Advanced Economic Theory Models of Elections Lecture 3

Francesco Squintani
University of Warwick

email: f.squintani@warwick.ac.uk

Aggregate uncertainty and policy-motivated candidates
. I consider a probabilistic voting model with aggregate uncertainty and policy motivated candidates.
. In unique symmetric equilibrium, candidates' platforms diverge.
. If voters update their preferences during campaigns, they are all ex ante better off when parties diverge to some extent.
. Voters are better off with moderate policy-motivated candidates than with office-motivated candidates.

This is in contrast with models where voters preferences are fixed.

Value of platform divergence

. Each voter j with bliss point $b_{j} \in \mathbb{R}$ has utility $L\left(\left|b_{j}-x\right|\right)$, with $L^{\prime}<0, L^{\prime \prime}<0$, and $\lim _{z \downarrow 0} L^{\prime}(z)=0, \lim _{z \uparrow \infty} L^{\prime}(z)=-\infty$.

The ideal point b_{j} is decomposed as: $b_{j}=m+\delta_{j}+\varepsilon_{j}$:
. δ_{j} is the fixed j 's bias relative to the median platform m, the distribution of δ_{j} has compact support and zero median,
. ε_{j} is i.i.d. with $E\left[\varepsilon_{j}\right]=0$, symm. density on compact support.
. m is the random median platform, with c.d.f. F and median μ.
. Assume that F is symmetric and $\mu=0$.
. Consider divergent platforms $x_{L}=-x$ and $x_{R}=x$, with $x \geq 0$.
Platform x_{L} wins if and only if $m<\frac{x_{L}+x_{R}}{2}=0$.

The expected welfare of voter j is:

$$
\begin{aligned}
& W_{j}(x)=\int_{-\infty}^{0} L\left(\left|m+\delta_{j}+\varepsilon_{j}-x_{L}\right|\right) f(m) d m \\
& \quad+\int_{0}^{\infty} L\left(\left|m+\delta_{j}+\varepsilon_{j}-x_{R}\right|\right) f(m) d m \\
& =\int_{0}^{\infty}\left[L\left(\left|-m-\delta_{j}-\varepsilon_{j}+x\right|\right)+L\left(\left|m+\delta_{j}+\varepsilon_{j}-x\right|\right)\right] f(m) d m .
\end{aligned}
$$

$W_{j}(x)$ is concave as it is the sum of integrals of concave functions.
Proposition There exists a welfare-improving threshold $\bar{x}>0$ such that $W_{j}(x)>W_{j}(0)$ for all voters j whenever $0<x<\bar{x}$.

Proof: Compare the difference one m at a time:

$$
\begin{aligned}
& L\left(\left|\delta_{j}+\varepsilon_{j}-(m-x)\right|\right)+L\left(\left|\delta_{j}+\varepsilon_{j}-(-m+x)\right|\right) \\
& \quad \text { vs. } L\left(\left|\delta_{j}+\varepsilon_{j}-m\right|\right)+L\left(\left|\delta_{j}+\varepsilon_{j}-(-m)\right|\right)
\end{aligned}
$$

This is equivalent to comparing two lotteries with fixed $\delta_{j}+\varepsilon_{j}$:

$$
\begin{aligned}
& \text { even chance on } \\
& -m+x, m-x
\end{aligned} \quad \text { and } \quad \begin{aligned}
& \text { even chance } \\
& \text { on }-m, m \text {. }
\end{aligned}
$$

Clearly, when $x<m$, policy convergence is a mean-preserving spread of divergence at $-x$ and $x \ldots$ and voter j is better off.
. For all $\delta_{j}, \varepsilon_{j}$ in the (compact) supports, $\left.\frac{\partial W_{j}}{\partial x}(x)\right|_{x=0}>0$.
. By strict concavity, there is unique $x(\delta, \varepsilon)>0$ such that $W_{j}(0)=W_{j}(x)$ and by continuity $\bar{x}=\min _{\delta, \varepsilon}\{x(\delta, \varepsilon)\}>0$.

