Advanced Economic Theory Models of Elections Lecture 2

> Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

. Suppose there are two candidates i = L, R with ideologies b_i such that $b_L < m < b_R$, and $m - b_L < b_R - m$.

. The utility of candidate *i* if policy *x* is implemented is $u_i(x, b_i) = L(|x - b_i|)$, with L' < 0.

Theorem The unique Nash Equilibrium is such that candidates *i* choose $x_i = m$, and tie (although candidates are ideological).

Proof. For any $x_L \neq x_R$, if $x_i < x_j$, candidate *i*'s vote share is $F(\frac{x_L+x_R}{2})$, and candidate *j*'s is $1 - F(\frac{x_L+x_R}{2})$.

. Suppose that $x_L < m$, then candidate R wins and implements x_R by choosing x_R in $(x_L, 2m - x_L)$.

. Hence, if $x_L < 2m - b_R$, *R*'s best response $BR_R(x_L) = \{b_R\}$, and if $2m - b_R < x_L < m$, then $BR_R(x_L)$ is empty.

. But if $x_R = b_R$, then $BR_L(x_R)$ is empty.

- . If $m < x_L < b_R$, then $BR_R(x_L) = [x_L, +\infty)$.
- . If $x_L > b_R$, then $BR_R(x_L) = \{b_R\}$.
- . But if $x_R > x_L > m$ or $x_R = b_R$, then $x_L \notin BR_L(x_R)$.
- . Hence, there is no Nash Equilibrium with $(x_L, x_R) \neq (m, m)$.
- . Suppose that candidate i chooses $x_i = m$.

. Then, implemented policy is *m* regardless of x_j , and $BR_j(x_i) = (-\infty, +\infty)$.

. We conclude that the unique Nash Equilibrium is $x_L = x_R = m$, and the election is tied.

. Key assumption of Downsian models is that politicians can commit to any policy platform, regardless of their ideology.

. Convergence to median obtains with office-motivated candidates, but also with policy motivations (if voters' preferences are known).

. What happens if politicians cannot commit and can only implement their preferred policy?

. Say voters vote for the candidate with platform they prefer.

. Then, there exist equilibria in which two or more candidates differentiate platforms.

. If voters coordinate not to vote for losing candidates, then exactly two candidates run in the election.

. Policy space is $X = \mathbb{R}$ and there is a continuum of citizens *i*.

. The citizens' ideal platforms b_i empirical distribution F is continuous with unique median m.

. Each citizen *i* chooses to run or not in the election, $e_i \in \{E, N\}$.

. If a citizen *i* enters, she becomes a "candidate" with platform $x_i = b_i$ (citizens cannot commit to a different platform).

. After all citizens have simultaneously chosen on entry, they vote.

. Voting is "sincere:" each voter *i* with bliss point b_i votes for the candidate(s) *j* whose platform x_j is closest to b_i .

. Votes are split equally if multiple candidates platforms coincide.

. A citizen who chooses *E* incurs the cost c > 0, and derives benefit w > 0 if she wins.

- . Let the platform of the election winner be x_W .
- . If citizen *i* with ideal platform b_i chooses *N* then *i*'s payoff is $u_i(N, e) = -|x_W b_i|$.
- . If citizen *i* with ideal platform b_i chooses *E*, then her payoff is $u_i(E, e) = w - c$ if she wins, and $u_i(E, e) = -|x_W - b_i| - c$ if she loses.
- . If no citizen enters, then they all obtain the payoff of $-\infty$.

Proposition There is a one-candidate equilibrium iff $w \le 2c$. If $c \le w \le 2c$, then the candidate's platform is $x_W = m$. If w < c, then $x_W \in [m - \frac{c-w}{2}, m + \frac{c-w}{2}]$.

. If w > 2c, then a second candidate would enter even just to tie.

. If x = m, then no entrant can defeat the candidate.

. If w < c, and $|m - x_W| \le \frac{c-w}{2}$, then no-one who can defeat the candidate would strictly benefit by entering.

Proposition In any 2-candidate equilibrium the platforms are $x_A = m - e$ and $x_B = m + e$ for some $e \in (0, \bar{e}(F)]$. Any such equilibrium exists if and only if $2e \ge c - w/2$, $c \ge |m - s(e, F)|$ and either $e < \bar{e}(F)$ or $e = \bar{e}(F) \le 3c - w$.

. s(e, F) is the platform such that A and B still tie their votes if a third candidate C enters with $x_C = s(e, F)$.

