Advanced Economic Theory Models of Elections Lecture 2

Francesco Squintani
University of Warwick

email: f.squintani@warwick.ac.uk

Downsian elections with ideological candidates
. Suppose there are two candidates $i=L, R$ with ideologies b_{i} such that $b_{L}<m<b_{R}$, and $m-b_{L}<b_{R}-m$.

The utility of candidate i if policy x is implemented is $u_{i}\left(x, b_{i}\right)=L\left(\left|x-b_{i}\right|\right)$, with $L^{\prime}<0$.

Theorem The unique Nash Equilibrium is such that candidates i choose $x_{i}=m$, and tie (although candidates are ideological).

Proof. For any $x_{L} \neq x_{R}$, if $x_{i}<x_{j}$, candidate i 's vote share is $F\left(\frac{x_{L}+x_{R}}{2}\right)$, and candidate j 's is $1-F\left(\frac{x_{L}+x_{R}}{2}\right)$.
. Suppose that $x_{L}<m$, then candidate R wins and implements x_{R} by choosing x_{R} in $\left(x_{L}, 2 m-x_{L}\right)$.
. Hence, if $x_{L}<2 m-b_{R}, R$'s best response $B R_{R}\left(x_{L}\right)=\left\{b_{R}\right\}$, and if $2 m-b_{R}<x_{L}<m$, then $B R_{R}\left(x_{L}\right)$ is empty.
. But if $x_{R}=b_{R}$, then $B R_{L}\left(x_{R}\right)$ is empty.
. If $m<x_{L}<b_{R}$, then $B R_{R}\left(x_{L}\right)=\left[x_{L},+\infty\right)$.
. If $x_{L}>b_{R}$, then $B R_{R}\left(x_{L}\right)=\left\{b_{R}\right\}$.
. But if $x_{R}>x_{L}>m$ or $x_{R}=b_{R}$, then $x_{L} \notin B R_{L}\left(x_{R}\right)$.
. Hence, there is no Nash Equilibrium with $\left(x_{L}, x_{R}\right) \neq(m, m)$.
. Suppose that candidate i chooses $x_{i}=m$.
. Then, implemented policy is m regardless of x_{j}, and $B R_{j}\left(x_{i}\right)=(-\infty,+\infty)$.
. We conclude that the unique Nash Equilibrium is $x_{L}=x_{R}=m$, and the election is tied.

Citizen candidate models

. Key assumption of Downsian models is that politicians can commit to any policy platform, regardless of their ideology.
. Convergence to median obtains with office-motivated candidates, but also with policy motivations (if voters' preferences are known).
. What happens if politicians cannot commit and can only implement their preferred policy?
. Say voters vote for the candidate with platform they prefer.
. Then, there exist equilibria in which two or more candidates differentiate platforms.
. If voters coordinate not to vote for losing candidates, then exactly two candidates run in the election.

Osborne and Slivinski 1996

. Policy space is $X=\mathbb{R}$ and there is a continuum of citizens i.
. The citizens' ideal platforms b_{i} empirical distribution F is continuous with unique median m.
. Each citizen i chooses to run or not in the election, $e_{i} \in\{E, N\}$.
. If a citizen i enters, she becomes a "candidate" with platform $x_{i}=b_{i}$ (citizens cannot commit to a different platform).

After all citizens have simultaneously chosen on entry, they vote.
. Voting is "sincere:" each voter i with bliss point b_{i} votes for the candidate(s) j whose platform x_{j} is closest to b_{i}.

Votes are split equally if multiple candidates platforms coincide.

A citizen who chooses E incurs the cost $c>0$, and derives benefit $w>0$ if she wins.
. Let the platform of the election winner be x_{W}.
. If citizen i with ideal platform b_{i} chooses N then i 's payoff is

$$
u_{i}(N, e)=-\left|x_{W}-b_{i}\right|
$$

If citizen i with ideal platform b_{i} chooses E, then her payoff is $u_{i}(E, e)=w-c$ if she wins, and $u_{i}(E, e)=-\left|x_{W}-b_{i}\right|-c$ if she loses.

