Advanced Economic Theory Models of Elections Lecture 3

> Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

Aggregate uncertainty and policy-motivated candidates

. I consider a probabilistic voting model with aggregate uncertainty and policy motivated candidates.

. In unique symmetric equilibrium, candidates' platforms diverge.

. If voters update their preferences during campaigns, they are all ex ante better off when parties diverge to some extent.

. Voters are better off with moderate policy-motivated candidates than with office-motivated candidates.

. This is in contrast with models where voters preferences are fixed.

. Each voter j with bliss point $b_j \in \mathbb{R}$ has utility $L(|b_j - x|)$, with L' < 0, L'' < 0, and $\lim_{z\downarrow 0} L'(z) = 0$, $\lim_{z\uparrow\infty} L'(z) = -\infty$.

. The ideal point b_j is decomposed as: $b_j = m + \delta_j + \varepsilon_j$:

. δ_j is the fixed j's bias relative to the median platform m, the distribution of δ_j has compact support and zero median,

. ε_j is i.i.d. with $E[\varepsilon_j] = 0$, symm. density on compact support.

. *m* is the random median platform, with c.d.f. *F* and median μ .

. Assume that F is symmetric and $\mu = 0$.

. Consider divergent platforms $x_L = -x$ and $x_R = x$, with $x \ge 0$.

. Platform x_L wins if and only if $m < \frac{x_L + x_R}{2} = 0$.

. The expected welfare of voter *j* is:

$$\begin{split} W_j(x) &= \int_{-\infty}^0 L(|m+\delta_j+\varepsilon_j-x_L|)f(m)dm \\ &+ \int_0^\infty L(|m+\delta_j+\varepsilon_j-x_R|)f(m)dm \\ &= \int_0^\infty [L(|-m-\delta_j-\varepsilon_j+x|) + L(|m+\delta_j+\varepsilon_j-x|)]f(m)dm. \end{split}$$

 $W_j(x)$ is concave as it is the sum of integrals of concave functions.

Proposition There exists a welfare-improving threshold $\overline{x} > 0$ such that $W_j(x) > W_j(0)$ for all voters j whenever $0 < x < \overline{x}$.

Proof: Compare the difference one *m* at a time:

$$L(|\delta_j + \varepsilon_j - (m - x)|) + L(|\delta_j + \varepsilon_j - (-m + x)|)$$

vs. $L(|\delta_j + \varepsilon_j - m|) + L(|\delta_j + \varepsilon_j - (-m)|)$

. This is equivalent to comparing two lotteries with fixed $\delta_j + \varepsilon_j$: even chance on -m + x, m - x and even chance on -m, m. . Clearly, when x < m, policy convergence is a mean-preserving spread of divergence at -x and x... and voter j is better off.

. For all δ_j, ε_j in the (compact) supports, $\frac{\partial W_j}{\partial x}(x)|_{x=0} > 0$.

. By strict concavity, there is unique $x(\delta, \varepsilon) > 0$ such that $W_j(0) = W_j(x)$ and by continuity $\overline{x} = \min_{\delta, \varepsilon} \{x(\delta, \varepsilon)\} > 0$.

. The aggregate voter welfare ${\cal W}^\ast$ is strictly concave:

$$W^{*}(x) = \int_{\delta,\varepsilon} \int_{0}^{\infty} [L(|-m-\delta_{j}-\varepsilon_{j}+x|) + L(|m+\delta_{j}+\varepsilon_{j}-x|)] dF(m) dH(\delta,\varepsilon).$$

Proposition A first-order stochastic increase in $f(\cdot|m > 0)$ induces an increase in the welfare-maximizing platform x^* .

Sketch of proof: For a greater spread in f, welfare is maximized by reducing payoff of moderate m and increasing payoff of extreme m.

Quadratic-normal case

- . Assume L is quadratic, i.e., $L(z) = -z^2$.
- . Say *m* is distributed normally with mean zero and variance σ^2 .
- . For each voter δ , ε , simplification yields:

$$W_{\delta,\varepsilon}(x) = -2\int_0^\infty (x-m)^2 dF(m) - (\delta+\varepsilon)^2 = W_{0,0}(x) - (\delta+\varepsilon)^2.$$

. By mean-variance analysis, $W^*(x)$ is a quadratic fcn:

$$W^{*}(x) = -\int_{\delta,\varepsilon} [2\int_{0}^{\infty} (x-m)^{2} dF(m) + (\delta+\varepsilon)^{2}] dH(\delta,\varepsilon)$$

= $-2E[(x-m)^{2}|m>0] - E[(\delta+\varepsilon)^{2}]$
= $-2(x-E[m|m>0])^{2} - V[m|m>0] - V[\delta] - V[\varepsilon].$

. The social optimum is then $x^* = E[m|m > 0] = \sigma \sqrt{2/\pi}$.