The aggregate voter welfare W^{*} is strictly concave:

$$
\begin{aligned}
W^{*}(x)= & \int_{\delta, \varepsilon} \int_{0}^{\infty}\left[L\left(\left|-m-\delta_{j}-\varepsilon_{j}+x\right|\right)\right. \\
& \left.+L\left(\left|m+\delta_{j}+\varepsilon_{j}-x\right|\right)\right] d F(m) d H(\delta, \varepsilon)
\end{aligned}
$$

Proposition A first-order stochastic increase in $f(\cdot \mid m>0)$ induces an increase in the welfare-maximizing platform x^{*}.

Sketch of proof: For a greater spread in f, welfare is maximized by reducing payoff of moderate m and increasing payoff of extreme m.

Quadratic-normal case

. Assume L is quadratic, i.e., $L(z)=-z^{2}$.
Say m is distributed normally with mean zero and variance σ^{2}.
. For each voter δ, ε, simplification yields:
$W_{\delta, \varepsilon}(x)=-2 \int_{0}^{\infty}(x-m)^{2} d F(m)-(\delta+\varepsilon)^{2}=W_{0,0}(x)-(\delta+\varepsilon)^{2}$.
. By mean-variance analysis, $W^{*}(x)$ is a quadratic fon:

$$
\begin{aligned}
W^{*}(x) & =-\int_{\delta, \varepsilon}\left[2 \int_{0}^{\infty}(x-m)^{2} d F(m)+(\delta+\varepsilon)^{2}\right] d H(\delta, \varepsilon) \\
& =-2 E\left[(x-m)^{2} \mid m>0\right]-E\left[(\delta+\varepsilon)^{2}\right] \\
& =-2(x-E[m \mid m>0])^{2}-V[m \mid m>0]-V[\delta]-V[\varepsilon] .
\end{aligned}
$$

The social optimum is then $x^{*}=E[m \mid m>0]=\sigma \sqrt{2 / \pi}$.
. As W^{*} is symmetric around $x^{*}, \bar{x}=2 E[m \mid m>0]=2 \sigma \sqrt{\frac{2}{\pi}}$.

Model and equilibrium

. Candidates L and R have ideal points $-b$ and $b>0$.
. Office benefit $w \in \mathbb{R}_{+} \cup\{\infty\}$.
. Pure policy motivation is $w=0$, pure office is $w=\infty$.
. Candidate R 's payoff from $\left(x_{L}, x_{R}\right)$ is

$$
\operatorname{Pr}(L \text { wins }) L\left(\left|b-x_{L}\right|\right)+\operatorname{Pr}(R \text { wins })\left(L\left(\left|b-x_{R}\right|+w\right) .\right.
$$

. We focus on symmetric, pure strategy equilibria.
. We assume the hazard rate $\frac{f(m)}{1-F(m)}$ is weakly decreasing.
Let \bar{b} be the unique solution to $L^{\prime}(b)=-w f(0)$.

Proposition There is a unique symmetric equilibrium, $\left(-x^{e}, x^{e}\right)$, and this equilibrium satisfies $0 \leq x^{e}<b$. If $b \leq \bar{b}$, then $x^{e}=0$; and if $b>\bar{b}$, then x^{e} is the unique solution of the f.o.c.:

$$
-L^{\prime}(b-x)=[L(b-x)+w-L(x+b)] f(0)
$$

Proof: Suppose $x_{L}=-x$. Candidate R 's payoff for $x_{R} \geq 0$ is:

$$
F\left(\frac{x_{R}-x}{2}\right) L(b+x)+\left[1-F\left(\frac{x_{R}-x}{2}\right)\right]\left(L\left(b-x_{R}\right)+w\right) .
$$

. Differentiating w.r.t. x_{R} and setting $x_{R}=x$ we obtain the f.o.c.
The s.o.c. is satisfied as $\frac{f(m)}{1-F(m)}$ is weakly decreasing.
. Rearranging the f.o.c., I obtain: $\frac{L^{\prime}(b-x)}{L(b+x)-L(b-x)-w}=f(0)$.
. LHS is strictly decreasing in $x \in[0, b)$ by strict concavity of L : by intermediate value theorem, the solution $x^{e} \in(0, b)$.

