Advanced Economic Theory Models of Elections Lecture 5

> Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

. Downsian, citizen-candidate and probabilistic voting models are "prospective" theories.

. People vote only on the basis of credible electoral promises or candidate's ideologies.

. "Retrospective" models account for voters dismissing incumbents with poor performance, and retaining effective incumbents.

. Retrospective voting is modelled with repeated games and "simplified contracts."

. The principal (median voter) may only dismiss or retain an agent (politician), performance-based transfers are not allowed.

. In each period t = 0, 1, ..., an infinitely-lived principal chooses whether to retain her agent, or hire a new one.

- . Each agent is t employed at most 2 periods: t and t + 1.
- . Each agent's ability $a \in \{a_1, ..., a_K\}$, is private information, and drawn from distribution *p*. Assume $a_1 < ... < a_K$.
- . Each period, employed agent generates a random reward $r \in \mathbb{R}.$
- . Reward distribution F(r|e) depends on agent's effort $e \in [\underline{e}, \overline{e}]$.
- . F(r|e) has continuous density f(r|e) of compact support R.
- . $F(\cdot|e)$ is ranked in first-order stochastic dominance: for any r, if e > e', then F(r|e) < F(r|e').

- . Agent per-period payoff is u(e, a) if employed, and 0 otherwise.
- . *u* is continuous, strictly quasi-concave in *e*, and increasing in *a*:
 - . opportunity cost of taking higher actions lower for better types;
 - . for every k = 1, ..., K, there is a unique best effort e_k^* at the second period of employment.
- . For each ability type *a*, there is an effort e(a) with u(e, a) > 0.
- . The payoff function u is supermodular in (e, a):
 - ${\rm If}\;(e,a){>}(e',a'),\;{\rm then}\;\;u(e,a){+}u(e',a'){>}u(e',a){+}u(e,a').$
 - (I.e. $u_{12} > 0$, if u is twice continuously differentiable.)
- . The agents' discount factor is $\delta_A \in [0, 1]$.
- . The per-period principal's utility for reward r is v(r), strictly increasing in r.
- . The principal's discount factor is $\delta_P \in [0, 1)$.

. A strategy s^P for the principal specifies to dismiss (D) time-t agent or not (N), as a function of time-t history, for every time t.

. A strategy $s^{At} = (s_{k,\tau}^{At})_{\tau=0,1}$ for agent t specifies an effort e for both periods $\tau = 0, 1$ as a function of the time- $(t + \tau)$ history.

. Stationary anonymous strategies $({\it s}^{\it P}, \sigma^{\it A})$ are such that

- . time-t retention rule depends only on effort of time-t agent,
- . each agent's effort at au = 0 depends only on her type *a*,

. effort at $\tau = 1$ depends only on *a* and on reward *r* at $\tau = 0$.

- . s^P is a cut-off strategy if there exists an \bar{r} such that $s^P(r) = D$ if and only if $r < \bar{r}$.
- . A mixed strategy σ_A is type-monotonic if
 - . there exist $[\underline{e}_k, \overline{e}_k]$ s.t. $\overline{e}_k \leq \underline{e}_{k+1}$ for k = 1, ..., K 1, and $\sigma_{0k}^A([\underline{e}_k, \overline{e}_k]) = 1$ for all k;

. for all $r \in \mathbb{R}$, $s^A_{1k}(r) \leq s^A_{1,k+1}(r)$ for k = 1, ..., K - 1.

- . The utility specification covers canonical cases.
- . Agent is office motivated politician with two-term limit:
 - . u(e, a) = z c(e, a), z is the office benefit,
 - . c(e, a) is opportunity cost of effort *e* by politician of type *a*, it is continuous in *e*, decreasing in *a*, and submodular in (e, a).
- . The agent is an benevolent politician:

$$u(e,a) = \int v(r) dF(r|e) - c(e,a).$$

- . The agent's remuneration is a fixed share of profits s(r):
 - . the principal's share is v(r) = r s(r),
 - . the agent's utility is: $u(e, a) = \int s(r) dF(r|e) c(e, a)$.

Proposition There exists an anonymous strategy equilibrium (s^P, σ^A) s.t. s^P is a cut-off strategy and σ^A is type-monotonic.

Sketch of Proof. Second-period effort of better agents is higher.

- . Supermodularity of u implies also second-period payoff is higher.
- . Now, suppose the principal employs a cut-off strategy.
- . By FSD, higher effort yields higher expected principal reward.
- . Then, better agents' incentive to exert first period effort is higher.
- . A cut-off strategy is then a best response:
 - . it screens better agents in the first period,
 - . these better agents yield better rewards in the second period.

. Environment is "nice," if u and F are continuously differentiable, e_k^* is in the interior of $[\underline{e}, \overline{e}]$ and $u(\overline{e}, a_k) < 0$ for all k, and $\delta_A > 0$. for each a_k , k = 1, ..., K.

. Let r^* be the cut-off associated with the strategy s^P .

. Let $v_0(\sigma_0^A)$ be the expected principal reward in period 0, and $v_1(r, s_1^A)$ the reward in period 1.

