Advanced Economic Theory Models of Elections

Lecture 1

Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

Models of Elections

. Elections are modelled as non-cooperative games.
There may be 2 or more office motivated candidates, possibly with different ideology or valence.
. Candidates' strategic decisions may include whether and when to run in the election, policy platform, campaign spending amount, ...
. Voters are ideologically differentiated.
. Their decisions may include whether and who to vote, and whether to support a candidate through activism or lobbyism.

Different electoral rules may be considered.
. Repetition and private information may play a role.

Course Syllabus

Lecture 1: Median voter theorem

Readings

P. Ordeshook 1986. Game Theory and Political Theory: An Introduction, Cambridge University Press, Chapter 4.

Lecture 2: Citizen candidates and probabilistic voting

Readings

. M. Osborne and A. Slivinski 1996. "A model of political competition with citizen-candidates," Quarterly Journal of Economics, 111(1): 65-96.
T. Besley and S. Coate 1997. "An economic model of representative democracy," Quarterly Journal of Economics, 112: 85-114.
. A. Lyndbeck and J. Weibull 1993. "A model of political equilibrium in a representative democracy," Journal of Public Economics, 51(2): 195-209.

Lecture 3: Policy motivations

Readings

. D. Bernhardt, J. Duggan and F. Squintani 2009. "The case for responsible parties," American Political Science Review, 103(4): 570-587.
. S. Callander 2008. "Political motivations," Review of Economic Studies, 75(3): 671-697.

Lecture 4: Elections with incomplete information

Readings

. T. Feddersen and W. Pesendorfer 1996. "The swing voter's curse," American Economic Review, 86(3): 408-424.
. N. Kartik, F. Squintani and K. Tinn 2012. "Information revelation and pandering in elections," mimeo, Columbia University.

Lecture 5: Agency models of elections

Readings

. J. Banks and R. Sundaram 1998. "Optimal retention in agency problems," Journal of Economic Theory, 82(2): 293-323.
. J. Duggan 2000. "Repeated elections with asymmetric information," Economics and Politics, 12(2): 109-135.
. D. Bernhardt, L. Campuzano, F. Squintani and O. Camara 2009.
"On the benefits of party competition," Games and Economic Behavior, 66(2): 685-70.

Lecture 6: Candidate valence advantage

Readings

. E. Aragones and T. Palfrey 2002. "Mixed equilibrium in a Downsian model with a favored candidate," Journal of Economic Theory, 103(1): 131-161.
. T. Groseclose 2001. "A model of candidate location when one candidate has a valence advantage," American Journal of Political Science, 45(4): 862-886.
. D. Bernhardt, O. Camara and F. Squintani 2011. "Competence and ideology," Review of Economic Studies, 78(2): 487-522.

Lecture 7: Lobbying and activism

Readings

. G. Grossman and E. Helpman 1996. "Electoral competition and special interest politics," Review of Economic Studies, 63(2): 265-286.
. R. Srinivasan 2017. "A model of election activism, mobilization and polarization," mimeo, University of Warwick.

Lecture 8: Voter turnout

Readings

. R. Shachar and B. Nalebuff 1999. "Follow the leader: theory and evidence on political participation," American Economic Review, 89(3): 525-547.
. T. Feddersen and A. Sandroni 2006. "A theory of participation in elections," American Economic Review, 96(4): 1271-1282.

Lecture 9: Legislative bargaining

Readings
. D. Baron and J. Ferejohn 1989. "Bargaining in legislatures," American Political Science Review, 83(4): 1181-1206.
. T. Romer and H. Rosenthal 1978. "Political resource allocation, controlled agendas, and the status quo," Public Choice, 33(4): 27-43.
. D. Baron 1996. "A dynamic theory of collective goods programs," American Political Science Review, 90(2), 316-330.

