Advanced Economic Theory Models of Elections Lecture 7

Francesco Squintani University of Warwick

email: f.squintani@warwick.ac.uk

Elections and lobby influence

- . In this model, lobbies offer each of two candidates a campaign contribution schedule conditional on the electoral platform.
- . Informed voters vote for platform closest to their ideal policies.
- . Impressionable voters more likely vote for the candidate with greater campaign contributions.
- . Equilibrium platforms maximize a weighted sum of the lobbies and informed voters payoff.
- . The advantaged candidate receives more contribution and weighs lobbies more in the platform choice.
- . In equilibrium lobbies make contribution to secure candidates' support and possibly to influence election outcomes.

The model (Grossman and Helpman 1996)

- . Electoral competition is modelled as probabilistic voting.
- . Candidates A, B choose platforms $x_A, x_B \in \mathbb{R}^d$ to maximize expected vote shares.
- . There are 2 types of voters: informed and impressionable.
- . The fraction of impressionable voters is a.
- . Each informed voter j votes A if $L_j(x_A) L_j(x_B) \ge \eta_i$.
- . L_j is a continuously differentiable loss function, strictly decreasing in the distance $||x b_j||$ from a bliss point b_i in \mathbb{R}^d .
- . j's idiosyncratic bias η_j is private information, i.i.d. across j of distribution F uniform on $\left(-\frac{1/2+b}{f},\frac{1/2-b}{f}\right)$.
- . $L = \frac{1}{m_i} \int_J L_j dj$ is the average loss function of informed voters.

- . Each candidate i's campaign budget is c_i .
- . The fraction of impressionable voters who vote for A is $H(c_A c_B) = 1/2 + b + h(c_A c_B), h > 0.$
- . The electoral share of candidate A is:

$$s_A(x,c) = b + 1/2 + (1-a)[L(x_A) - L(x_B)] + ah(c_A - c_B)$$

- . After the election, the legislature implements policy x_A with prob. $p(s_A)$, and x_B with prob. $1 p(s_A)$,
- . p is strictly increasing, p(0) = 0, p(1/2) = 1/2, and p(1) = 1.
- . Before candidates announce platforms, a lobby offers a contribution schedule $C_i: x_i \mapsto c_i$ to the candidates i = A, B.
- . $C_i(x_i)$ is how much i will receive if committing to platform x_i .
- . The lobby's payoff is

$$u_{\ell}(x;C) = p(s_A)L_{\ell}(x_A) + [1-p(s_A)]L_{\ell}(x_B) - C_A(x_A) - C_B(x_B).$$

Analysis

- . Suppose candidate B accepts the lobby's offer C_B, x_B .
- . If candidate A rejects the lobby's offer C_A , x_A , it chooses $x_A = x^*$ s.t. $DL(x^*) = 0$. and obtains share of votes:

$$s_A(x^*,x_B;0,C_B(x_B)) = b + 1/2 + (1-a)[L(x^*) - L(x_B)] - ahC_B(x_B).$$

. Candidate A accepts the lobby's offer C_A , x_A if

.
$$x_A = \arg\max_x s_A(x, x_B; C_A(x), C_B(x_B))$$

= $b + 1/2 + (1 - a)[L(x) - L(x_B)] + ah(C_A(x) - C_B(x_B))$.

.
$$s_A(x_A, x_B; C_A(x_A), C_B(x_B)) \ge s_A(x^*, x_B; 0, C_B(x_B)).$$

. Simplifying the above participation constraint yields:

$$C_A(x_A) \ge \frac{(1-a)f}{ah}[L(x^*) - L(x_A)] + C_B(x_B)$$
 for $i = A, B$.

- . The participation constraint of candidate B is analogous.
- . GH assume participation constraints hold on neighborhood of x_i :

$$C_i(x_i') \ge \frac{(1-a)f}{ah}[L(x^*) - L(x_i')] + C_j(x_j) \text{ for } x_i' \in O(x_i), i = A, B.$$

. In equilibrium, the lobby chooses offers C, x to maximize her payoff $u_{\ell}(x; C)$ subject to "extended" participation constraints.

Proposition If both candidates participation constraints hold with equality, then the equilibrium platforms are

$$x_i = \arg\max_x [p(s_i)L_j(x) + \frac{(1-a)f}{ah}L(x)], \text{ for } i = A, B,$$
 where $s_A = 1/2 + b$ and $s_B = 1/2 - b$.