If no citizen enters, then they all obtain the payoff of $-\infty$.

Results

Proposition There is a one-candidate equilibrium iff $w \leq 2 c$. If $c \leq w \leq 2 c$, then the candidate's platform is $x_{w}=m$. If $w<c$, then $x_{W} \in\left[m-\frac{c-w}{2}, m+\frac{c-w}{2}\right]$.
. If $w>2 c$, then a second candidate would enter even just to tie.
. If $x=m$, then no entrant can defeat the candidate.
. If $w<c$, and $\left|m-x_{W}\right| \leq \frac{c-w}{2}$, then no-one who can defeat the candidate would strictly benefit by entering.

Proposition In any 2-candidate equilibrium the platforms are $x_{A}=m-e$ and $x_{B}=m+e$ for some $e \in(0, \bar{e}(F)]$.
Any such equilibrium exists if and only if $2 e \geq c-w / 2$, $c \geq|m-s(e, F)|$ and either $e<\bar{e}(F)$ or $e=\bar{e}(F) \leq 3 c-w$.
. $s(e, F)$ is the platform such that A and B still tie their votes
if a third candidate C enters with $x_{C}=s(e, F)$.
. $\bar{e}(F)$ is the value of e such that A and B lose to C iff $e>\bar{e}(F)$.
. If $e>\bar{e}(F)$, then a third candidate enters and wins.
. If $e=\bar{e}(F)>3 c-w$, then a third candidate enters and ties.
. If $e<c-w / 2$, then one of the two candidates drops out.
. If $c<|m-s(e, F)|$, then an entrant may want to enter and lose.

Proposition Every 3-candidate equilibrium is such that: . either the election is a 3-way tie, and the platforms are $x_{A}=t_{1}-e_{1}, x_{B}=t_{1}+e_{1}=t_{2}-e_{2}, x_{C}=t_{2}+e_{2}$ for some $e_{1}, e_{2} \geq 0$, where $t_{1}=F^{-1}(1 / 3), t_{2}=F^{-1}(2 / 3)$.
. or candidates A and C tie the election and B loses for sure, and the platforms are $x_{A}<x_{B}<x_{C}$.
. A necessary condition for 3-way tie is $w \geq 3 c+2\left|e_{1}-e_{2}\right|$.
. In the 2-way tie equilibrium, candidate 2 enters to lose the election and induce a tie.
. If B did not enter, her worst candidate would win for sure.
A necessary conditions for 2-way tie is $w \geq 4 c$ and $c<t_{2}-t_{1}$:
. if $c>t_{2}-t_{1}$, then B would not enter,
. if $w<4 c$, then one of the two winning candidates drops out.

. Candidate B enters to lose the election.
. B's entry makes A and C tie: $q\left(x_{A}+x_{B}\right) / 2=r\left[1-\left(x_{B}+x_{C}\right) / 2\right]$.
. By entering B steals more votes to A than to C.
. B is closer to C than to 1: $x_{C}-x_{B}<x_{B}-x_{A}$.

Proposition A necessary condition for the existence of an equilibrium in which $k \geq 3$ candidates tie for first place is $w \geq k c$. A necessary condition for the existence of an equilibrium in which there are three or more candidates is $w \geq 3 c$.

There may be multiple candidates elections.
. These equilibria generalize the logic of the 3-way tie equilibrium in the previous proposition.
. Each pair of contiguous candidates is symmetrically located around an ideologically k-tile, $t_{1}, t_{2}, \ldots, t_{k-1}$.

Besley and Coate 1997

. Besley and Coate 1997 assume that voters vote strategically.
. Voters do not waste vote on candidates who are ideologically close to their bliss point, but have no chance to win.
. As there is a continuum of voters, no voter is pivotal.
This assumption requires coordination among voters.
. There are no equilibria in which 3 or more candidates tie election.
. There are no equilibria in which a candidate enters the election and loses for sure.
. These equilibria are upset by strategic voters who vote second best candidate, to break a tie with a candidate they dislike more.

