac{1}{1+w}$, then *H*-type IC^{*} binds and $b > p\theta$; if $\tau < w/2$, then $\rho_H = 0$, $\rho_M \in (0, 1)$; else, $\rho_H \in (0, 1)$, $\rho_M = 1$. . For $\tau \ge w$, neither *L* nor *H* types fight, $\rho_L = \rho_M = \rho_H = 1$.

Mediation

- . By the revelation principle, mediation is represented as follows:
 - . players report their types privately to the mediator;
 - . mediator proposes split (x, 1-x) or quits.
- We show the following symmetric mechanisms to be w.l.o.g.
 After reports (*h*, *h*), mediator recommends (1/2, 1/2) with prob. ρ_H, and quits with prob 1 ρ_H.
 - . After (h, ℓ) , mediator recommends (b, 1-b) with prob ρ_M , (1/2, 1/2) with prob $\bar{\rho}_M$, and quits with prob $1 \rho_M \bar{\rho}_M$.
 - . After (ℓ, ℓ) , mediator recommends (1/2, 1/2) with prob ρ_L , (b, 1-b) and (1-b, b) with prob $\bar{\rho}_L$ each, and else quits.

. Optimal mediation mechanism $(b, \rho_L, \bar{\rho}_L, \rho_M, \bar{\rho}_M, \rho_H)$ maximizes

$$V = (1-q)^2 (
ho_L + 2ar
ho_L) + 2q(1-q)(
ho_M + ar
ho_M) + q^2
ho_H$$

subject to ex-post IR and interim IC* constraints.

Proposition A solution to the mediator's problem is such that, for all $\tau < w$, *L* types do not fight, $\rho_L + 2\bar{\rho}_L = 1$. The *L*-type IC^{*} constraint binds, the *H* type constraint IC^{*} does not, and $b = p\theta$.

. For $w \ge 1$ and $\tau > w/2$, *HH* dyads fight with probability $1 - \rho_H \in (0, 1)$, *HL* dyads do not fight, $\rho_M + \bar{\rho}_M = 1$, and mediation strictly improves upon unmediated peace talks.

. For $w \ge 1$ and $\tau \le w/2$, the solution coincides with the separating equilibrium of unmediated peace talks game, $\rho_L = 1$, $\bar{\rho}_M = 0$, $\rho_M \in (0, 1)$ and $\rho_H = 0$.

. For w < 1, there are unequal splits obtain in *LL* dyads, $\bar{\rho}_L > 0$, and mediation strictly improves upon unmediated peace talks.

. Hence, mediation improves on unmediated talks when war is costly (w < 1), and/or when strengths uncertain ($w/2 < \tau < w$).

. For $w \ge 1$, $\tau > w/2$, mediator lowers incentives to exaggerate strength by not always proposing (b, 1-b) if messages are (h, ℓ) .

. Mediator proposes (1/2, 1/2) with prob. $\bar{\rho}_M > 0$ after (h, ℓ) .

. This allows to satisfy the L-type IC^{*} constraint with a lower probability of war in HH dyads.

. This is equivalent to not always revealing a self-reported H type that she is facing a L type.

. Of course, this cannot be achieved in face-to-face meetings without a mediator.

. When conflict is costly, w < 1, mediator lowers incentive to hide strength, by not always offering (1/2, 1/2) after (ℓ, ℓ) messages.

. This is equivalent to not always revealing a self-reported L type that she is facing a L type.

. It reduces the payoff for hiding strength and then waging war against L types: a H type reporting to be a L type will not always know when she is facing a L type.

. This allows to satisfy the H-type IC^{*} constraint without increasing b, i.e. without tightening the L-type IC^{*} constraint.

. Hence, this allows to keep war probability low in dyads with at least one H type.

. Casella, Friedman and Perez (2020) test mediation and unmediated communication with a lab experiment.

. They find that messages are significantly more sincere when sent to the mediator, than with unmediated communication.

. Peaceful resolution is not more frequent, even when the mediator is a computer implementing the optimal mediation program.

. The optimal mediation equilibrium is particularly vulnerable to small deviations from full truthfulness.

. Subjects' deviations induce only small losses in payoffs, but significant increase in conflict probability.

Arbitration and enforcement

. Because nations are sovereign, mediators cannot enforce peace. Hence, we have imposed ex-post IR and interim IC^* constraints.

. Let us consider arbitration: if parties choose to participate, the arbitrator's decisions are enforced by an external agency.

- . By revelation principle, arbitration may be formulated as follows:
 - . Players report types to an arbitrator who makes decisions;
 - . after reports $(\ell,\ell),$ split (1/2,1/2) is enforced with prob. $\rho_L,$ and else the arbitrator quits and war occurs;
 - . after reports (h, ℓ), (b, 1 b) is enforced with prob. ρ_M ;
 - . after reports (h, h), (1/2, 1/2) is enforced with prob. ρ_H .
- . The arbitrator chooses $b, \rho_L, \rho_M, \rho_H$ to maximize prob. of peace V subject to interim IR and interim IC constraints.

Proposition Optimal arbitration mechanism (with enforcement power) yields same ex-ante probability of peace V as the optimal self-enforcing mediation mechanism.

- . In arbitration, *L*-type IC and *H*-type interim IR constraints bind.
- . In mediation, L-type IC* and H-type ex-post IR constraints bind.

. L-type IC = L-type IC^* , because a L type never fights after exaggerating strength in solution of optimal mediation program.

. *H*-type interim IR arbitration constraint is weaker than the two H-type ex-post IR mediation constraints.

. Arbitration solution would violate H-type ex-post IR constraints.

. Mediator "confuses" self-reported H types to lower their payoff, and recovers the probability of peace of the arbitration solution.

. I have focused on conflict caused by asymmetric information

. Mechanisms that reduce asymmetric information and build trust among disputants reduce the risk of war.

. Bargaining through diplomatic channels may be effective.

. Peace talks act as a coordination device on possible aggreements, and improve the chance of peace.

. Mediation further improves chances of peace when asymmetric information is of interdependent value.

. Arbitration need not improve over mediation.

. Peace cannot be achieved with probability one.