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We propose various semiparametric estimators for nonlinear selection models, where
slope and intercept can be separately identified. When the selection equation satisfies
a monotonic index restriction, we suggest a local polynomial estimator, using
only observations for which the marginal cumulative distribution function of the
instrument index is close to one. Data-driven procedures such as cross-validation
may be used to select the bandwidth for this estimator. We then consider the case in
which the monotonic index restriction does not hold and/or the set of observations
with a propensity score close to one is thin so that convergence occurs at a rate that is
arbitrarily close to the cubic rate. We explore the finite sample behavior in a Monte
Carlo study and illustrate the use of our estimator using a model for count data with
multiplicative unobserved heterogeneity.

1. INTRODUCTION

The outcome equation intercept is of fundamental importance in selection models,
when the aim is to recover average treatment effects (ATE; see Heckman, 1979,
1990).1 However, even though the problem of identification and estimation of the
intercept has long been resolved in the parametric case, it is well known that in the
absence of parametric assumptions on the joint distribution of the errors in the out-
come and selection equation, the intercept cannot be separately identified from the
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selection bias term (Heckman, 1990). On the other hand, as the probability of selec-
tion approaches one, the selection bias term converges towards the unconditional
mean of the outcome error, which typically satisfies a normalization condition
(e.g., zero in the linear case). This is an example of an “identification at infinity”
argument (Chamberlain, 1986; Lewbel, 2007; D’Haultfoeuille and Maurel, 2013),
which has been exploited by various authors, such as Andrews and Schafgans
(1998), Schafgans and Zinde-Walsh (2002), Heckman (1990), and more recently
by Goh (2018), for the identification of the intercept in linear additive selection
models.

Nevertheless, the problem of endogenous selection is not just confined to
linear regression setups. Count data, for instance, which are typically modeled
via multiplicative error models, may be subject to nonrandom sampling as well.
A popular example is a count model that looks at the effect of private medical
insurance (Terza, 1998; Deb and Trivedi, 2006), or self-reported health status
(Windmeijer and Santos Silva, 1998), on the number of doctor visits.

Despite its relevance, nonlinear selection models have so far only been studied
in specific parametric settings (see, e.g., Terza, 1998), and only recently Jochmans
(2015) devised an estimator for the slope coefficients of more flexible semi-
parametric, nonlinear selection models. However, to the best of our knowledge,
intercept identification and estimation in the nonlinear case has not yet been
studied. We aim at filling this gap in the literature by introducing simple-to-use
intercept estimators for nonlinear semiparametric selection models.

We focus on models in which the intercept and slope parameters can be
separately identified, and have a separable error term which is either multiplicative
or additive. Leading examples of separable multiplicative error models are count
data and accelerated failure time models. A prominent case of a separable additive
error in nonlinear models, on the other hand, is the production function which is
used in the human capital formation models, and is typically subject to nonrandom
sample selection (e.g., Olivetti, 2006).

We start with the case where the selection equation satisfies a monotonic index
restriction. Since slope and intercept parameters can be separately identified in
these models, we recover the former using an existing

√
n consistent estimator

(Jochmans, 2015) in a preliminary step. This allows us to transform the dependent
variable and isolate the intercept and the selection bias. Using the transformed
dependent variable, we then construct a nonparametric estimator of the intercept,
which is consistent, asymptotically normal, and attains a univariate nonparametric
convergence rate. Nevertheless, such a rate may vary from “close to” cubic to an
“almost” parametric rate, depending on the relative thickness of the tails of the
distributions of the instrument index and selection error. In the linear additive case,
the key difference with respect to Andrews and Schafgans (1998), Schafgans and
Zinde-Walsh (2002), and Heckman (1990) is that these papers construct the estima-
tor by giving positive weight only to observations for which the index value from
the selection equation is above a given threshold. By contrast, our first estimator
uses observations for which the marginal cumulative distribution function (cdf) of
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that index variable is close to one.2 Since our approach is implemented through a
standard local polynomial estimator, the main advantage of this approach is that the
bandwidth can be chosen in a data-driven manner, e.g., through cross-validation.
However, it should be mentioned that in the additive case, our approach implicitly
requires that the propensity score has an unbounded density in the neighborhood
of one, and bounded away from zero in the multiplicative case.

We then turn to the case in which the monotonic index restriction does not
hold and/or the density of the propensity score is not bounded above zero in
the proximity of one. In this case, we can no longer rely on the marginal cdf of
the instrument index. Instead, we first obtain an estimator of the nonparametric
propensity score, and then estimate the intercept via a nonparametric regression
using only those observations having a propensity score close but not too close
to one. Formally, this is implemented by introducing a trimming sequence that
converges to zero at a sufficiently slow rate. While we still require the propensity
score to reach one in the limit, we no longer require that its density at that point
be bounded away from zero. Thus, we can also accommodate the possibility
that observations are rather sparse in the proximity of one (thin density set), so
that convergence occurs at an irregular rate (see Khan and Tamer, 2010). As a result
of the trimming, this latter estimator converges at a rate that can be arbitrarily close
to the cubic rate.

We provide an extensive Monte Carlo study of the properties of our estimators
in terms of mean and median bias as well as root mean squared error (RMSE).
In particular, when the monotonic index restriction holds, we compare the finite
sample properties of our estimator in the linear additive error case with the
estimator introduced by Heckman (1990) and formally developed by Schafgans
and Zinde-Walsh (2002), and with the estimator of Andrews and Schafgans (1998).
Overall, when the bandwidth is chosen via cross-validation, our estimator performs
at least on par with both of these estimators. Importantly, the estimator appears to
be relatively robust against a violation of the assumption about the tail behavior
of the propensity score density, at least for the chosen design. We also study our
estimator in the multiplicative error case. Generally, we find that estimators based
on adaptive (cross-validated) bandwidth perform at least as well as those based
on fixed bandwidth choice, in terms of Integrated Mean Squared Error. This is
not surprising, since cross-validated bandwidth minimizes the mean square error.
Finally, we also assess the performance of the estimator when the monotonicity
assumption is violated and an estimator of the nonparametric propensity score is
used. Also, in this case, we find that the estimator exhibits good finite sample
properties in terms of RMSE. Moreover, an ad hoc data-driven procedure to select
the tuning parameters appears to work well at least for the chosen design.

2For linear additive error models, Goh (2018) provides a set of sufficient conditions under which the upper tail
limit point of the marginal cdf of the index variable equals one only if the propensity score equals one at that limit
point. He develops an estimator for this case, but does not consider multiplicative error models or models where the
monotonicity of the index restriction may actually be violated (see our Section 4).
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Finally, we provide an empirical illustration using a dataset similar to
Windmeijer and Santos Silva (1998). The outcome variable (number of recent
doctor visits) is modeled as a multiplicative function of a binary observed (self-
reported) health status variable, unobserved multiplicative heterogeneity, and other
observed covariates. We allow for endogenous selection into the status of health,
as this self-reported status may not be independent of the error in the outcome
equation. The results indicate that for the particular sample used, the estimates of
the effect of self-reported health from using our estimators are very similar to that
from a fully parametric model estimator that treats self-reported health status as
exogenous.

The rest of the paper is organized as follows: Section 2 outlines the setup.
Section 3 introduces the estimators for the separable case with linear index restric-
tion in the selection equation, and derives their asymptotic properties. Section 4
studies the non-monotonic case when the single index restriction in the selection
equation is violated and a nonparametric propensity score specification is used
instead. Section 5 provides the results of the small-scale Monte Carlo simulation,
whereas Section 6 contains our empirical illustration. Finally, Section 7 concludes.
All proofs as well as some extra figures and tables are collected in the Appendix.
The Supplementary Material contains additional results from the Monte Carlo
simulation.

2. SETUP AND IDENTIFICATION

We motivate our estimator using the standard sample selection model setup. The
data generating process for the separable case, where the slope and the intercept
parameters can be separately identified and estimated, is discussed next.