- . The lobby makes both candidates act as if maximizing a weighted sum of the average informed voter payoff and its own payoff.
- . In equilibrium, the lobby's contributions cancel out: shares s_i are the same as if there were no lobby.

Proposition If lobby's offers satisfy the participation constraints with equality, then $L_{\ell}(x_i)$ decreases and $L(x_i)$ increases in $\frac{(1-a)f}{ah}$.

- . Candidates platforms are closer to the lobby's ideal point when voters are more impressionable, i.e. *ah* increases.
- . Platforms are closer to the average informed voter's ideal point when informed voters preference diversity is smaller (f increases).

Proposition If b > 0, then candidate B's participation constraint is satisfied with equality.

- . The participation constraint must necessarily hold only for the disadvantaged candidate.
- . The only reason to support the disadvantaged candidate is to ensure its obedience.

Proposition If b > 0 then, whether or not candidate A's constraint is binding, $L_{\ell}(x_A) > L_{\ell}(x_B)$, $L(x_A) < L(x_B)$, and $c_A > c_B$.

- . The advantaged candidate has greater contributions and is more likely to win than when contributions are banned/capped.
- . The advantaged candidate is more costly to bribe.
- . And she is more valuable to bribe, as her platform is more likely to be implemented in the legislature.
- . The lobby's offers make the advantaged candidate choose platforms closer to the lobby's ideal point.
- . This holds when the lobby's offer participation constraint binds, and a fortiori when it does not.

Proposition If b>0 and $p'(s_A)ah[L_\ell(x_A)-L_\ell(x_B)]>1$, where x_i maximizes $[p(s_i)L_\ell(x)+\frac{(1-a)f}{ah}L(x)]$, then candidate A's participation constraint holds as a strict inequality.

- . The lobby may give the advantaged candidate more than what is needed to gain its obedience.
- . This is to increase the candidate's vote share, and hence the probability that its platform is implemented.
- . When this is the case, the lobby has an "electoral motive" to support the advantaged candidate.
- . A sufficient condition is that policies are sensitive to vote share (high p'(s)), and vote share sensitive to contributions (high ah).

The multiple lobby case

- . GH generalize some of these results to the multiple lobby case.
- . If all lobbies' offers satisfy both parties' participation constraints with equality, then each candidate's equilibrium platform maximizes a weighted sum of lobbies and average informed voter's payoff.
- . However, equilibrium need not be unique.
- . It may be that b>0, but lobbies coordinate on contributing more to candidate B, who then captures the majority of seats.
- . Further, at most one lobby's offer to a unique candidate may satisfy the participation constraint with strict inequality.
- . And if all lobbies are "small," then none will contribute in excess of binding participation constraints.

Activism and polarization (Venkatesh 2018)

- . How are grass-root activists different from organized lobbies?
 - . Lobbies are long-term first-movers: they offer implicit contracts to ensure obedience;
 - . activists are "myopic" second-movers: they mobilize and choose effort in response to candidates' platforms.
- . Grossman and Helpman show that lobbies pull policy towards a weighted average of their ideal policies.
- . In elections with aggregate uncertainty, this paper shows that ideologically opposed activists lead to more moderate platforms.
- . As activists polarize, platforms may diverge less or more, depending on mobilization marginal cost and benefit elasticities.

The model

- . Policy-motivated candidates i=L,R simultaneously announce platforms $x_i\in\mathbb{R}.$
- . Then, activists i=L,R choose contributions $c_i\geq 0$ at cost $k(c_i)=c_i^g$.
- . Finally, the median voter observes platforms x_L , x_R and contributions c_L , c_R , and decides the winner.
- . Median voter's ideal platform m is unknown to candidates and activists, m is uniformly distributed on [-1,1].
- . Each candidate i payoff is:

$$u_i(x, c) = [-(x_i - b_i)^2 + w] \Pr(i \text{ wins}) + [-(x_j - b_i)^2] \Pr(j \text{ wins}).$$

. The candidates' ideal platforms are $b_L = -b$ and $b_R = b$.

. Each activist *i* payoff is:

$$u_i(x,c) = -(x_i - b_i)^2 \Pr(i \text{ wins}) - (x_j - b_i)^2 \Pr(j \text{ wins}) - c_i^g.$$

- . Activists' ideal platforms are $b_L=-ar{b}$ and $b_R=ar{b}$.
- . g>1 is the activists' marginal rate of substitution between ideological loss and contribution cost.
- . $\epsilon_c \equiv c rac{k''}{k'} = g-1$ is elasticity of marginal cost of "mobilization."
- . Mobilization plays a "persuasive role."
- . The payoff of a median voter with ideal point \boldsymbol{m} is

$$u_m(x,c) = \begin{cases} -(x_L - m)^2 + c_L - c_R & \text{if } L \text{ wins} \\ -(x_R - m)^2 + c_R - c_L & \text{if } R \text{ wins.} \end{cases}$$

. The equilibrium concept is pure strategy symmetric PBE, where $x_L = -x$, $x_R = x$, $c_L = c_R = c$.