Probabilistic voting

. In Downsian elections, winning probabilities jump discontinuously because voters preferences are known.
. Probabilistic voting models smooth out discontinuities by adding "noise" to voters' preferences.
. If candidates maximize probability to win, then platforms converge to the expected median platform.
. If candidates maximize vote share, then platforms converge to an weighted average platform.
. Platforms may converge also in multi-dimensional policy spaces.

Aggregate uncertainty

Candidates maximize the probability of winning majority.
Voters' preferences do not vary independently.
Median platform depends on a random common state.
. Each voter j with bliss point $b_{j} \in \mathbb{R}$ has utility $L\left(\left|x-b_{j}\right|\right)$, with $L^{\prime}<0, L^{\prime \prime}<0$, and $\lim _{z \downarrow 0} L^{\prime}(z)=0, \lim _{z \uparrow \infty} L^{\prime}(z)=-\infty$.

Each ideal point b_{j} is decomposed as: $b_{j}=m+\delta_{j}+e_{j}$:
. δ_{j} is the fixed j 's bias relative to the median platform m, the empirical distribution of δ_{j} across j has median zero;
. m is the random median platform, with c.d.f. F and median μ;
. e_{j} is noise, i.i.d. over j, with symmetric density and $E\left[e_{j}\right]=0$.
. As in the Downsian model there are two candidates, $i=A, B$ who care only about winning the election.
. Candidates i simultaneously commit to policies $x_{i} \in \mathbb{R}$ if elected.
. After candidates choose platforms, each voter votes, and the candidate with the most votes wins.
. If $x_{A}=x_{B}$, then the election is tied.
Proposition In the unique Nash equilibrium of the probabilistic model with aggregate uncertainty, the candidates $i=1$, 2 choose x_{i} equal to the median μ of the distribution of the median policy m and tie the election.

Proof: Suppose that $x_{i}<x_{j}$, then candidate i wins the election if $m<\left(x_{A}+x_{B}\right) / 2$ and j wins if $m>\left(x_{A}+x_{B}\right) / 2$.

The probability $q_{i}\left(x_{i}, x_{j}\right)$ that i wins the election is

$$
q_{i}\left(x_{i}, x_{j}\right)= \begin{cases}\frac{F\left(x_{A}+x_{B}\right)}{2} & \text { if } x_{i}<x_{j} \\ 1 / 2^{2} & \text { if } x_{i}=x_{j} \\ 1-\frac{F\left(x_{A}+x_{B}\right)}{2} & \text { if } x_{i}=x_{j}\end{cases}
$$

. Given x_{j}, candidate i chooses x_{i} to maximize $q_{i}\left(x_{i}, x_{j}\right)$.
. Suppose that $x_{j}<\mu$. Then, $q_{i}\left(x_{i}, x_{j}\right)>1 / 2$ and strictly decreasing in x_{i} for $x_{i}>x_{j}$. i 's best response is empty.
. Likewise, if $x_{j}>\mu$, then i 's best response is empty.
. If $x_{j}=\mu$, then $q_{i}\left(x_{i}, x_{j}\right)<1 / 2$ and strictly increasing in x_{i} for $x_{i}<x_{j}, q\left(\mu, x_{j}\right)=1 / 2$, and $q_{i}\left(x_{i}, x_{j}\right)<1 / 2$ and strictly decreasing in x_{i} for $x_{i}>x_{j}$. i 's best response is $x_{i}=\mu$.

Hence, there is a unique equilibrium: $x_{A}=x_{B}=\mu$.