As it is customary in these models, we postulate that the outcome variable yi

is observed if and only if si, a binary selection indicator, equals one, whereas
covariate(s) xi are observed for all individuals in the sample. We initially impose
the following linear index assumption for si:

si = 1{z′
iγ0 > vi}, (1)

where 1{A} = 1 if the event A holds, and zero otherwise, and zi is a vector
of observed covariates. This type of index restriction is common in the sample
selection literature (e.g., Heckman, 1979; Ahn and Powell, 1993) and will be
relaxed in Section 4. For the outcome equation, we consider additive as well as
multiplicative error nonlinear models of the form:

E[yi|xi,εi] = gA1 (θ0A)+gA2
(
x′

iβ0A
)+ εi (2)

and

E[yi|xi,̃εi] = gM1 (θ0M) ·gM2
(
x′

iβ0M
)
ε̃i, (3)

respectively, where gA1(·), gA2(·), gM1(·), and gM2(·) are known, real-valued
functions. In fact, the standard additive linear model follows as a special case when
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gA1(·) and gA2(·) are the identity functions. An empirically important example of
a separable multiplicative model as in (3) is the count data model, where

gM1 (θ0M) ·gM2
(
x′

iβ0M
)= exp (θ0M)exp

(
x′

iβ0M
)

(4)

and ε̃i typically plays the role of unobserved individual heterogeneity. Sample
selection issues can arise if ε̃i (or εi, respectively) are not independent of si. For
instance, yi could measure the number of credit card defaults for each individual
i in a given period of time, whereas si could record whether person i actually
possesses such card(s) or not. Since credit card (non)holders may differ in terms
of their risk attitude ε̃i, which is unobserved and likely to be nonindependent of
vi, standard estimators for (semi)parametric count data models do not provide
consistent estimators of θ0M and β0M . Another example that fits within the setup
of (4) is the Accelerated Failure Time model applied to duration data, where
samples are often plagued by the presence of endogenous selection (e.g., Ham and
LaLonde, 1996). An example of a nonlinear additive sample selection model can
be found in the human capital formation literature (Olivetti, 2006). We, therefore,
deem the separable multiplicative case sufficiently relevant to be considered in its
own right. Moreover, note that the above setup can easily be generalized to the case
of endogenous covariates (as illustrated by our empirical example; cf. Section 6),
and also to endogenous switching regressions.

We now provide a set of sufficient high-level assumptions which ensure point
identification of the intercept parameters in (2) and (3):

A1: (i) E[|yi|] < ∞. (ii) The functions gA1(·), gA2(·), gM1(·), and gM2(·) are known;
gA1(·) as well as gM1(·) are invertible almost everywhere, and gM1(·) and gM2(·)
are nonzero almost everywhere. (iii) The slope parameters β0A and β0M are point
identified up to a scale normalization. (iv) ε̃i (εi) are independent of xi and zi. (v)
E [̃εi] = 1 and E[εi] = 0.

A2: (i) γ0 is uniquely identified up to a scale and location normalization. (ii) The
marginal cdf of z′

iγ0, Fz′γ0(·), is continuously differentiable at least once, with
nonzero derivative on supp(z′

iγ0), the support of z′
iγ0. (iii) It holds that supp(vi) ⊆

supp(z′
iγ0). (iv) vi is independent of xi and zi.

The invertibility of gA1(·) and gM1(·) will be crucial for the identification of the
intercept parameters θ0M and θ0A, respectively. Assumption A1(iii), on the other
hand, is a high-level condition on the identification of the slope coefficients. In
fact, the point identification (and estimation) of the slope parameters will require
sufficient variation in xi and the existence of at least one component in zi which is
not in xi (cf. Jochmans, 2015).3 On the other hand, the identification and estimation
of θ0M and θ0A, respectively, only rely implicitly on such an excluded variable
in zi through the identification of the slope parameters β0A and β0M (cf. also
Andrews and Schafgans, 1998; Schafgans and Zinde-Walsh, 2002). A1(iv) is a

3Honoré and Hu (2020) have recently examined semiparametric additive linear sample selection models without such
an exclusion restriction, and have derived sharp bounds for the parameters of this type of model.
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standard assumption, which can be restrictive and will be relaxed in Section 4,
whereas A1(v) is a normalization assumption in exponential and linear models
with intercept.

Turning to A2, Assumption A2(i) is also a high-level condition, which is not
restrictive as γ0 can be identified and estimated in a separate step. A sufficient
condition for point identification of γ0 (cf. Klein and Spady, 1993, Thm. 1) is
that the marginal cdf of vi is strictly increasing on the support of vi and that
zi contains at least one element with a nonzero coefficient that has continuous
density everywhere (cf. Klein and Spady, 1993, Assumption C.3b). A2(ii) and
(iii), on the other hand, implies that Fz′γ0(·), the marginal cdf of z′

iγ0, is strictly
increasing and invertible on the support of the continuous random variable vi.
This assumption is crucial for the identification argument in the sequel as it
ensures that identification can be achieved “at infinity,” that is, as Fz′γ0(z

′γ0) → 1.
Note that A2(iii) rules out that supp(vi) strictly contains supp(z′

iγ0), a situation
where identification of the intercept fails. Finally, A2(iv) is a standard identifica-
tion assumption for semiparametric binary choice models. In addition, note that
A2(ii)–(iv) naturally implies that Pr(si = 1) > 0, whereas the independence in
A1(iv) and A2(iv) will be relaxed in Section 4 to accommodate, for instance, some
specific forms of conditional heteroskedasticity in the selection error variance. The
following theorem establishes the identification of the intercept parameters.

Theorem 1. Under Assumptions A1 and A2, the intercept parameters θ0A and
θ0M from (2) and (3), respectively, are (point) identified.

Similar to Goh (2018), and in contrast to Andrews and Schafgans (1998) and
Schafgans and Zinde-Walsh (2002), identification is not achieved using the index
z′

iγ0 but its marginal cdf. Under the aforementioned conditions, the following is
established in the proof of Theorem 1 for some values xi = x and zi = z in their
respective supports. Letting wi ≡ z′

iγ0, under A1 and A2, we have that

λ(Fw(w)) ≡ E[εi|xi = x,zi = z,si = 1] = E[εi|Fw(wi) = Fw(w),Fw(vi) < Fw(w)]
(5)

and

E
[
(yi −gA2

(
x′

iβ0A
)
)|xi = x,zi = z,si = 1

]= gA1 (θ0A)+λ(Fw(w))

for the additive model. Similarly, for the multiplicative model, we obtain

λ̃(Fw(w)) ≡ E[̃εi|Fw(wi) = Fw(w),Fw(vi) < Fw(w)] (6)

and

E

[
yi

gM2(x′
iβ0M)

|xi = x,zi = z,si = 1

]
= gM1(θ0M)̃λ(Fw(w)).
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The key insight of the proof of Theorem 1 is that under Assumptions A1 and A2,
it holds that

lim
Fw(w)→1

λ(Fw(w)) = 0 and lim
Fw(w)→1

λ̃(Fw(w)) = 1. (7)

As a result, the intercept parameters of the additive and of the multiplicative model
can be (point) “identified at infinity.” That is, recalling that β0A and β0M are point
identified by A1(iii),

lim
Fw(w)→1

E[(yi −gA2(x
′
iβ0A))|Fw(wi) = Fw(w),Fw(vi) < Fw(w)] = gA1(θ0A)

and

lim
Fw(w)→1

E

[
yi

gM2(x′
iβ0M)

|Fw(wi) = Fw(w),Fw(vi) < Fw(w)

]
= gM1(θ0M).

This, in turn, implies point identification of the intercepts since gA1(·) and gM1(·)
are known and invertible everywhere by A1(ii).

On the other hand, if the marginal distribution of vi is assumed to be continuous
with a density that is nonzero on supp(vi), the support of vi, a sufficient condition
for A2(i), then an alternative identification argument could have relied on the
propensity score Pr(si = 1|zi) = Fv(z′

iγ0) ≡ Fv(wi). Using the propensity score
instead of the marginal cdf Fw(·) is typically the more common way to control for
sample selection (e.g., Das, Newey, and Vella, 2003). However, the key difference
w.r.t. the use of the propensity score is that under A2(ii), Fw(wi) is uniformly
distributed on [0,1] with the marginal density equal to one. In fact, it is immediate
to see that whenever w → ∞, both Fw(w) and the propensity score p = Fv(w)

approach one, thus ensuring identification at infinity. The advantage of relying
on Fw(wi) rather than on Pr(si = 1|wi) = Fv(wi) is that the former has marginal
density equal to one regardless of whether limp→1 fp(p) is zero, bounded or
unbounded.

3. ESTIMATION

Given Theorem 1, the next step is to derive the estimators of θ0A and θ0M , and
to establish their consistency and asymptotic normality. In order to accomplish
this, we first require estimators of the unknown quantities γ0, Fw(·), and the
corresponding slope coefficients β0A and β0M , respectively. A

√
n-consistent

estimator for the instrument parameter vector γ0 can be obtained from Klein and
Spady (1993). Henceforth, we call this estimator γ̂ .4 This allows us to construct

4Since our theoretical results in Theorems 2 and 3 demonstrate that the estimation error of a
√

n-consistent γ̂ does
not feature in the limiting distribution of our intercept estimator due to its slower than the parametric convergence
rate, we do not discuss its estimation further here. See Klein and Spady (1993) for details on the estimation and the
appropriate under-smoothing of the bandwidth.
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an estimator of the cdf of z′
iγ0 in a straightforward manner:

F̂z′γ0(z
′
iγ̂ ) = F̂w(ŵi) = 1

n

n∑
j=1

1
{
ŵj ≤ ŵi

}
.