- . $\bar{e}(F)$ is the value of e such that A and B lose to C iff $e > \bar{e}(F)$.
- . If $e > \bar{e}(F)$, then a third candidate enters and wins.
- . If $e = \bar{e}(F) > 3c w$, then a third candidate enters and ties.
- . If e < c w/2, then one of the two candidates drops out.
- . If c < |m s(e, F)|, then an entrant may want to enter and lose.

Proposition Every 3-candidate equilibrium is such that:

. either the election is a 3-way tie, and the platforms are $x_A = t_1 - e_1$, $x_B = t_1 + e_1 = t_2 - e_2$, $x_C = t_2 + e_2$ for some $e_1, e_2 \ge 0$, where $t_1 = F^{-1}(1/3), t_2 = F^{-1}(2/3)$.

. or candidates A and C tie the election and B loses for sure, and the platforms are $x_A < x_B < x_C$.

. A necessary condition for 3-way tie is $w \ge 3c + 2|e_1 - e_2|$.

. In the 2-way tie equilibrium, candidate 2 enters to lose the election and induce a tie.

- . If B did not enter, her worst candidate would win for sure.
- . A necessary conditions for 2-way tie is $w \ge 4c$ and $c < t_2 t_1$:
 - . if $c > t_2 t_1$, then *B* would not enter,
 - . if w < 4c, then one of the two winning candidates drops out.

- . Candidate B enters to lose the election.
- . B's entry makes A and C tie: $q(x_A + x_B)/2 = r[1-(x_B + x_C)/2]$.
- . By entering B steals more votes to A than to C.
- . B is closer to C than to 1: $x_C x_B < x_B x_A$.

Proposition A necessary condition for the existence of an equilibrium in which $k \ge 3$ candidates tie for first place is $w \ge kc$. A necessary condition for the existence of an equilibrium in which there are three or more candidates is $w \ge 3c$.

. There may be multiple candidates elections.

. These equilibria generalize the logic of the 3-way tie equilibrium in the previous proposition.

. Each pair of contiguous candidates is symmetrically located around an ideologically k-tile, $t_1, t_2, ..., t_{k-1}$.

. Besley and Coate 1997 assume that voters vote strategically.

. Voters do not waste vote on candidates who are ideologically close to their bliss point, but have no chance to win.

. As there is a continuum of voters, no voter is pivotal. This assumption requires coordination among voters.

. There are no equilibria in which 3 or more candidates tie election.

. There are no equilibria in which a candidate enters the election and loses for sure.

. These equilibria are upset by strategic voters who vote second best candidate, to break a tie with a candidate they dislike more.

. In Downsian elections, winning probabilities jump discontinuously because voters preferences are known.

. Probabilistic voting models smooth out discontinuities by adding "noise" to voters' preferences.

. If candidates maximize probability to win, then platforms converge to the expected median platform.

. If candidates maximize vote share, then platforms converge to an weighted average platform.

. Platforms may converge also in multi-dimensional policy spaces.

. Candidates maximize the probability of winning majority.

. Voters' preferences do not vary independently. Median platform depends on a random common state.

. Each voter j with bliss point $b_j \in \mathbb{R}$ has utility $L(|x - b_j|)$, with L' < 0, L'' < 0, and $\lim_{z \downarrow 0} L'(z) = 0$, $\lim_{z \uparrow \infty} L'(z) = -\infty$.

- . Each ideal point b_j is decomposed as: $b_j = m + \delta_j + e_j$:
 - . δ_j is the fixed j's bias relative to the median platform m, the empirical distribution of δ_j across j has median zero;
 - . *m* is the random median platform, with c.d.f. *F* and median μ ;
 - . e_j is noise, i.i.d. over j, with symmetric density and $E[e_j] = 0$.

. As in the Downsian model there are two candidates, i = A, B who care only about winning the election.

. Candidates *i* simultaneously commit to policies $x_i \in \mathbb{R}$ if elected.

. After candidates choose platforms, each voter votes, and the candidate with the most votes wins.

. If $x_A = x_B$, then the election is tied.

Proposition In the unique Nash equilibrium of the probabilistic model with aggregate uncertainty, the candidates i = 1, 2 choose x_i equal to the median μ of the distribution of the median policy m and tie the election.

Proof: Suppose that $x_i < x_j$, then candidate *i* wins the election if $m < (x_A + x_B)/2$ and *j* wins if $m > (x_A + x_B)/2$.

. The probability $q_i(x_i, x_j)$ that *i* wins the election is

$$q_i(x_i, x_j) = \begin{cases} \frac{F(x_A + x_B)}{2} & \text{if } x_i < x_j, \\ 1/2 & \text{if } x_i = x_j \\ 1 - \frac{F(x_A + x_B)}{2} & \text{if } x_i = x_j. \end{cases}$$

. Given x_j , candidate *i* chooses x_i to maximize $q_i(x_i, x_j)$.