Downsian elections

. Two candidates $i=A, B$ care only about winning the election.
. Candidates i simultaneously commit to policies $x_{i} \in \mathbb{R}$ if elected.
. There is a continuum of voters.
. The payoff of a voter with ideology b if policy x is implemented is $u(x, b)=L(|x-b|)$, with $L^{\prime}<0$.
. Ideologies are distributed according to (continuous and strictly increasing) empirical cumulative distribution F, of median m.
. After candidates choose platforms, each citizen votes, and the candidate with the most votes wins.

If $x_{A}=x_{B}$, then the election is tied.

Theorem (Median Voter Theorem) The unique Nash Equilibrium of the Downsian election is such that candidates $i=A, B$ choose $x_{i}=m$, and tie the election.
Office motivated politicians converge on median positions.
Proof. We calculate candidate payoffs as function of $\left(x_{A}, x_{B}\right)$.
. Fix any $\left(x_{A}, x_{B}\right)$ such that $x_{A} \neq x_{B}$.
. Because $L^{\prime}<0$, each voter with ideology b votes for the candidate i that minimizes $\left|x_{i}-b\right|$.
. Hence, when $x_{i}<x_{j}$, candidate i 's vote share is $F\left(\frac{x_{A}+x_{B}}{2}\right)$, and candidate j 's is $1-F\left(\frac{x_{A}+x_{B}}{2}\right)$.
. Now, consider any profile $\left(x_{A}, x_{B}\right)$ such that $x_{i} \neq m$ for at least one candidate $i=1,2$.
. j 's best response is $B R_{j}=\left\{x_{j}:\left|x_{j}-m\right|<\left|x_{i}-m\right|\right\}$, by playing a best response, candidate j wins the election.
. But if j plays x_{j} such that $\left|x_{j}-m\right|<\left|x_{i}-m\right|$, i's best response cannot be x_{i}, as i can at least tie the election by playing m.
. Hence, there cannot be any Nash equilibrium where either candidate i plays $x_{i} \neq m$.
. Suppose now that both candidates play $x_{A}=x_{B}=m$.
. All voters are indifferent between x_{A} and x_{B} : the election is tied.
. If either candidate i deviates and plays $x_{i} \neq m$, then she loses the election.
. Hence, there is a unique Nash equilibrium: $x_{A}=x_{B}=m$.
. Median voter theorem corresponds to equilibrium of the "Hotelling" model of monopolistic competition.
. Producers choose to make identical products, in a model of monopolistic competition with horizontal differentiation.
. But lack of product differentiation hurts aggregate consumer welfare in Hotelling model, whereas convergence to the median benefits voters in Downsian model.
. E.g., if F is uniform on $[0,1]$, then consumer welfare is maximal in the Hotelling model with $x_{A}^{*}=1 / 4$, and $x_{B}^{*}=3 / 4$.
. And for general F, the optimal products x_{A}^{*} and x_{B}^{*} are similarly differentiated.

Matters are very different in the Downsian model.

Proposition If voters are risk averse, then the median platforms $x_{A}=x_{B}=m$ are preferred by a majority to any pair $x_{A}^{\prime}, x_{B}^{\prime}$. If $x_{A}^{\prime}, x_{B}^{\prime}$ is 'competitive', i.e. $\left|x_{A}^{\prime}-m\right|=\left|x_{B}^{\prime}-m\right|$, then x_{A} and x_{B} are unanimously preferred to $x_{A}^{\prime}, x_{B}^{\prime}$.

Proof. Each platform x_{i}^{\prime} in any competitive pair $x_{A}^{\prime}, x_{B}^{\prime}$, is voted by $1 / 2$ of voters.
. The pair $x_{A}^{\prime}, x_{B}^{\prime}$ is a 'bet' with expected value equal to m.
. If voters are risk averse, $L^{\prime \prime}<0$, then they all prefer the sure outcome $x_{A}=x_{B}=m$.
. Consider now any distribution F and platform $x_{A}^{\prime}, x_{B}^{\prime}$: the election selects the platform x_{i}^{\prime} closest to m.