Note that this step is common to both additive and multiplicative models. In the
next step, we obtain estimators for the slope coefficients, say β̂A and β̂M . Given the
separability of the models in (2) and (3), we can construct these independently of
the intercepts at a parametric

√
n rate following Jochmans (2015). As noted in the

previous section, this will require at least one element from zi to be excluded from
xi. Next, we outline how to construct the estimators of the intercept parameters θ0A

and θ0M , starting with the additive model.

3.1. The Additive Model

Recall that the identification argument for this model (equation (2)) exploited the
fact that

lim
Fw(w)→1

E[(yi −gA2(x
′
iβ0A))|Fw(wi) = Fw(w),Fw(vi) < Fw(w)]

= gA1(θ0A)+ lim
Fw(w)→1

λ(Fw(w)) = gA1(θ0A).

Heuristically, since gA1(·) is known and invertible almost everywhere by A1(ii),
we may estimate gA1(θ0A) through a nonparametric regression of (yi −gA2(x′

iβ̂A))

on F̂w(ŵ) at the upper limit point one in the first place, and then recover θ0A

through a simple inversion using the Delta method. That is, denote the conditional
expectation:

mA (1) ≡ lim
Fw(w)→1

E[(yi −gA2(x
′
iβ0A))|Fw(wi) = Fw(w),Fw(vi) < Fw(w)],

which is the probability limit of the aforementioned nonparametric regression. In
order to account for the boundary issue when estimating mA (1), we use a local
polynomial estimator of odd order, for which the order of the bias is the same in
the interior and at the boundary (e.g., Fan and Gijbels, 1992; Ruppert and Wand,
1994). More specifically, define the local polynomial estimator of order q as(̂

aA0 (1), . . . ,̂aAq (1)
)

= arg min
ak,k≤q

1

nh

n∑
i=1

si

⎛⎝yi −gA2(x
′
iβ̂A)−

∑
0≤k≤q

ak
(
F̂w(ŵi)−1

)k⎞⎠2

K

(
F̂w(ŵi)−1

h

)
, (8)
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where K(·) denotes a kernel function defined in E6, and h is a bandwidth parameter
satisfying h → 0 as n → ∞. Setting m̂A(1) = âA0 (1), and given A1(ii), we obtain

θ̂A = g−1
A1 (m̂A(1)) (9)

as an estimator of the intercept parameter θ0A. To derive the asymptotic properties
of θ̂A, note that under A1 and A2, we may, without loss of generality, write

yi −gA2(x
′
iβ0A) = gA1(θ0A)+λ(Fw(wi))+ui,

where E[ui|Fw(wi) = Fw(w)] = 0 by construction. We impose the following
conditions in the sequel:

E1: The sample observations {yi,x′
i,z

′
i,si}n

i=1 are i.i.d. and E
[
y2

i

]
< ∞.

E2: The parameter space of θ0A, �A, is compact and θ0A lies in its interior.

E3: (i) λ(.) is r times differentiable on (0,1) with r ≥ 1 with Lipschitz continuous
derivatives. (ii) λ(.) and the r derivatives are left continuous at the upper boundary
point 1.

E4: There exist estimators of (i) γ0 satisfying ‖γ̂ −γ0‖ = Op
(
n−1/2

)
, and (ii) β0A

satisfying ‖β̂A −β0A‖ = Op
(
n−1/2

)
, respectively, where ‖ ·‖ denotes the euclidean

norm.

E5: limFw(w)→1 E
[
siu2

i |Fw(wi) = Fw(w),Fw(vi) < Fw(w)
]
< ∞.

E6: The kernel function K(·) is a continuously differentiable (with Lipschitz con-
tinuous derivative), nonnegative, symmetric function around zero, with compact
support on [−1,1] and satisfies

∫∞
−∞ K(ν)dν = 1.

Assumptions E1, E2, E5, and E6 are standard and warrant no further discussion.
E4 is a high-level condition on the existence of appropriate estimators for the “first-
stage” parameters β0A and γ0 (see, e.g., existing estimators such as Klein and Spady
(1993) and Jochmans (2015)). E4 naturally requires point identification of β0A and
γ0, respectively, which holds under more primitive normalization conditions and
assumptions about the covariate space of xi and zi (e.g., Sherman, 1993). Finally,
E3 requires that the selection bias λ(.) is r times differentiable on (0,1), with r ≥ 1.
As outlined in the previous section, it is important to note that the definition of the
selection bias in E3 is as a function of the marginal cdf of w, Fw(w), which is
different from the definition in the standard sample selection literature where the
selection bias is typically written as a function of the propensity score p = Fv(w).
In fact, as discussed in Remark 1, E3 implicitly imposes conditions on the relative
tail behavior of the instrument index z′

iγ0 and of the selection error. In particular,
when the conditional expectation function E[εi|vi] is linear in vi, it implies that the
density of the propensity score p becomes unbounded as p → 1 and so does, in the
joint normal case, the derivative of the selection bias as a function of p (see below).
On the other hand, in the latter case of joint normality, E3 will, for instance, hold
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whenever var (wi) < var (vi). Moreover, following Fan and Guerre (2016), note that
we can allow for r ≤ q, where q is the polynomial order used for estimation in (8).

Remark 1. Here, we consider an example where the outcome error is linearly
related to the selection error such that E[εi|vi] = ρvi. Suppose that the marginal
cdf of vi, Fv(·), is strictly increasing and differentiable everywhere (a sufficient
condition for A2(i)) and that the first moment of vi exists and is finite. Then, using
integration by parts and the fact that wFv(w) → 0 as w → −∞ by the existence
and finiteness of E[vi], we obtain

E[εi|vi < w] = ρ

∫ w

−∞
vfv(v)

Fv(w)
dv

= ρF−1
w (Fw(w))− ρ

Fv(F−1
w (Fw(w)))

∫ F−1
w (Fw(w))

−∞
Fv(v)dv

= λ(Fw(w)),

where we have used that w = F−1
w (Fw(w)) by Assumption A2(ii) and (iii) with

F−1
w (·) denoting the inverse function of Fw(·). Then, letting ∇Fw(w)λ(Fw(w)) denote

the derivative of λ(·), note that

∇Fw(w)λ(Fw(w)) = ρ
fv(F−1

w (Fw(w)))

Fv(F−1
w (Fw(w)))2fw(F−1

w (Fw(w)))

∫ F−1
w (Fw(w))

−∞
Fv(v)dv

= ρ
fv(w)

Fv(w)2fw(w)

∫ w

−∞
Fv(v)dv � ρ

fv(w)w

Fv(w)2fw(w)
,

where f (w) � g(w) as w → ∞ is defined as limw→∞ f (w)

g(w)
= 1. The last term in

the above display exists and is finite provided fv(w)w goes to zero at least as fast
as fw(w). This, in turn, implies that the density of the propensity score fp(p) =
∇pFp(p) = fw(F−1

v (p))

fv(F
−1
v (p))

= fw(w)

fv(w)
tends to infinity as p = Fv(w) → 1, where F−1

v (·)
denotes again the inverse function of Fv(·). Similarly, one can show that if εi and
vi are jointly normal with mean zero, the former with variance σε and the latter
with unit variance for simplicity, the derivative of the selection bias as a function
of the propensity score p = �v(w):

ρσε�
−1
v (p)

p
− λ̈(p)

p

becomes unbounded as p → 1, where we used φ(·) and �(·) to denote the marginal
density and distribution function of the standard normal, respectively, and

λ̈(p) ≡ −ρσεφv(�
−1
v (p))

p
.

On the other hand, for a given w, the selection bias as a function of Fw(w) is given
in this case by
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E[εi|vi < w] = −ρσε

φv(w)

�v(w)
= −ρσε

φv(F−1
w (Fw(w)))

�v(F−1
w (Fw(w)))

= λ(Fw(w)).

Using the fact that ∇wφv(w)/φv(w) = −w with ∇wφv(w) denoting the derivative of
φv(·), we obtain

∇Fw(w)λ(Fw(w)) = ρσε

φv(w)

�v(w)

(
w

fw(w)
− λ(Fw(w))

fw(w)

)
.