Results

Proposition The Downsian election with aggregate uncertainty and activists has a unique symmetric pure strategy equilibrium. Platforms are less extreme than in the election without activists.

- . By moving its platform x_i closer to her ideal point b_i and away from the expected median $\mu=0$, candidate i increases her payoff if winning the election, but increases risk of losing the election.
- . In the equilibrium without activists, platform x_i equalizes the marginal ideological benefit with the marginal risk of losing.
- . Now consider activists. Their payoff is concave in the distance between implemented policy and ideal policy.
- . By extremizing platform x_i , candidate i winds up exciting opposing activists more than her own supporters.

Proposition Mobilization c increases in equilibrium as activists become more extreme (\bar{b} increases), and as elasticity of the marginal cost of mobilization ε increases.

Proposition For $\epsilon_c < 1$, as activists polarize (\bar{b} increases), equilibrium platforms become less polarized (x decreases). Platform divergence x increases in activists extremism \bar{b} if $\epsilon_c > 1$. When $\epsilon_c = 1$, platforms x are independent of activist ideology \bar{b} .

- . If $0 \le \epsilon_c < 1$, then marginal cost of mobilization is concave.
- . More extreme activists increase contributions faster in response to a less moderate opposite platform.
- . Each candidate's best response is to moderate platforms.
- . Conversely, if $\epsilon_c > 1$, then marginal cost of mobilization is convex, and activist extremism leads to platform divergence.

Informative activism

- . Voters do not observe the platforms of candidates precisely.
- . Activism provides direct information about candidates platforms.
- . Given platform x_i of candidate i, median voter observes $\hat{x}_i = x_i + \varepsilon_i$.
- . The noise ε_i is such that $E(\varepsilon_i) = 0$ and $Var(\varepsilon_i) = f(c_i)$.
- . Activism informativeness s.t. f' < 0, f'' > 0, f''' < 0, f(0) = 0.
- . Let the elasticity of marginal variance be $\epsilon_f = -c rac{f''}{f'}$
- . ϵ_f is the efficiency of activism for the marginal noise reduction in the observed platform $\hat{x_i}$.
- . The payoff of a median voter with ideal point m for electing i is $u_m(\hat{x},c;i)=-E[(x_i-m)^2|\hat{x}_i].$

Proposition For $2\epsilon_f < 1 - \epsilon_c$, as activists polarize (\bar{b} increases), equilibrium platforms become less polarized (x decreases).

- . The result not only requires that marginal cost elasticity $\epsilon_c < 1$.
- . It is also needed that the marginal variance elasticity $\epsilon_{\it f}$ be small.
- . For either activist i = L, R, the marginal benefit of contribution c_i is more complicated than before.
- . Relationship between contribution c_i and ideological loss
- $-E[(x_i-m)^2|\hat{x}_i]$ is through the reduction of variance of \hat{x}_i .
- . Because the median voter is risk averse, her payoff $u_m(\hat{x}, c; i)$ for electing i decreases in $Var(\varepsilon_i) = f(c_i)$.

Summary

- . I have presented a model in which lobbies make campaign contributions conditional on support for their priorities.
- . Impressionable voters more likely vote for the candidate with greater campaign contributions.
- . In equilibrium, platforms maximize a weighted sum of the lobbies and informed voters payoff.
- . Instead, activists are second-movers: they mobilize and choose effort in response to candidates' platforms.
- . In elections with aggregate uncertainty, I have shown that ideologically opposed activists lead to more moderate platforms.
- . As activists polarize, platforms may diverge less or more.

Next Lecture

- . I show that voters should not bother voting in large elections.
- . The probability that one vote changes the outcome is negligible.
- . However, it may be that voters get a direct benefit from voting, from fulfilling civic duty or for expressing own opinion.
- . Further, I present a group mobilization model in which voters follow a small set of leaders.
- . Leaders exert high mobilization effort, leading to high turnout.
- . I present a model of ethical voting rules: each candidate's supporter votes if her own cost is not too high.
- . If obeyed by all supporters, such rules maximize their welfare.