Thus, a majority of voters prefers $x_{A}=x_{B}=m$ to $x_{A}^{\prime}, x_{B}^{\prime}$.

Proposition If the ideology distribution F is symmetric, $F(b)=1-F(2 m-b)$ for all b, and the loss function L is a power function, $L(|x-b|)=|x-b|^{n}$ for some integer n, then convergence to the median, $x_{A}=x_{B}=m$, maximizes "utilitarian" voter welfare $W(x)=-\int_{-\infty}^{+\infty} L(|b-x|) d F(b)$.

Proof. If F is symmetric around $m, F(b)=1-F(2 m-b)$ for all b, and L is a power function, then all central moments of F coincide with the median m (the zero-th moment).
. Solving $x^{*}=\arg \max _{x}\left\{W(x)=-\int_{-\infty}^{+\infty}|x-b|^{n} d F(b)\right\}$, we obtain that $x^{*}=m$.
. When F is symmetric, there are also fairness considerations that make median convergence appealing.
. But when F is not symmetric, median convergence does not maximize utilitarian welfare W unless L is a linear function.

Ordinal preferences

. Consider a compact policy space X and a set of voters $N=\{1, \ldots, n\}$, with n odd.
. Preferences are single-peaked on space X with linear order $>$, if for each voter j there is a policy b_{j} such that for all $x, y \in X$,
. if $b_{j} \geq y>x$, then $y \succ_{j} x$, . if $x>y \geq b_{j}$, then $x \succ_{j} y$.
. Preferences are single-crossing on space X with linear order $>$, for voter index permutation $p: N \rightarrow N$, whenever if $x>y$ and $p(j)>p(i)$, or if $x<y$ and $p(j)<p(i)$, then $x \succ_{p(i)} y$ implies $x \succ_{p(j)} y$.
. A policy x that defeats any other policy y is a Condorcet winner.

Theorem Say that an odd number of voters vote among two candidates. If policy x is the Condorcet winner, then both candidates choose x in equilibrium.

Theorem (Downs, 1975; Gans and Smart, 1996) If an odd number of voters have single-peaked or single-crossing preferences, then the Condorcet winner is the ideal point of the median voter m.

There are preference profiles with no Condorcet winners.

$$
\begin{aligned}
& \text { 1: } x \succ y \succ z \\
& \text { 2: } y \succ z \succ x \\
& \text { 3: } z \succ x \succ y
\end{aligned}
$$

. The two results are independent: single-crossing condition does not imply single-peakedness, nor vice-versa.

Preferences may be single crossing but not single peaked.

```
1:x\succy\succz
2:x\succz\succy
3:z\succy\succx
```

are single crossing on order $x<y<z$ but not single peaked:
$z \succ_{2} y \Rightarrow z \succ_{3} y, x \succ_{2} z \Rightarrow x \succ_{1} z, x \succ_{2} y \Rightarrow x \succ_{1} y$.
(Not single peaked for any $>$ as each x, y, z is the worst for a voter.)
Preferences may be single peaked but not single crossing.

$$
\begin{aligned}
& \text { 1: }: w \succ x \succ y \succ z \\
& \text { 2: } x \succ y \succ z \succ w \\
& \text { 3: } y \succ x \succ w \succ z
\end{aligned}
$$

are single peaked on $w<x<y<z$, but not single crossing: for $2<3, z \succ_{2} w$ but $z \nsucc_{3} w$; for $3<2, y \succ_{3} x$ but $y \nsucc_{2} x$.

Multi-dimensional policy spaces

. Policy platforms are usually multi-dimensional.
. But often multidimensional policy can be projected on a left-right unidimensional space on which voters can be ordered.
. Consider a compact policy space $X \subset \mathbb{R}^{d}$ and set of voters N.
. The voters in $j \in N$ have "intermediate preferences" if every j 's payoff can be written as $L_{j}(x)=J(x)+K\left(p_{j}\right) H(x)$ for some voter index permutation p, where K is monotonic, whereas $H(x)$ and $J(x)$ are common to all voters.