Hence, for ∇Fw(w)λ(Fw(w)) to exist and be finite as w → ∞, we need that
φv(w)

fw(w)
→ 0 as w → ∞. Indeed, it is immediate to see that if wi is normal, then

provided var (wi) > var (vi), all derivatives exist and are finite. On the other hand, if
var (wi) ≤ var (vi), then Assumption E3 violated. Nevertheless, at least for the case
where vi and wi are normally distributed as reported in Section 5, our estimator
has good and comparable finite sample properties to existing estimators from
the literature like Andrews and Schafgans (1998) or Schafgans and Zinde-Walsh
(2002) even when E3 is violated.

Theorem 2. Let Assumptions A1, A2, and E1–E6 hold. If as n → ∞,
nh2min{r,q+1}+1 → 0, q ≥ 1 odd, and nh → ∞, then√

nhn
(
θ̂A − θ0A

) d→ N

(
0,

σ 2
A(1)

∇θA gA1 (θ0A)2

)
,

where ∇θA gA1(·) denotes the derivative of gA1(·) and

σ 2
A(1) = lim

Fw(w)→1
E
[
siu

2
i |Fw(wi) = Fw(w),Fw(vi) < Fw(w)

][
M−1

1 
1M−1
1

]
00 ,

where [A]00 denotes the upper-left entry of the matrix A, and M1 as well as 
1

are theoretical moments of the kernel function defined at the beginning of the
Appendix.

A consistent estimator of the asymptotic variance
σ 2

A(1)

∇θA gA1(θ0A)2 is given by

σ̂ 2
A(1)

∇θA gA1(θ̂A)
2 , where

σ̂ 2
A(1) = [M−1

1 
1M−1
1

]
00

× 1

nhv1

n∑
i=1

si
(
yi −gA2

(
x′

iβ̂A
)− m̂(F̂w(ŵi))

)2
K

(
F̂w(ŵi)−1

hv1

)
with hv1 → 0 as n → ∞ satisfying nhv1 → ∞. Moreover, note that the theoretical
moments of the kernel function in M−1

1 
1M−1
1 can be computed analytically.

For instance, if an ordinary second-order Epanechnikov kernel and a local linear
estimator are used, the upper-left element of this matrix is approximately given by
4.498.

In addition, note that the rate of convergence of θ̂A depends on r ≤ q or r > q,
i.e., whether the number of (left) derivatives r of λ(·) is larger than the polynomial
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order q used for estimation or not. For example, if r = 1, regardless of the value
of q, we obtain a convergence rate that is arbitrarily close to the cubic rate (Fan and
Guerre, 2016). On the other hand, if r > q, we may improve the rate by choosing a
polynomial order closer to or as large as r. Thus, if we have a function with finite r
derivatives, with r → ∞, then we may obtain a convergence rate arbitrarily close
to

√
n by setting q = qn with qn → ∞ as n → ∞ (see Hall and Racine (2015)).

Hence, under Assumption E3, we get a rate that is arbitrarily close to cubic if r = 1
and a rate which can be arbitrarily close to

√
n if r and q are sufficiently large. Thus,

in the additive case, the convergence rates that can be obtained are akin to the ones
from the Weibull examples in Andrews and Schafgans (1998, p. 504), though, for
instance, the case where wi and vi have the same Weibull upper tail density is ruled
out by our assumptions formally. In fact, the key advantage of our approach does
not consist in improved convergence rates as also pointed out in the discussion
of Remark 1, but in the fact that we may use standard adaptive methods like
cross-validation to choose the bandwidth. That is, there are no adaptive selection
procedures on how to choose the threshold parameters from existing estimators
such as Andrews and Schafgans (1998) or Heckman (1990) and Schafgans and
Zinde-Walsh (2002). In fact, the Monte Carlo findings below show that, when
the bandwidth is chosen via cross-validation, our estimator performs at least on
par with these estimators in terms of RMSE and bias. The fact that the cross-
validated bandwidth behaves well in terms of RMSE is not surprising at all, since
by construction it minimizes the Integrated Mean Squared Error. On the other hand,
if our goal is to construct confidence intervals for the intercept parameter, then it is
well known that confidence intervals (CIs) based on a cross-validated bandwidth,
say hn,CV , can be severely distorted, since squared bias and variance are of the same
order. Calonico, Cattaneo, and Titiunic (2014), therefore, suggest not only to bias-
correct the conditional mean estimator by recentering around the estimated bias,
but also to adjust the estimator of the variance in a suitable manner. That is, suppose
that we use a bandwidth bn to estimate the bias. If hn,CV/bn → π > 0 as n → ∞,
then one has to consider bias estimation error in the construction of the variance
estimator. Hence, the authors advocate the use of a variance estimator that takes
account of the possibly nonvanishing bias estimation error. Armstrong and Kolesar
(2020), on the other hand, suggest an alternative approach to the construction of
CIs based on cross-validated bandwidths. Instead of direct bias correction, they
propose the use of critical values from a “folded” normal distribution with variance
1 and mean equal to a standardized version of the “worst case” bias for a given
smoothness class of functions to which the target functional (e.g., the conditional
mean function) belongs. This maximum bias, which depends on the specific kernel
and bandwidth used, can be computed and straightforwardly tabulated in practice.

Finally, when reporting empirical results, a common practice is to try different
bandwidths, and to report CIs for each of them. Armstrong and Kolesar (2018) pro-
posed to construct CIs which hold uniformly over such a bandwidth set. Suppose
that we select a bandwidth h such that h ≤ h ≤ h. Let θ̂A(h) = g−1

A1 (m̂A(1−h))

be the estimator defined in equation (9) evaluated at a given h, and let θA(h)
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be its population counterpart for that fixed h. Then, Armstrong and Kolesar
(2018) suggest to construct a CI that is valid uniformly over [h,h] using critical

values based on the distribution of suph≤h≤h

∣∣∣√nh(θ̂A(h)−θA(h))
σ̂ (h)

∣∣∣, rather than based on

asymptotically standard normal critical values. We outline how this approach can
be applied to the intercept estimator in Theorem 2 in Remark A.1 in the Appendix.

3.2. The Multiplicative Model

We now move to the multiplicative case (equation (3)). The key difference between
the multiplicative case and the additive case is that in the former, the sample
selection bias enters multiplicatively rather than additively. In fact, as outlined in
the discussion of Theorem 1,

mM(1) ≡ lim
Fw(w)→1

E[
yi

x′
iβ0M

|Fw(wi) = Fw(w),Fw(vi) < Fw(w)] = gM1(θ0M).

Thus, similarly to the additive case, we may construct an estimator of this
conditional expectation in the first step, and then invert again gM1(·) to obtain an
estimate of θ0M in the second step. That is, given the invertibility of gM1 by A1(ii),
θ0M = g−1

M1 (mM (1)) and, thus, it suffices to have a consistent estimator of mM (1).
Therefore, as with the additive case, we use a local polynomial estimator of odd
order defined as(̂

aM0 (1), . . . ,̂aMq (1)
)

= arg min
ak,k≤q

1

nh

n∑
j=1

sj

⎛⎝ yj

gM2
(
x′

iβ̂M
) −

∑
0≤k≤q

ak
(
F̂w(ŵj)−1

)k⎞⎠2

K

(
F̂w(ŵj)−1

h

)
, (10)

and let m̂M(1) = âM0 (1), where h → 0 as n → ∞ denotes again the bandwidth
sequence. Given A1(i), we can define

θ̂M = g−1
M1

(
m̂M(1−)

)
and θ0M = g−1

M1

(
mM
(
1−)) .

As before, to derive the asymptotic properties of θ̂M , note that under A1 and A2,
we write, without loss of generality, yi as

yi

gM2(x′
iβ0M)

= gM1(θ0M )̃λ(Fw0(w0i))+ ũi

gM2(x′
iβ0M)

,

where E[̃ui|xi = x,Fw(wi) = Fw(w)] = 0 by construction. Moreover, we impose the
following conditions in the sequel:

E1M: The same as E1.

E2M: As E2, but θ0A replaced by θ0M , and �A by �M .
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E3M: As E3, but λ(.) replaced by λ̃(.).

E4M: As E4, but β̂A and β0A replaced by β̂M and β0M , respectively.

E5M:

lim
Fw(w)→1

E

[
sĩu2

i

g2
M2

(
x′

iβ0M
) |Fw(wi) = Fw(w),Fw(vi) < Fw(wi)

]
< ∞.

E6M: The same as E6.

Assumption E3M is the multiplicative analog of E3, and it is discussed in
Remark 2 for the case of the standard normal distribution. Moreover, Assumption
E4M is again a high-level condition on the existence of appropriate estimators for
the “first-stage” parameters β0M and γ0. In fact, identification and estimation of
β0M is also treated in Jochmans (2015) and requires more primitive normalization
conditions and assumptions about the covariate space of xi and zi as outlined
before.