Proposition Say L is a power function $L(z)=-z^{\alpha}$ with $\alpha>1$. If $b>\bar{b}$, then $\frac{\partial x^{e}}{\partial b}>0, \frac{\partial x^{e}}{\partial f(0)}<0, \frac{\partial x^{e}}{\partial w}<0$.
Platform divergence increases as parties are more polarized, likelihood of electoral tie decreases, office benefits decrease.

The limiting properties of equilibria are as follows:
. If $w=0$, then x^{e} is a solution of $\frac{L^{\prime}(b-x)}{L(b+x)-L(b-x)}=f(0)$.
. If $w \geq-\frac{L^{\prime}(b)}{f(0)}$, then $x^{e}=0$
. If $f(0) \rightarrow 0$, then $x^{e} \rightarrow$ solution of $\frac{L^{\prime}(b-x)}{L(b+x)-L(b-x)-b}=0$
. If $f(0) \rightarrow \infty$, then $x^{e} \rightarrow 0$
. If $b \rightarrow 0$, then $x^{e} \rightarrow 0$
. If L is a power function, then as $b \rightarrow \infty$, we have $x^{e} \rightarrow \frac{1}{2 f(0)}$.
. We now turn to relating voter welfare to candidates' ideologies.
. Let \bar{b} be the ideology such that the equilibrium platform $x^{e}=\bar{x}$
. If $0 \leq b \leq \bar{b}$, then platforms converge at zero.
. If $\bar{b}<b<\bar{b}$, then the ex ante welfare of all voters is higher with policy-motivates candidates than with platforms convergence. . If $b>\bar{b}$, then ex ante welfare of some voters is strictly lower.

Proposition In the quadratic-normal model, $\bar{b}=\infty$:

$$
\lim _{b \rightarrow \infty} x^{e}=\frac{1}{2 f(0)}=\sigma \sqrt{\frac{\pi}{2}}<2 \sigma \sqrt{\frac{2}{\pi}}=2 E[m \mid m>0]=\bar{x}
$$

All voters are always better off with policy-motivates candidates.

Policy preferences and effort (Callander, 2008)

There is no aggregate voter preference uncertainty.
. All voters benefit from policy-makers' effort, regardless of their ideology.
. Policy-motivated candidates care more about policies than opportunistic ones.
. Opportunistic candidates converge to the median policy.
. Policy-motivated candidates commit to their ideal policies.
. They exert effort when in office to implement their ideal policies.
. Voters anticipate this, and elect policy-motivated politicians despite their divergent platforms because they benefit from effort.

The model
. There are n voters, n odd, and two candidates, L and R.
. Each candidate i commits to a platform $x_{i} \in \mathbb{R}$.
The winner of the election, W, receives a benefit w and chooses
a level of effort, $e_{W} \in[0,1]$ at cost $c e_{W}^{2}$.
. Voters and candidates' payoffs depend on policy $\left(x_{W}, e_{W}\right)$.
. All voters payoffs increase in effort e_{W}, but the payoffs of x_{W} differ because of ideological preferences.

Each voter j 's bliss point is b_{j}, the median voter's is $b_{m}=0$.
Each voter $j \in\{1,2, \ldots, n\}$ utility is given by:

$$
U_{j}\left(x_{W}, e_{W}\right)=-t_{W}\left[\left(b_{j}-x_{W}\right)^{2}+\left(1-e_{W}\right)^{2}\right]
$$

The candidates' bliss points are $b_{L}=-b$ and $b_{R}=b>0$.
Each candidate i 's effort type $t_{i} \in\{\ell, h\}$ is private information, with $0<\ell<h$ and $\operatorname{Pr}\left\{t_{i}=\ell\right\}=q$.

The utility of candidate j is given by:

$$
\begin{aligned}
U_{j}\left(x_{W}, e_{W} \mid t_{i}\right)= & -t_{i}\left[\left(b_{j}-x_{W}\right)^{2}+\left(1-e_{W}\right)^{2}\right] \\
& +\left[w-c\left(e_{W}\right)^{2}\right] \operatorname{Pr}(W=j)
\end{aligned}
$$

. Voters' equilibrium beliefs on the candidates' types coincide, based on the observed platform x_{L}, x_{R}.