Proposition Say that an odd number of voters with intermediate preferences vote among two candidates. Then both candidates choose policy $x\left(p_{m}\right)$, the ideal point of the voter i with median p_{m}.

Suppose agents preferences can be represented by $L\left(\left\|x-b_{i}\right\|\right)$, where b_{i} is vector describing i 's bliss point in this policy space.
. L decreasing and concave in the Euclidean distance $\left\|x-b_{i}\right\|$.
Theorem (Plott, 1967) A Condorcet winner policy in a multidimensional policy space exists if and only if there is a policy $m \in \mathbb{R}^{d}$ median in all directions.
. The existence of a median in all direction requires strong symmetry assumptions on the distribution of individual ideal points.
. The 'top cycle' of X is the set of all alternatives $x \in X$ such that for each $y \neq x$, there are c_{1}, \ldots, c_{K} such that $x=c_{1} \succ c_{2} \succ \ldots$ $\succ c_{K}=y$, where \succ represents a preference by a majority.

Theorem (McKelvey 1976) In a multi-dimensional policy space, if there is no Condorcet winner, then the top cycle is the whole set of alternatives.

Example Consider the divide the dollar game with 3 voters.
. Set of alternatives is $X=\left\{\left(x_{1}, x_{2}, x_{3}\right) \geq 0: x_{1}+x_{2}+x_{3}=1\right\}$.
. Each voter i 's payoff is increasing in x_{i}.
. The top cycle is $T C=X \backslash\{(1,0,0),(0,1,0),(0,0,1)\}$.
. In fact, every $x \in X$ is defeated by at least one among $(1 / 2,0,1 / 2),(1 / 2,1 / 2,0)$ and $(0,1 / 2,1 / 2)$.
. If $x>0$, then $x \succ(0, \varepsilon, 1-\varepsilon) \succ(1 / 2,0,1 / 2)$ for some small
$\varepsilon>0$ and similarly for $(1 / 2,1 / 2,0)$ and ($0,1 / 2,1 / 2$).
. If exactly two entries of x are positive, then x beats some $x^{\prime}>0$, which then indirectly beats all other alternatives.

Agenda setting

Suppose there are no candidates.
. Voters choose among a finite set of fixed alternatives X.
. The choice is made by sequential pairwise elimination.
E.g., voters choose x vs. y, winner is matched to z, and so on.
. The 'agenda' is the sequence in which alternatives are voted.
. If there is a Condorcet winner, it is selected for all agenda.
. If voters vote sincerely on each alternative, then for every policy x in the top cycle set, there exist agenda that select x.
. By Mc Kelvey theorem, the top cycle is X : the agenda-setter can determine the outcome.
. If voters are strategic and know the agenda, the game is solved by backward induction.
. The Banks set includes all alternatives in X that survive successive elimination by strategic voters for some agenda.
. If there is a "status quo" \bar{x} in X, it is voted last against the penultimate surviving alternative in the agenda.

The inclusion of status quo further restricts the set of alternatives "available" to the agenda setter.

Summary

. We have reviewed the Downsian model of elections.

- There are two office-motivates candidates.
. First each credibly commits to an electoral platform.
. Then, voters vote for the preferred platform candidate.
. If policies are uni-dimensional, candidates' platforms "converge" to the policy preferred by the median voter.
. If the policy space is multi-dimensional, anything goes.
. If there are no candidates and alternatives are voted sequentially, agenda setter is a dictator unless voters are strategic.

Next lecture

. I present the main alternative spatial models of elections.
. Suppose candidates have policy preferences and cannot credibly commit to platforms.
. Then there exist equilibria in which platforms "diverge" from the median policy.
. If office motivated candidates are uncertain about the voters' preferences, then platforms converge to the expected median.
. Equilibrium exist in multi-dimensional policy spaces, if candidates maximize vote shares and voters' preferences are uncertain.

This equilibrium is Pareto efficient for the electorate.