Remark 2. To understand the implications of E3M, we look at a specific exam-
ple using the normal distribution. As we cannot simply assume joint normality of
ε̃i and vi in the multiplicative case, let ε̃i = exp(ei) in the following. Then, if ei

and vi are jointly normal (where vi has variance one and ei has variance σ 2
e ) so that

ei = ρvi + ξi with E[ξi|vi] = 0, we have that

E [̃εi|vi < w] = E
[
exp(ei) |vi < w] = exp

(
σ 2

e

2

)
�v (w−ρσe)

�v (w)

and, thus,

λ̃(Fw(w)) = exp

(
σ 2

e

2

)
�v
(
F−1

w (Fw(w))−ρσe
)

�v
(
F−1

w (Fw(w))
) .

Then, by the same argument used for the additive case,

∇Fw λ̃(Fx(x)) = exp(
σ 2

e
2 )

�v(w)

(
φv(w−ρσe)

fw(w)
− (̃λ(Fw(w))φv(w)

fw(w)

)
.

For this derivative to exist and be finite, it has to be the case that the lead term,
φv(w−ρσe)

fw(w)
, exists and is finite as w → ∞. This is a weaker condition than in the

additive case and allows, for instance, for setups where fw(w) goes to zero as fast
as φv(w−ρσe).

The following theorem establishes the limiting distribution of θ̂M = g−1
1M (m̂(1)).

Theorem 3. Let Assumptions A1, A2, and E1M–E6M hold. If as
nh2min{r,q+1}+1 → 0, q ≥ 1 odd, and nh → ∞, then
√

nh
(
θ̂M − θ0M

) d→ N(0,σ 2
0M),

https://doi.org/10.1017/S0266466623000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000105


INTERCEPT ESTIMATION IN NONLINEAR SELECTION MODELS 15

where

σ 2
0M = 1(∇θM (gM1(θ0M))

)2
× lim

Fw(w)→1
E

[
sĩu

2
i

g2
M2

(
x′

iβ0M
) |Fw(wi) = Fw(w),Fw(vi) < Fw(w)

][
M−1

1 
1M−1
1

]
00

,

with ∇θM gM1(·) denoting the derivative of gM1(·), [A]00 denoting the upper left
entry of matrix A, and M1 and 
1 being defined in the Appendix.

As before, a consistent estimator of σ 2
0M can be constructed as

σ̂ 2
M = 1(∇θM

(
gM1(θ̂M)

))2
× 1

nhv2

n∑
i=1

(
yi

gM2(x′
iβ̂M)

− m̂M(F̂w(ŵi)))

)2

K

(
F̂w(ŵi)−1

hv2

)[
M−1

1 
1M−1
1

]
00 ,

for some hv2 → 0 as n → ∞ satisfying nhv2 → ∞, where
[
M−1

1 
1M−1
1

]
00 may

again be computed as in the previous section.

4. NON-MONOTONICITY AND IRREGULAR SUPPORT

In the previous section, we assumed that the probability of selection is a monotonic
function of the instrument index. Furthermore, Assumption E3 implicitly required
(at least in the case where E[εi|vi] is linear in vi) that the density of the propensity
score is unbounded as p → 1 in the additive case, whereas Assumption E3M in the
multiplicative case imposed that it is bounded away from zero as p → 1.

In the sequel, we discuss how the estimation of the intercept may still be carried
out under weaker conditions on the propensity score density in the neighborhood
of one. We focus, for brevity reasons, only on the multiplicative case. Since
the misspecification of the selection equation is a common concern in applied
work as this can lead to inconsistent estimators of the intercept, in what follows
(cf. Vytlacil, 2002; Jochmans, 2015), we also consider a more flexible nonpara-
metric specification of the propensity score using p(zi) = Pr (si = 1|zi), where the
selection indicator defined as

si = 1{p(zi) > ṽi} (11)

with ṽi distributed uniformly on (0,1). As a consequence, the marginal cdf of the
propensity score might not necessarily be invertible in zi and so “marginalization”
as in the previous section is no longer possible. Before we turn to the estimation,
a comment on the identification of θ0M in this context is warranted for. That is,
recalling that p(zi) = pi, we replace the identification assumption A2 by

A2∗: (i) Assume that E[̃εi|xi,zi,si = 1] = E[̃εi|pi]; (ii) limp→1 E[̃εi|p] = 1.
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Assumption A2∗(i) is equivalent to Assumption 2.1(i) in Das et al. (2003, p. 35)
for a multiplicative model, whereas Assumption A2∗(ii) is a high-level condition,
which ensures that “identification at infinity” holds. In particular, note that when
the index restriction z′

iγ0 of Section 3 is indeed satisfied, Assumptions A1 and
A2 from before imply A2∗(i) and (ii). In addition, as in the setup of Section 3,
observe that A2∗ does not explicitly require that zi contains an element that is not
in xi, and so identification will again only rely on such an exclusion restriction
implicitly through A1(iii). On the other hand, note that, for estimation purposes,
we will require the existence of a continuous variable in zi, which is not in xi (cf. the
discussion of E8M further below). Finally, observe that A2∗(i) together with the
selection equation in (11) is less restrictive than the full independence assumption
of observables and unobservables in A1(iv) and A2(iv), respectively. In fact, as
in Andrews and Schafgans (1998, Sect. 5, p. 505), the present setup allows, for
instance, situations where ṽi is conditionally heteroskedastic with the conditional
variance of ṽi determined by an index function of zi.

Thus, under Assumption A2∗(i), it holds that

λ(pi) ≡ E[̃εi |zi,si = 1] = E[̃εi |pi ],

and so by A1(iii),

E

[
yi

gM2
(
x′

iβ0M
) |xi = x,zi = z,si = 1

]
= gM1(θ0M)E[̃εi |pi = p ] = gM1(θ0M)λ(p).

Thus, using also A2∗(ii), we have that

lim
δ→1

mp
M (δ) = lim

δ→1
E

[
yi

gM2
(
x′

iβ0M
) |pi = δ

]
= gM1(θ0M).

By A1(ii), this gives

θ0,M = g−1
M1

(
lim
δ→1

mp
M (δ)

)
,

which establishes the identification of θ0M .
Turning to the estimation, note that we will work again with the following

auxiliary equation:

yi = gM1(θ0M)gM2
(
x′

iβ0M
)
λ(pi)+ui, (12)

where E[ui|xi = x,pi = p] = 0 by construction. As we do not impose a functional
form of p(zi), the conditional distribution function p(zi) needs to be estimated in
a nonparametric manner. Thus, for notational simplicity, hereafter we assume that
all the components of xi and zi are continuous. The extension to discrete covariates
in both vectors is immediate at the cost of more complicated notation and more
lengthy arguments in the proofs. In fact, as pointed out by Li and Racine (2008),
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note that typically only continuous regressors matter for the convergence rate of
estimators of conditional nonparametric distribution functions such as p(zi).

We begin by estimating the propensity score p(zi) using a standard local constant
Nadaraya–Watson (NW) estimator of the form:

p̂(zi) =
∑n

j=1 siK
(

zi−zj
h1

)
∑n

j=1 K
(

zi−zj
h1

) , (13)

where K(·) denotes the product of dz univariate higher-order kernel functions K(·),
and h1 is the corresponding bandwidth sequence satisfying h1 → 0 as n → ∞. As si

is assumed to be observed for every i in the sample, we can obtain this estimator in
a separate preliminary first stage. Moreover, note that, as before, we can estimate
the slope parameters in β0M at a parametric

√
n rate using, e.g., Jochmans (2015).

We then obtain the transformed dependent variable as in the previous section to
construct an estimator of

mp
M (δ) = E

[
si

yi

gM2
(
x′

iβ0M
) |pi = δ

]
,

where δ is a trimming sequence defined as δ = 1 − H with H representing a
deterministic sequence H → 0 as n → ∞ (see below for a discussion). Formally,
define the local constant NW estimator as

m̂p
M (δ) =

∑n
i=1 si

yi
gM2(x′

iβ̂M)
K
(

p̂(zi)−δ

hp

)
∑n

i=1 K
(

p̂(zi)−δ

hp

) , (14)

where hp → 0 as n → ∞. In fact, three remarks are noteworthy about this estimator:
first, as noted above,

θ0M = lim
δ→1

g−1
M1

(
mp

M (δ)
)
,

which suggests that we may construct an estimator of θ0,M as

θ̂
p
M (δ) = g−1

M1

(
m̂p

M (δ)−1
)

.