. Suppose that $x_j < \mu$. Then, $q_i(x_i, x_j) > 1/2$ and strictly decreasing in x_i for $x_i > x_j$. *i*'s best response is empty.

. Likewise, if $x_j > \mu$, then *i*'s best response is empty.

. If $x_j = \mu$, then $q_i(x_i, x_j) < 1/2$ and strictly increasing in x_i for $x_i < x_j$, $q(\mu, x_j) = 1/2$, and $q_i(x_i, x_j) < 1/2$ and strictly decreasing in x_i for $x_i > x_j$. *i*'s best response is $x_i = \mu$.

. Hence, there is a unique equilibrium: $x_A = x_B = \mu$.

Vote share maximization

- . There are G groups of voters g with s_g share of voters in each g.
- . Candidates i = A, B simultaneously announce platforms x_i in \mathbb{R}^d .
- . The payoff of voter k in group g is: $u_k(x,i) = L_g(x) + \eta_{ki}$

. L_g is a continuously differentiable loss function, strictly decreasing in the distance $||x - b_g||$ from a bliss point b_g in \mathbb{R}^d .

. η_{ki} are non-policy benefits for k if i is in power.

. Let $\sigma_k = \eta_{kB} - \eta_{kA}$, drawn independently across individuals, with cumulative distribution H_g on \mathbb{R} and density h_g .

- . Let q_{gi} be fraction of voters in g that vote candidate i = A, B.
- . Candidate *i* picks x_i to maximize vote share $q_i = \sum_{g=1}^{G} s_g q_{gi}$.

<u>Results</u>

- . Each voter k in group g votes for A if $L_g(x_A) L_g(x_B) > \sigma_k$.
- . Vote share for A in group g is $q_{gA} = H_g(L_g(x_A) L_g(x_B))$.
- . Suppose that
 - $\begin{array}{l} \cdot \ q_A = \sum_{g=1}^G s_g H_g(L_q(x_A) L_q(x_B)) \text{ is strictly concave in } x_A \\ \cdot \ q_B = \sum_{g=1}^G s_g [1 H_g(L_q(x_A) L_q(x_B))] \text{ str. concave in } x_B. \end{array}$

. Then the equilibrium (x_A, x_B) solves the FOC:

$$\begin{split} \sum_{g=1}^{G} s_g h_g(L_q(x_A) - L_q(x_B)) DL_g(x_A) &= 0\\ \sum_{g=1}^{G} s_g h_g(L_q(x_A) - L_q(x_B)) DL_g(x_B) &= 0, \end{split}$$

where $DL_g(x_i) = (\frac{\partial L_g}{\partial x_{i1}}, ..., \frac{\partial L_g}{\partial x_{in}})^T. \end{split}$

Proposition If a pure strategy equilibrium (x_A, x_B) of probabilistic voting model exists, then $x_A = x_B = x$ such that

$$\sum_{g=1}^G s_g h_g(0) DL_g(x) = 0.$$

. Nash-equilibrium corresponds to solution to maximization of weighted utilitarian social welfare function:

$$\sum_{g=1}^{G} s_g w_g DL_g(x) = 0$$
,

with group weights $w_g = h_g(0)$.

. Group weight corresponds to group size and responsiveness to policy changes $h_g(0)$, i.e. share of unbiased voters/swing voters.

. When do pure strategy equilibria exist?

- . Strict concavity of q_i in x_i for i = A, B is hard to check.
- . A sufficient condition is that for each group g,

 $H_g(L_g(x_A) - L_g(x_B))$ is strictly concave in x_A and x_B .

. I have presented the main alternative spatial models of elections.

. Suppose candidates have policy preferences and cannot credibly commit to platforms.

. Then there exist equilibria in which platforms "diverge" from the median policy.

. If office motivated candidates are uncertain about the voters' preferences, then platforms converge to the expected median.

. Equilibrium exist in multi-dimensional policy spaces, if candidates maximize vote shares and voters' preferences are uncertain.

. This equilibrium is Pareto efficient for the electorate.

Next lecture

. I will introduce candidates with policy preferences in the aggregate uncertainty model.

. Because of uncertainty, equilibrium platforms diverge.

. If voters' preferences may change during campaigns, then platform divergence improves electorate welfare.

. I present a model without voter preference uncertainty, in which policy-motivated candidates diverge from median.

. By diverging, candidates signal they care about policy and will exert effort if elected.