Proposition When the environment is nice, in any anonimous equilibrium (s^P, σ^A) , r^* is interior, $s_{1k}^A(r) < s_{1,k+1}^A(r)$, $\underline{e}_{k+1} > \overline{e}_k$, $\underline{e}_k > s_{1k}^A(r)$ for k = 1, ..., K - 1, and $v_1(r^*, s_1^A) \ge v_0(\sigma_0^A)$.

. Screening makes each agent type exert more effort in first period.

. Screening leads to higher expected reward in second period.

. Without adverse selection, the equilibrium unravels.

Proposition If all agents have the same type, in equilibrium:

- . the agent's effort is e^* in both periods;
- . in a nice environment, the cutoff is $r^* \in {\min R, \max R}$.

Sketch of Proof. Effort must be weakly lower at $\tau = 1$ than $\tau = 0$.

. I prove it cannot be strictly larger with positive probability.

. If σ_{k0}^P placed positive probability on any effort $e > e^*$, then the principal's unique best response would be $r^* = \max R$.

. But then agent's unique optimal effort would be e^* at au=0.

. Again by contradiction, if min $R < r^* < \max R$, then the agent's optimal first period effort would be weakly larger than e^* .

. But then principal's unique best response would be $r^* = \max R$.

. Without adverse selection, there is no possibility of selection.

. But then, there are no incentives for high performance either, because the only principal's instrument is retention choice.

. Nevertheless, the principal cannot be better off if "worse" types are added, and cannot be worse off if "better" types are added.

. Instead, the principal can improve with adverse selection, if we "average out" types as follows: $\sum_{k=1}^{K} p_k E(e_k^*) = E(e^*)$.

. Take any equilibrium of the model with adverse selection.

. As all types of agents choose (weakly) higher effort in first period, the first-period principal payoff is $v_0 \ge \sum_{k=1}^{K} p_k E(e_k^*) = E(e^*)$.

. Because $v_1(r^*) \ge v_0$ in equilibrium, also $v_1(r^*) \ge E(e^*)$.

. As v_1 increases in r, the payoff of the principal is strictly higher than without adverse selection.

- . There is a continuum of citizen candidates, indexed by ideology b.
- . Ideologies are private information and distributed according to the single peaked and symmetric density f on [-a, +a].
- . At any time t, the office holder selects a policy $x_t \in [-a, +a]$.
- . Candidates for office cannot make credible promises.

. At any time $t \ge 1$, the incumbent runs against challenger randomly drawn from f.

. The time-1 incumbent is randomly selected.

. The time-*t* utility of a citizen *b* depends on policy x_t , according to symmetric loss function $L(|b - x_t|)$, where L' < 0 and $L'' \le 0$.

. Utilities are discounted with factor δ .

Theorem As long as voters are not too risk averse (i.e., if |L''| is uniformly not too large), there is essentially a unique symmetric stationary PBE. The median voter is decisive.

. Incumbents with centrist *b* in [0, w] and extremists with *b* in [*c*, *a*] adopt their preferred policy x = b when in office.

. Centrist are reelected and extremists are voted out.

. Moderates with *b* in [*w*, *c*] compromise when in power. They adopt policy w and are reelected.

. Symmetrically for b < 0.

- . Let U_b be the (normalized) equilibrium value for citizen b.
- . The equilibrium obeys the following indifference equations:

$$L(w) = U_0, \quad L(c - w) = \delta U_c.$$

- . The continuation utility of a voter *b* for electing challenger is:
 $$\begin{split} U_b &= \int_{-a}^{-c} [L(x-b)(1-\delta) + \delta U_b] dF(x) + \int_{-c}^{-w} L(c+b) dF(x) \\ &+ \int_{-w}^{w} L(x-b) dF(x) + \int_{w}^{c} L(c-b) dF(x) + \int_{c}^{a} [L(x-b)(1-\delta) + \delta U_b] dF(x). \end{split}$$
- . Thresholds w and c are determined by 2 conditions:

$$L(w) = 2 \int_{c}^{a} [L(x)(1-\delta) + \delta L(w)] dF(x) + 2 \int_{w}^{c} L(w) dF(x) + 2 \int_{0}^{w} L(x) dF(x).$$
(1)

. Median voter is decisive and indifferent between a random challenger and reelecting incumbent who implements policy w.

$$\begin{split} L(c-w) &= \delta \{ \int_{-a}^{-c} [L(c-x)(1-\delta) + \delta L(c+w)] dF(x) \\ &+ \int_{-c}^{-w} L(c+w) dF(x) + \int_{-w}^{w} L(c-x) dF(x) \\ &+ \int_{w}^{c} L(c-w) dF(x) + \int_{c}^{a} [L(c-x)(1-\delta) + \delta L(c-w)] dF(x) \}. \end{split}$$

. Candidate c is indifferent between implementing policy w forever, or policy c once and then be replaced by random challenger.

. To show that w > 0, suppose by contradiction w = 0.

. Then any incumbent with $b \in (0, c)$ would deviate from equilibrium and pick policy x = b, instead of x = w = 0.