Second, note that we use a local constant rather than a local polynomial estimator
in (14) since estimation may be carried out under weaker assumptions than the
differentiability of the selection bias in E3 and E3M from the previous section
(see below). Third, observe that we will assume that hp = o(H) in Theorem 4. In a
nutshell, this is so since limp→1 fp(p) may indeed not be bounded away from zero.
That is, heuristically, even if identification at infinity holds and pi converges to one,
it may still often be the case that observations are very sparse in the neighborhood
of one (“thin density set”), and so convergence occurs at an irregular rate (Khan and
Tamer, 2010). To overcome this irregular identification issue, we suggest the above
local constant estimator which makes use of observations with propensity scores
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close but not too close to one. This is implemented by introducing a trimming
sequence, which approaches zero at a sufficiently slow rate. That is, instead of
using observations with a propensity score p̂i ∈ (1 − hp,1), we use observations
with p̂i ∈

(
1−H −hp,1−H +hp

)
, where H > hp, and both hp and H go to zero as

the sample size increases, but H approaches zero at a slower rate. This allows, in
fact, to accommodate cases where the marginal density of pi, fp(·), is not bounded
away from zero as p → 1. On the downside, this construction will not allow us
to choose a data-driven bandwidth through cross-validation. Heuristically, this is
because, as shown in the proof of Theorem 4, the bias depends only on H, whereas
the order of the variance is 1/(nhp) in the case where the upper tail of the propensity
score density is strictly bounded away from zero and 1/(nhpHη) for some 0 < η < 1
in the case of so-called irregular support where the density of the propensity score
may not be bounded away from zero as p → 1 (with η determining the “thickness”
of the density tail; see below). Thus, even if we fix H, and we search over all hp < H,
the value of hp which minimizes the integrated mean squared error is always the
largest possible value of hp. We make the following additional assumptions.

E7M: (i) supz∈supp(zi)
|̂p(z) − p(z)| = op(1). (ii) The estimated p̂(z) admits the

following representation:

p̂(z)−p(z) = 1

nhdz
1

n∑
j=1

K
(

z−zj
h1

)
fz(zi)

ψj +�n(z)+op

⎛⎝ 1√
nhdz

1

+hr
1

⎞⎠
for some r ≥ max{dz,2}, where ψj is the influence function satisfying
E[ψj|zj] = 0 and E[ψ2

j |zj] < ∞, whereas K(·) denotes the product of dz univariate

kernel functions K(·) with uniformly bounded derivative satisfying
∫

K(t)dt = 1,∫
tlK(t)dt = 0, for any positive integer l with l ≤ r, and

∫
tr+1K(t)dt < ∞.

Moreover, supz∈supp(zi)
|�n(z)| = Op(hr

1), and

E

[∣∣∣∣ siux,iψi

fz(z)

∣∣∣∣2
]

< ∞, and E
[∣∣siux,i�n(zi)

∣∣2]< ∞,

where ux,i = ui/gM2(x′
iβ0M).

E8M: (i) There exist constants C1,C2 > 0 and ε1,ε2 > 0 such that

sup
u∈(0,1)

∣∣fp(uhp +1−H)− fp(1−H)
∣∣≤ C1hε1+η

p ,

sup
u∈(0,1)

∣∣Pr
(
s = 1|p = uhp +1−H

)−Pr (s = 1|p = 1−H)
∣∣≤ C2hε2+η

p ,

for some 0 ≤ η < 1.
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(ii) The density function fp(·) is continuous on (0,1), and there exists a constant
c(1) > 0 such that

lim
H→0

∣∣∣∣ fp (1−H)

c(1)Hη
−1

∣∣∣∣= 0,

for some 0 ≤ η < 1.

E9M: There exists a strictly positive, continuous function wux,p(ux,1) satisfying∫
u2

xwux,p(ux,1)dux < ∞ such that, for some 0 ≤ η < 1,

sup
ux∈supp(ux)

∣∣∣∣ fux,p (ux,1−H)

wux,p(ux,1)Hη
−1

∣∣∣∣→ 0 as H → 0,

sup
ux∈supp(ux)

|Pr (s = 1|ux,p = 1−H)−1| → 0 as H → 0,

where ux was defined in E7M.

E10M: There exist positive constants C such that

sup
p∈(1−H−hp,1−H+hp)

∣∣λ(p)−1
∣∣≤ CH1−η,

for some 0 ≤ η < 1, and hp < H.
E7M represents a high-level condition in the form of the propensity score. It

requires the use of a higher-order kernel function, though as long as the number of
continuous elements in zi does not exceed 3, a quartic kernel function is sufficient.
Assumption E8M allows for irregular support, in the sense that the density of the
propensity score may not necessarily be bounded away from zero as p → 1. More
specifically, E8M(i) and (ii) regulate the behavior of the propensity score density
as p → 1. E8M(i) is a Lipschitz-type condition tied to the fact that hp = o(H). The
first part of it will, for instance, be satisfied by construction if the marginal density
function fp(·) is continuously differentiable everywhere and ε1 +η < 1. E8M(ii),
on the other hand, directly imposes conditions on the tail behavior of the propensity
score density in the neighborhood of one: when η = 0, limH→0 fp(1−H) is bounded
away from zero, whereas η > 0 corresponds to the case of irregular support with
a larger value of η representing thinner tails. That is, if η > 0, we allow for a thin
set of observations with a propensity score close to one. Thus, note that E8M(ii)
restricts the speed at which fp(p) may converge to zero as p → 1 to be of order Hη.
For instance, for the case η > 0, going back to the working example with the index
restriction in Remark 2, suppose that vi ∼ N(0,1), and that wi ∼ N(0,σ 2

w) with
σ 2

w = 1− ε for some 0 < ε < 1/2 and ε
1−ε

≤ η. It then follows that
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fp(p) = fw(w)

fv(w)
= 1√

1− ε
exp

(
−1

2

((
ε

1− ε

)
w2

))
→ 0,

as w → ∞. Moreover, setting c(1) = 1 for simplicity, note that

fw(�−1
v (1−H))

fv(�−1
v (1−H))

≥ Hη

⇔ −
(
�−1(1−H)

)2
2

(1−σ 2
w)

σ 2
w

≥ η ln(H)+ ln(σw).

Now, using the fact that �−1(1−H) � √−2ln(H) for H → 0 (e.g., Blair, Edwards,
and Johnson, 1976), the last inequality may be approximately written as

ε

1− ε
ln(H) ≥ η ln(H)+ ln(

√
1− ε),

which holds as strict inequality whenever ε
1−ε

< η, and as equality when ε
1−ε

= η

and c(1) = exp(− ln(
√

1− ε)).
Assumption E9M, on the other hand, imposes smoothness on the joint density of

the propensity score pi and ux,i = ui/gM2(x′
iβ0M) in proximity of the boundary

point 1. Note that it requires that pi exhibits continuous variation independently
of ux,i. This, in turn, requires that zi includes at least one variable which is not
in xi and which has continuous density (conditional on the other elements) such
that the partial derivative of pi w.r.t. that element is nonzero with probability
one. Finally, Assumption E10M imposes another high-level Lipschitz condition
on the behavior of the selection bias term λ(·) in proximity to one. Using the same
example as for E8M(i), note that the condition is satisfied if we assume again
that the index wi ∼ N(0,σ 2

w) with σ 2
w < 1, whereas vi and ei are jointly normally

distributed with variance one and σ 2
e , respectively. That is, recall that in this case

fp(p) =
1

σw
φ
(

w
σw

)
φ(w)

→ 0 as w → ∞ whenever σw < 1. In addition, similar calculations
to the ones used in Remark 2 yield that

λ(1−H) = exp

(
σ 2

e

2

)
�v
(
�−1

v (1−H)−ρσe
)

1−H
.

Then, using the fact that (e.g., Feller, 1968)

1−�(w) � φ(w)

w

as w → ∞ and noting that E[̃εi] = E[exp(ei)] = exp
(

σ 2
e
2

)
, we obtain that
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(
σ 2

e

2

) 1− φ
(
�−1(1−H)−ρσe

)
(�−1(1−H)−ρσe)

1−H
− exp

(
σ 2

e

2

)∣∣∣∣∣∣∣∣
=
∣∣∣∣∣exp

(
σ 2

e

2

)(
H

1−H
−
(

1

1−H

)
φ
(
�−1 (1−H)−ρσe

)(
�−1 (1−H)−ρσe

) )∣∣∣∣∣
≤ CH1−η.