Each votes for the candidate who maximizes her expected utility.

Equilibrium Analysis

Lemma In equilibrium, the effort level of the elected candidate is $t_{W} /\left(t_{W}+c\right)$ for all t_{W}.

Lemma If $q \in\{0,1\}$, a unique equilibrium exists in which both candidates L and R locate at the median voter's ideal point.

Lemma In every equilibrium: office-motivated candidates win with weakly higher probability, policy-motivated candidates locate weakly closer to their ideal point.

Lemma For $q \in(0,1)$: if a pooling equilibrium exists, then L locates at $-b$ and R locates at b.
. Let $b_{1}>0$ solve $\left(1-\frac{\ell}{\ell+c}\right)^{2}=\frac{b_{1}^{2}}{1-q}+\left(1-\frac{h}{h+c}\right)^{2}$.
. Median voter is indifferent between $x_{R}=b_{1}$ with $\operatorname{Pr}\left(t_{i} \mid x_{R}\right)=q$ and $x_{L}=0$ knowing L is office motivated and exerts low effort.

Theorem Suppose $q \in(0,1)$. For all $b \in\left[0, b_{1}\right]$, a unique equilibrium exists and is pooling: candidate L locates at $-b$ and candidate R locates at b irrespective of their types. A pooling equilibrium does not exist if $b>b_{1}$.

Proof: For $b<b_{1}$, median voter prefers a high-effort candidate with platform b, to a low-effort candidate with platform 0.
. Policy-motivated candidates locate at bliss point b and then exert high effort.
. Office-motivated candidates mimic their platform not to lose the election, but then provide low effort.
. Let b_{2} solve $\left(1-\frac{\ell}{\ell+c}\right)^{2}=b_{2}^{2}+\left(1-\frac{h}{h+c}\right)^{2}$.
. Median voter is indifferent between $x_{R}=b_{2}$ knowing R is policy motivated and exerts high effort, and $x_{L}=0$ knowing L is office motivated and exerts low effort.

Theorem Suppose $q \in(0,1)$. For all $b \in\left(b_{1}, b_{2}\right)$, a unique equilibrium exists and is semi-separating: policy-motivated candidates L and R locate at $-b$ and b, and office motivated candidates mix over $-b$ and 0 , and over b and 0 respectively.

Theorem Suppose $q \in(0,1)$. For all $b \geq b_{2}$, a unique equilibrium exists and is separating: policy-motivated candidates L and R locate at $-b$ and b, and office motivated candidate at 0 .

Proofs: For $b>b_{2}$, the median voter prefers a low-effort candidate with platform 0 to a high-effort candidate with platform b.

Office-motivated candidates locate at platform 0 to win the election and then provide low effort.
. Policy-motivated candidates still locate at bliss point b. They care about policy too much to mimic office-motivated candidates.
. For $b_{1}<b<b_{2}$, neither pooling nor separating equilibrium exist. Equilibrium requires office-motivated candidates to mix.
. In conclusion:
. policy motivated candidates choose divergent platforms;
. but they may still get elected as platform divergence signal that they care about policy,
. and so that they intend to exert effort when in office.

Summary

. I have introduced candidates with policy preferences in the aggregate uncertainty model.
. Because of uncertainty, equilibrium platforms diverge.
. If voters' preferences may change during campaigns, then platform divergence improves electorate welfare.
. I have presented a model without voter preference uncertainty, in which policy-motivated candidates diverge from median.
. By diverging, candidates signal they care about policy and will exert effort if elected.

Next Lecture

. I will consider how well elections aggregate information.
. I present a model where voters have different information about candidates' valence.
. I show that there exists an equilibrium in which informed non-partisan voters are pivotal, and the "best" candidate is elected.
. I present a model with candidates more informed than voters.
. Electoral competition induces candidates to convey some information to voters, but fails to achieve informational efficiency.
. The electorate welfare loss is as severe as if only one candidate's information were efficiently revealed.