. To show that c < a, note that, if all incumbents with b > w chose w, then it would be the case that w = 0.

. Else the median voter would not retain an incumbent with policy w, as this would be her worst possible equilibrium policy.

. The proof that c > w is also by contradiction.

. There are 2 parties: A and B. Party A includes all candidates with b < 0, and party B all those with b > 0.

. In every period t, the challenger is selected at random from the opposite party with respect to the incumbent.

Proposition If |L''| is uniformly not too large, there is essentially a unique symmetric stationary PBE. The median voter is decisive.

. Party-*B* candidates with ideology $b \in [0, w_P]$ and $b \in [c_P, a]$ adopt their preferred policy b = x when in office.

. Centrist are reelected and extremists are voted out.

. Candidates with ideology $b \in [w_P, c_P]$ compromise to policy w_P and are re-elected.

. Party competition makes incumbents' more moderate.

. Incumbents are afraid of being substituted by candidates from the opposite party, with opposite ideology.

. Party competition increases compromise: $c_P > c$.

- . Then, median voter tightens re-election standards: $w_p < w$.
- . When compromising, one's policy is more moderate.

. The indifference equations characterizing equilibrium are:

$$L(v) = \underline{U}_0(=\overline{U}_0), \quad L(w_P - c_P) = \delta \underline{U}_{c_P}.$$

. \underline{U}_b is the continuation utility of a voter with b > 0 (b < 0) for electing a challenger from the opposite party A (B):

$$\underline{U}_{b} = 2 \int_{-a}^{-c} [L(x-b)(1-\delta) + \delta \overline{U}_{b}] dF(x) + 2 \int_{-c}^{-w} L(c+b) dF(x) + 2 \int_{-w}^{0} L(x-b) dF(x).$$

. \overline{U}_b is the utility from a random challenger from the same party:

$$\overline{U}_b = 2 \int_0^w L(x-b) dF(x) + 2 \int_w^c L(c-b) dF(x) + 2 \int_c^a [L(x-b)(1-\delta) + \delta \underline{U}_b] dF(x).$$

. Median voter is indifferent between a party-B incumbent that implements v and electing a random challenger from party A.

. Party-*B* incumbent c_P is indifferent between policy w_P forever, and policy c_P once then replaced by a random party *A* challenger.

. Thresholds w_P and c_P are determined by:

$$L(w_{P}) = 2 \int_{c_{P}}^{a} [L(x)(1-\delta) + \delta L(w_{P})] dF(x) + 2 \int_{w_{P}}^{c_{P}} L(w_{P}) dF(x) + 2 \int_{0}^{w_{P}} L(x) dF(x)$$
(2).
$$L(w_{P} - c_{P}) = 2 \int_{-a}^{-c_{P}} [L(c_{P} - x)(1-\delta) + \delta \overline{U}_{c_{P}}] dF(x) + 2 \int_{-c_{P}}^{-w_{P}} L(c_{P} + w_{P}) dF(x) + 2 \int_{0}^{-w_{P}} L(c_{P} - x) dF(x).$$

- . Comparing utility expressions, we obtain: $\underline{U}_{c_P} < \overline{U}_{c_P} < \overline{U}_{c_P}$.
- . Together with $\delta < 1$, this implies that $c_P w_P > c w$.
- . Because of symmetry, equations (1) and (2) have same form:
 $$\begin{split} \phi(w,c) &= -L(w) + 2\int_c^a [L(x)(1-\delta) + \delta L(w)] dF(x) \\ &+ 2\int_w^c L(w) dF(x) + 2\int_0^w L(x) dF(x). \end{split}$$
- . By implicit function thm., $\frac{dw}{dc} = -\frac{\phi_2(w,c)}{\phi_1(w,c)} < 0$, for $w \le c$. . This and $c_P - w_P > c - w$ imply that $w_P < w$ and $c_P > c$.

Proposition All voters prefer party competition over at-larger selection of candidates.

- . All voters like insurance because risk averse and discount utilities.
- . Parties provide ex-ante insurance against extremist policy:
 - . there is less expected office-holder turnover $(c_P > c)$,
 - . policies are more moderate over all $(w_P < w \text{ and } c_P > c)$.

Summary

- . I have presented agency models of election.
- . Voters do not care about electoral promises.

. They retain effective incumbents, and dismiss incumbents with poor performance to elect the challenger.

. If candidates' valence and ideologies are known, retention rules are ineffective.

. If candidates' valence or ideologies are uncertain, such retention rules encourage high effort/platform moderation.

. Party competition encourage even more moderation and improves voter welfare.

. I consider candidates' valence: all characteristics that are valuable to all voters, regardless of their ideology.

. In elections with aggregate uncertainty, the advantaged candidate locate close to the expected median and the disadvantaged one takes her chance by diverging.

. Eqm. may be in pure strategy if candidates are policy motivated. With office motivation, equilibrium is in mixed strategies.

. In a retrospective voting model, higher-valence incumbents are retained even with less moderate policies.

. Incentives to compromise make challengers expected policies more moderate, and valence benefits the whole electorate.