As mentioned before, the degree of trimming is controlled by the rate at which
H goes to zero. The slower the rate, the higher the degree of trimming as we
are discarding all observations with p̂i ∈ (1 − H + hp,1]. Given A1, λ(p) − 1 =
Op
(
H1−η

)
for p ∈ (1−H −hp,1−H +hp

)
, and so the bias of the intercept esti-

mator cannot approach zero at a rate faster than H. We now establish the limiting
distribution of θ̂

p
M .

Theorem 4. Let Assumptions A1, A2∗, E1M–E6M, and E7M–E10M hold. If as
n → ∞, h1,hp,H → 0, and H/hp → ∞, (i) nhpH2−η → 0, (ii) nh2r

1 hpHη → 0,and

(iii) nhdz
1 h2

pHη → ∞, then, 0 ≤ η < 1,

ω̂−1
M,p

√
nhp
(
θ̂

p
M − θ0M

) d→ N (0,1),

where

ω̂2
M,p =

∫
K(v)2dv

∇θM g1M
(
θ̂

p
M

)2 1

nhp

n∑
i=1

û
2
i siK

(
p̂i − δ

hp

)
,

ûi = yi

gM2
(
x′

iβ̂M
) −gM1

(
θ̂

p
M

)
.

Theorem 4 establishes the limiting distribution of the Studentized statistic. Note
that the convergence rate can be at most

√
nhp, which given rate condition (i) means

that the rate is strictly slower than a cubic rate. Importantly, this rate is not due to the
boundary, but to the trimming sequence outlined before. However, the rate can be
slower if the observations with p̂i ∈

(
1−hp −H,1+hp −H

)
grow at a rate slower

than nhp, which occurs if η > 0. In this case, both
√

nhp
(
θ̂

p
M − θ0M

)
and ω̂−1

M,p will
diverge to infinity at the same rate, and so the Studentized statistic still remains
bounded and converges to a standard normal.

Remark 3. As outlined in the proof of Theorem 4, asymptotic normality for the
infeasible statistic, based on the unknown propensity score requires rate conditions
(i), i.e., nhpH2−η → 0, and nhpHη → ∞, which is implied by (iii). If the latter
is violated and nhpHη → c for some 0 < c < ∞, then the denominator cannot
converge in probability to its mean and will remain random in the limit. Hence, we
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can no longer establish asymptotic normality. On the other hand, rate conditions
(ii) and (iii) ensure that both the bias component and the variance component of the
propensity score estimation error vanishes. If (iii) is violated and nhdz

1 h2
pHη → c′ for

some 0 ≤ c′ < ∞ (but nhpHη → ∞), propensity score estimation error contributes
to the limiting distribution of the estimator.

Since rate conditions (i)–(iii) in Theorem 4 hinge on the unknown “tuning

parameter” η, a discussion of its choice in practice is warranted. Setting H = h
1

1+ε
p

for some ε > 0 and letting η denote the maximum admissible value of η, from (i)

we obtain hp = n− 1+ε
3−η+ε and H = n− 1

3−η+ε after some simple calculations, which
in turn implies that (ii) and (iii) can be restated as

(ii) n
2−2η

3−η+ε h2r
1 → 0 and (iii) n

1−2η+ε
3−η+ε hdz

1 → ∞.

We first consider the case where the propensity score density is strictly bounded

away from zero as η = 0, and we may set η = ε = 0 so that (ii) n
2
3 h2r

1 → 0 and for

(iii) n
1
3 hdz

1 → ∞. In this case, for (ii) to be satisfied, we require that h1 is of order

smaller than n− 1
3r , whereas (iii) is satisfied for dz ≤ 3 if, for instance, r = 4 and h1 =

O(n− 1
11 ). In fact, (ii) holds for any value of η < 1, whereas for ε = 0.05 (iii) holds

for η = 0.25 when dz = 1, for η = 0.15 when dz = 2, and for η = 0.05 when dz = 3.
On the other hand, if η = 0.25 and dz = 1 as in the simulations or the empirical
application, one can verify that the above conditions are also satisfied when h1 =
O(n− 1

5 ), suggesting that the first-stage bandwidth maybe chosen through cross-

validation. Finally, in practice, we may choose hp(η) and H(η) = hp(η)
1

1+ε in an
ad hoc, data-driven manner from a grid of values satisfying {0.05,0.1,0.15, . . .}
such that f̂p(1 − H) lies, for instance, above some threshold value, say 0.1. We
explore this data-driven choice further in the simulations of the next section.

5. MONTE CARLO

In this section, we evaluate the finite sample performance of the estimators
proposed in Sections 3 and 4. In particular, we assess their robustness w.r.t. the
choice of the main tuning parameter(s), and different degrees of selection, and
compare their performance with other estimators available in the literature.

We start by outlining the Monte Carlo design, which shares some features with
Jochmans (2015). We consider (i) a standard linear design (CASE I) as well as
(ii) a multiplicative Poisson design (CASE II) and a multiplicative model with
non-monotonic propensity score design (CASE III). For CASE I and CASE II, we
assume that the selection equation takes the form

si = 1{z′
iγ0 > vi},
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where zi = (z1i,z2i)
′ with(

z1i

z2i

)
∼ N

((
0

0

)
,

(
σ 2

z −.25
−.25 σ 2

z

))
and γ0 = (1,1)′. The outcome equation for CASE I, on the other hand, is given by

yi = θ0A + εi, (15)

whereas in the multiplicative design of CASE II, we consider

yi = exp(θ0M )̃εi. (16)

Selection is modeled in this setup through the correlation between vi and εi in
the additive design, and vi and ei (ei = log(̃εi)) in the multiplicative design.
Specifically, we model the joint distribution as(

εi

vi

)
∼ N

((
0

0

)
,

(
σ 2

ε ρσε

ρσε 1

))
and

(
ei

vi

)
∼ N

((
0

0

)
,

(
σ 2

e ρσe

ρσe 1

))
,

(17)

where 0 ≤ |ρ| < 1 and set σε = σe = √
0.5. Note that the unconditional mean of ε̃i

in (16) is given by exp(σ 2
e /2). We, therefore, set θ0M equal to exp(−σ 2

e /2), so that
the unconditional mean of the outcome equation equals one, whereas θ0A is set to
one.

We consider two sample sizes n = {600;1,000}, which, given an (unconditional)
probability of selection of approximately 0.5 in our designs, implies an effective
sample size for the outcome equation of around 300 and 500 observations, respec-
tively. In what follows, we assess the performance of our and other estimators
under three different sample selection designs, namely ρ = 0 (no sample selection),
ρ = −0.5 (negative sample selection), and ρ = +0.5 (positive sample selection).

We start with CASE I, and assess the finite sample performance of the estimator
from Section 3.1 under fixed and data-driven bandwidth schemes in terms of
RMSE, whereas results for the Mean Bias (MBIAS) and Median Bias (MDBIAS)
can be found in the Supplementary Material. We use the distribution function
estimator from Section 3 and subsequently estimate θ0A through a local linear
estimator with second-order Epanechnikov kernel evaluated Fw(wi) = 1. Since γ0

may be estimated at rate
√

n using the method of Klein and Spady (1993), we set
the index z′

iγ either equal to the “oracle” index z′
iγ0 or estimate it as z′

iγ̂ , using
Klein and Spady (1993). The estimator of Klein and Spady (1993) as well as the
local linear estimator are constructed using routines from the np package in
R of Hayfield and Racine (2008). This package allows to provide the program
with a fixed bandwidth for which we choose the values h = 0.15, h = 0.10, and
h = 0.05 (corresponding to giving a positive weight to observations Fw(ŵi) larger
0.85, 0.90, and 0.95, respectively). Alternatively, we use the automated cross-
validation procedures implemented in the np package and outlined in Li and
Racine (2004, 2008), respectively. Likewise, the bandwidth for the estimator of
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Klein and Spady (1993) is also routinely chosen by the np package through
cross-validation.

We compare these estimators with the naïve OLS estimator, which ignores
sample selection altogether,5 as well as with the estimator first suggested by
Heckman (1990) and formally developed by Schafgans and Zinde-Walsh (2002):

HSZ(δn) =
∑n

i=1 siyi1{ŵi > δn}∑n
i=1 si1{ŵi > δn} . (18)

In addition, we also consider the estimator suggested by Andrews and Schafgans
(1998):

AS(δn,b) =
∑n

i=1 siyiκb(ŵi > δn)∑n
i=1 siκb(ŵi > δn)

, (19)

where

κb(x) =

⎧⎪⎨⎪⎩
1− exp

(− x
b−x

)
, forx ∈ (0,b),

0, forx ≤ 0,

1, forx ≥ b.