Vote share maximization

. There are G groups of voters g with s_{g} share of voters in each g.
. Candidates $i=A, B$ simultaneously announce platforms x_{i} in \mathbb{R}^{d}.
The payoff of voter k in group g is: $u_{k}(x, i)=L_{g}(x)+\eta_{k i}$
. L_{g} is a continuously differentiable loss function, strictly decreasing in the distance $\left\|x-b_{g}\right\|$ from a bliss point b_{g} in \mathbb{R}^{d}.
. $\eta_{k i}$ are non-policy benefits for k if i is in power.
. Let $\sigma_{k}=\eta_{k B}-\eta_{k A}$, drawn independently across individuals, with cumulative distribution H_{g} on \mathbb{R} and density h_{g}.
. Let $q_{g i}$ be fraction of voters in g that vote candidate $i=A, B$.
. Candidate i picks x_{i} to maximize vote share $q_{i}=\sum_{g=1}^{G} s_{g} q_{g i}$.

Results

Each voter k in group g votes for A if $L_{g}\left(x_{A}\right)-L_{g}\left(x_{B}\right)>\sigma_{k}$.
Vote share for A in group g is $q_{g A}=H_{g}\left(L_{g}\left(x_{A}\right)-L_{g}\left(x_{B}\right)\right)$.
Suppose that
. $q_{A}=\sum_{g=1}^{G} s_{g} H_{g}\left(L_{q}\left(x_{A}\right)-L_{q}\left(x_{B}\right)\right)$ is strictly concave in x_{A}
. $q_{B}=\sum_{g=1}^{G} s_{g}\left[1-H_{g}\left(L_{q}\left(x_{A}\right)-L_{q}\left(x_{B}\right)\right)\right]$ str. concave in x_{B}.
. Then the equilibrium $\left(x_{A}, x_{B}\right)$ solves the FOC:

$$
\begin{aligned}
& \quad \sum_{g=1}^{G} s_{g} h_{g}\left(L_{q}\left(x_{A}\right)-L_{q}\left(x_{B}\right)\right) D L_{g}\left(x_{A}\right)=0 \\
& \quad \sum_{g=1}^{G} s_{g} h_{g}\left(L_{q}\left(x_{A}\right)-L_{q}\left(x_{B}\right)\right) D L_{g}\left(x_{B}\right)=0, \\
& \text { where } D L_{g}\left(x_{i}\right)=\left(\frac{\partial L_{g}}{\partial x_{i 1}}, \ldots, \frac{\partial L_{g}}{\partial x_{i n}}\right)^{T}
\end{aligned}
$$

Proposition If a pure strategy equilibrium $\left(x_{A}, x_{B}\right)$ of probabilistic voting model exists, then $x_{A}=x_{B}=x$ such that

$$
\sum_{g=1}^{G} s_{g} h_{g}(0) D L_{g}(x)=0
$$

Nash-equilibrium corresponds to solution to maximization of weighted utilitarian social welfare function:

$$
\sum_{g=1}^{G} s_{g} w_{g} D L_{g}(x)=0
$$

with group weights $w_{g}=h_{g}(0)$.
. Group weight corresponds to group size and responsiveness to policy changes $h_{g}(0)$, i.e. share of unbiased voters/swing voters.
. When do pure strategy equilibria exist?
. Strict concavity of q_{i} in x_{i} for $i=A, B$ is hard to check.
. A sufficient condition is that for each group g, $H_{g}\left(L_{g}\left(x_{A}\right)-L_{g}\left(x_{B}\right)\right)$ is strictly concave in x_{A} and x_{B}.

Summary

. I have presented the main alternative spatial models of elections.
. Suppose candidates have policy preferences and cannot credibly commit to platforms.
. Then there exist equilibria in which platforms "diverge" from the median policy.
. If office motivated candidates are uncertain about the voters' preferences, then platforms converge to the expected median.
. Equilibrium exist in multi-dimensional policy spaces, if candidates maximize vote shares and voters' preferences are uncertain.

This equilibrium is Pareto efficient for the electorate.

Next lecture

. I will introduce candidates with policy preferences in the aggregate uncertainty model.
. Because of uncertainty, equilibrium platforms diverge.
. If voters' preferences may change during campaigns, then platform divergence improves electorate welfare.
. I present a model without voter preference uncertainty, in which policy-motivated candidates diverge from median.
. By diverging, candidates signal they care about policy and will exert effort if elected.