. As W^* is symmetric around x^* , $\overline{x} = 2E[m|m>0] = 2\sigma\sqrt{\frac{2}{\pi}}$.

Model and equilibrium

- . Candidates L and R have ideal points -b and b > 0.
- . Office benefit $w \in \mathbb{R}_+ \cup \{\infty\}$.
- . Pure policy motivation is w = 0, pure office is $w = \infty$.
- . Candidate *R*'s payoff from (x_L, x_R) is $Pr(L \text{ wins})L(|b - x_L|) + Pr(R \text{ wins})(L(|b - x_R| + w).$
- . We focus on symmetric, pure strategy equilibria.
- . We assume the hazard rate $\frac{f(m)}{1-F(m)}$ is weakly decreasing.
- . Let \overline{b} be the unique solution to L'(b) = -wf(0).

Proposition There is a unique symmetric equilibrium, $(-x^e, x^e)$, and this equilibrium satisfies $0 \le x^e < b$. If $b \le \overline{b}$, then $x^e = 0$; and if $b > \overline{b}$, then x^e is the unique solution of the f.o.c.:

$$-L'(b-x) = [L(b-x) + w - L(x+b)]f(0).$$

Proof: Suppose $x_L = -x$. Candidate *R*'s payoff for $x_R \ge 0$ is: $F(\frac{x_R-x}{2})L(b+x) + [1 - F(\frac{x_R-x}{2})](L(b-x_R) + w).$

- . Differentiating w.r.t. x_R and setting $x_R = x$ we obtain the f.o.c.
- . The s.o.c. is satisfied as $\frac{f(m)}{1-F(m)}$ is weakly decreasing.

. Rearranging the f.o.c., I obtain: $\frac{L'(b-x)}{L(b+x)-L(b-x)-w}=f(0).$

. LHS is strictly decreasing in $x \in [0, b)$ by strict concavity of *L*: by intermediate value theorem, the solution $x^e \in (0, b)$.

Proposition Say *L* is a power function $L(z) = -z^{\alpha}$ with $\alpha > 1$. If $b > \overline{b}$, then $\frac{\partial x^{e}}{\partial b} > 0$, $\frac{\partial x^{e}}{\partial f(0)} < 0$, $\frac{\partial x^{e}}{\partial w} < 0$.

. Platform divergence increases as parties are more polarized, likelihood of electoral tie decreases, office benefits decrease.

. The limiting properties of equilibria are as follows:

. If
$$w = 0$$
, then x^e is a solution of $\frac{L'(b-x)}{L(b+x)-L(b-x)} = f(0)$.
. If $w \ge -\frac{L'(b)}{f(0)}$, then $x^e = 0$
. If $f(0) \to 0$, then $x^e \to$ solution of $\frac{L'(b-x)}{L(b+x)-L(b-x)-b} = 0$
. If $f(0) \to \infty$, then $x^e \to 0$
. If $b \to 0$, then $x^e \to 0$
. If L is a power function, then as $b \to \infty$, we have $x^e \to \frac{1}{2f(0)}$.

- . We now turn to relating voter welfare to candidates' ideologies.
- . Let \bar{b} be the ideology such that the equilibrium platform $x^e = \overline{x}$
- . If $0 \le b \le \overline{b}$, then platforms converge at zero.

. If $\overline{b} < b < \overline{b}$, then the ex ante welfare of all voters is higher with policy-motivates candidates than with platforms convergence.

. If $b > \overline{\overline{b}}$, then ex ante welfare of some voters is strictly lower.

Proposition In the quadratic-normal model, $\overline{b} = \infty$:

$$\lim_{b\to\infty} x^e = \frac{1}{2f(0)} = \sigma \sqrt{\frac{\pi}{2}} < 2\sigma \sqrt{\frac{2}{\pi}} = 2E[m|m>0] = \overline{x}.$$

. All voters are always better off with policy-motivates candidates.

- . There is no aggregate voter preference uncertainty.
- . All voters benefit from policy-makers' effort, regardless of their ideology.
- . Policy-motivated candidates care more about policies than opportunistic ones.
- . Opportunistic candidates converge to the median policy.
- . Policy-motivated candidates commit to their ideal policies.
- . They exert effort when in office to implement their ideal policies.

. Voters anticipate this, and elect policy-motivated politicians despite their divergent platforms because they benefit from effort.

The model

- . There are n voters, n odd, and two candidates, L and R.
- . Each candidate *i* commits to a platform $x_i \in \mathbb{R}$.

. The winner of the election, W, receives a benefit w and chooses a level of effort, $e_W \in [0, 1]$ at cost ce_W^2 .

. Voters and candidates' payoffs depend on policy (x_W, e_W) .

. All voters payoffs increase in effort e_W , but the payoffs of x_W differ because of ideological preferences.

. Each voter j's bliss point is b_j , the median voter's is $b_m = 0$.

. Each voter $j \in \{1, 2, ..., n\}$ utility is given by:

$$U_j(x_W, e_W) = -t_W[(b_j - x_W)^2 + (1 - e_W)^2].$$

. The candidates' bliss points are $b_L = -b$ and $b_R = b > 0$.

. Each candidate *i*'s effort type $t_i \in \{\ell, h\}$ is private information, with $0 < \ell < h$ and $Pr\{t_i = \ell\} = q$.

. The utility of candidate j is given by:
$$\begin{split} U_j(x_W, e_W | t_i) &= -t_i [(b_j - x_W)^2 + (1 - e_W)^2] \\ &+ [w - c(e_W)^2] \operatorname{Pr}(W = j). \end{split}$$

. Voters' equilibrium beliefs on the candidates' types coincide, based on the observed platform x_L, x_R .

. Each votes for the candidate who maximizes her expected utility.

Lemma In equilibrium, the effort level of the elected candidate is $t_W/(t_W + c)$ for all t_W .

Lemma If $q \in \{0, 1\}$, a unique equilibrium exists in which both candidates L and R locate at the median voter's ideal point.

Lemma In every equilibrium: office-motivated candidates win with weakly higher probability, policy-motivated candidates locate weakly closer to their ideal point.

Lemma For $q \in (0, 1)$: if a pooling equilibrium exists, then L locates at -b and R locates at b.

. Let
$$b_1 > 0$$
 solve $(1 - \frac{\ell}{\ell + c})^2 = \frac{b_1^2}{1 - q} + (1 - \frac{h}{h + c})^2$.

. Median voter is indifferent between $x_R = b_1$ with $Pr(t_i|x_R) = q$ and $x_L = 0$ knowing L is office motivated and exerts low effort.

Theorem Suppose $q \in (0, 1)$. For all $b \in [0, b_1]$, a unique equilibrium exists and is pooling: candidate *L* locates at -b and candidate *R* locates at *b* irrespective of their types. A pooling equilibrium does not exist if $b > b_1$.

Proof: For $b < b_1$, median voter prefers a high-effort candidate with platform b, to a low-effort candidate with platform 0.

. Policy-motivated candidates locate at bliss point b and then exert high effort.

. Office-motivated candidates mimic their platform not to lose the election, but then provide low effort.

. Let b_2 solve $(1 - \frac{\ell}{\ell + c})^2 = b_2^2 + (1 - \frac{h}{h + c})^2$.

. Median voter is indifferent between $x_R = b_2$ knowing R is policy motivated and exerts high effort, and $x_L = 0$ knowing L is office motivated and exerts low effort.

Theorem Suppose $q \in (0, 1)$. For all $b \in (b_1, b_2)$, a unique equilibrium exists and is semi-separating: policy-motivated candidates *L* and *R* locate at -b and *b*, and office motivated candidates mix over -b and 0, and over *b* and 0 respectively.

Theorem Suppose $q \in (0, 1)$. For all $b \ge b_2$, a unique equilibrium exists and is separating: policy-motivated candidates L and R locate at -b and b, and office motivated candidate at 0.

Proofs: For $b > b_2$, the median voter prefers a low-effort candidate with platform 0 to a high-effort candidate with platform b.

. Office-motivated candidates locate at platform 0 to win the election and then provide low effort.

. Policy-motivated candidates still locate at bliss point b. They care about policy too much to mimic office-motivated candidates.

. For $b_1 < b < b_2$, neither pooling nor separating equilibrium exist. Equilibrium requires office-motivated candidates to mix.

. In conclusion:

- . policy motivated candidates choose divergent platforms;
- . but they may still get elected as platform divergence signal that they care about policy,
- . and so that they intend to exert effort when in office.

. I have introduced candidates with policy preferences in the aggregate uncertainty model.

. Because of uncertainty, equilibrium platforms diverge.

. If voters' preferences may change during campaigns, then platform divergence improves electorate welfare.

. I have presented a model without voter preference uncertainty, in which policy-motivated candidates diverge from median.

. By diverging, candidates signal they care about policy and will exert effort if elected.

Next Lecture

. I will consider how well elections aggregate information.

. I present a model where voters have different information about candidates' valence.

. I show that there exists an equilibrium in which informed non-partisan voters are pivotal, and the "best" candidate is elected.

. I present a model with candidates more informed than voters.

. Electoral competition induces candidates to convey some information to voters, but fails to achieve informational efficiency.

. The electorate welfare loss is as severe as if only one candidate's information were efficiently revealed.