For the tuning parameter b, which determines the weight given to observations with
ŵi > δn, we choose b = 0.5 and b = 1 (e.g., Schafgans, 1998).6 Moreover, for the
threshold parameter δn, we use the 85%, 90%, and 95% unconditional quantiles of
ŵi from the selected sample, which correspond to the bandwidth choices h = 0.15,
h = 0.10, and h = 0.05, respectively.

Turning to the results in Tables 1–3, note first that results are presented through
five panels in each table (for a graphical representation of these results, see Figures
A.1–A.3 in Section A.2 of the Appendix). Panels A–D use the “oracle” index
wi, and consider different ratios of the unconditional variance of z′

iγ0 and vi. In
particular, Panels A and B use a setup where var(wi) ≤ var(vi) = 1, which, when
the conditional mean is additive, violates the conditions of the estimator for θ̂A

outlined in Section 3 (cf. discussion of Remark 1). On the other hand, Panels C and
D are compatible with the conditions of Section 3 since in this case ∇Fw(w)λ(Fw(w))

exists and is finite as w → ∞. Finally, Panel E is like Panel B, but replacing wi by
the estimator of Klein and Spady (1993), ŵi.

Examining the finite sample performance of θ̂A for the fixed bandwidths
h = 0.15, h = 0.10, and h = 0.05 across Tables 1–3, we see little difference
in the finite sample behavior relative to the competing estimators HZS(0.85)

(AS(0.85,·)), HZS(0.90) (AS(0.90,·)), and HZS(0.95), respectively.7 Unsurpris-
ingly, the RMSE increases in a similar manner for all estimators as we decrease the
number of observations for each estimator. In addition, when ρ = 0 (Table 1), one

5For the multiplicative design of CASE II, we estimate θ0M as ln(θ̂OLS).
6We also experimented with b = 1.5 as value, but found the performance of the Andrews and Schafgans (1998)
estimator to be uniformly dominated by the versions with b = 0.5 and b = 1 (results available upon request).
7Please refer to the Supplementary Material for the results on AS(0.95,·).
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5
Table 1. Additive error model (CASE I)—ρ = 0, RMSE

Panel A: Oracle index (wi) − var(wi) = 0.5 < var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.040 0.111 0.136 0.189 0.122 0.104 0.127 0.182 0.122 0.136 0.154 0.171

1,000 RMSE 0.031 0.090 0.108 0.149 0.099 0.082 0.101 0.144 0.097 0.107 0.121 0.132

Panel B: Oracle index (wi) − var(wi) = var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.041 0.109 0.132 0.184 0.120 0.105 0.128 0.184 0.119 0.131 0.148 0.164

1,000 RMSE 0.031 0.088 0.105 0.145 0.099 0.082 0.102 0.143 0.094 0.103 0.117 0.127

Panel C: Oracle index (wi) − var(wi) = 1.25 > var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.040 0.108 0.131 0.184 0.122 0.106 0.128 0.184 0.118 0.129 0.145 0.161

1,000 RMSE 0.031 0.087 0.104 0.144 0.095 0.082 0.102 0.143 0.092 0.101 0.116 0.125

Panel D: Oracle index (wi) − var(wi) = 1.5 > var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.041 0.107 0.130 0.183 0.125 0.105 0.129 0.183 0.117 0.127 0.144 0.158

1,000 RMSE 0.031 0.086 0.104 0.144 0.095 0.082 0.101 0.144 0.092 0.100 0.115 0.124

Panel E: Klein–Spady index (ŵi) − var(wi) = var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.040 0.113 0.136 0.189 0.126 0.108 0.131 0.188 0.123 0.135 0.153 0.167

1,000 RMSE 0.031 0.087 0.107 0.148 0.101 0.084 0.104 0.144 0.096 0.105 0.118 0.128

Note: (1) Number of Monte Carlo replications: 1,500. (2) Columns h = 0.15,0.10, and 0.05 correspond to the estimator θ̂A with a fixed bandwidth size, whereas
ĥ denotes the same estimator with a data-driven bandwidth. (3) HSZ(·) corresponds to the estimator (18), with δn set to the 85%, 90%, and 95% (unconditional)
quantiles of z′

iγ̂ . (4) AS(·,·) corresponds to the estimator in (19), with δn again set to the 85% and 90% quantiles and b ∈ {0.5,1} (the RMSE results for AS(0.95,0.5)

and AS(0.95,1) can be found in the tables in the Supplementary Material).
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Table 2. Additive error model (CASE I)—ρ = +0.5, RMSE.

Panel A: Oracle index (wi) −var(wi) = 0.5 < var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.234 0.118 0.138 0.187 0.136 0.121 0.135 0.181 0.131 0.142 0.156 0.171

1,000 RMSE 0.232 0.098 0.111 0.146 0.108 0.106 0.111 0.145 0.108 0.114 0.125 0.134

Panel B: Oracle index (wi) − var(wi) = var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.203 0.107 0.130 0.184 0.126 0.108 0.127 0.182 0.120 0.131 0.148 0.162

1,000 RMSE 0.202 0.083 0.101 0.141 0.102 0.086 0.099 0.142 0.092 0.101 0.114 0.125

Panel C: Oracle index (wi) − var(wi) = 1.25 > var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.192 0.106 0.129 0.184 0.132 0.105 0.127 0.182 0.118 0.129 0.146 0.159

1,000 RMSE 0.191 0.082 0.100 0.140 0.103 0.084 0.099 0.143 0.090 0.099 0.112 0.123

Panel D: Oracle index (wi) − var(wi) = 1.5 > var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.183 0.107 0.129 0.184 0.136 0.105 0.127 0.183 0.117 0.127 0.145 0.158

1,000 RMSE 0.181 0.083 0.100 0.141 0.103 0.083 0.098 0.143 0.089 0.097 0.111 0.122

Panel E: Klein–Spady index (ŵi) − var(wi) = var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.204 0.114 0.135 0.185 0.128 0.111 0.132 0.182 0.123 0.134 0.151 0.165

1,000 RMSE 0.202 0.083 0.103 0.142 0.097 0.087 0.099 0.143 0.094 0.102 0.114 0.125

Note: (1) Number of Monte Carlo replications: 1,500. (2) Columns h = 0.15,0.10, and 0.05 correspond to the estimator θ̂A with a fixed bandwidth size, whereas
ĥ denotes the same estimator with a data-driven bandwidth. (3) HSZ(·) corresponds to the estimator (18), with δn set to the 85%, 90%, and 95% (unconditional)
quantiles of z′

iγ̂ . (4) AS(·,·) corresponds to the estimator in (19), with δn again set to the 85% and 90% quantiles and b ∈ {0.5,1} (the RMSE results for AS(0.95,0.5)

and AS(0.95,1) can be found in the tables in the Supplementary Material).
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Table 3. Additive error model (CASE I)—ρ = −0.5, RMSE.

Panel A: Oracle index (wi) − var(wi) = 0.5 < var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.234 0.121 0.139 0.188 0.130 0.124 0.137 0.184 0.134 0.144 0.157 0.173

1,000 RMSE 0.231 0.098 0.112 0.149 0.111 0.105 0.113 0.146 0.109 0.116 0.127 0.137

Panel B: Oracle index (wi) − var(wi) = var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.204 0.107 0.129 0.180 0.117 0.107 0.126 0.180 0.119 0.129 0.145 0.160

1,000 RMSE 0.200 0.084 0.102 0.143 0.100 0.084 0.101 0.141 0.093 0.102 0.116 0.126

Panel C: Oracle index (wi) − var(wi) = 1.25 > var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.193 0.106 0.128 0.179 0.118 0.104 0.125 0.180 0.117 0.127 0.144 0.158

1,000 RMSE 0.189 0.082 0.102 0.142 0.099 0.081 0.099 0.142 0.091 0.100 0.114 0.124

Panel D: Oracle index (wi) − var(wi) = 1.5 > var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.183 0.105 0.128 0.180 0.121 0.103 0.126 0.180 0.116 0.125 0.143 0.156

1,000 RMSE 0.180 0.082 0.101 0.142 0.097 0.080 0.099 0.141 0.089 0.098 0.112 0.122

Panel E: Klein–Spady index (ŵi) − var(wi) = var(vi) = 1

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ HSZ(0.85) HSZ(0.90) HSZ(0.95) AS(0.85,0.5) AS(0.85,1) AS(0.90,0.5) AS(0.90,1)

600 RMSE 0.204 0.109 0.129 0.178 0.118 0.108 0.129 0.175 0.120 0.129 0.145 0.157

1,000 RMSE 0.202 0.085 0.105 0.147 0.102 0.086 0.105 0.144 0.097 0.105 0.118 0.128

Note: (1) Number of Monte Carlo replications: 1,500. (2) Columns h = 0.15,0.10, and 0.05 correspond to the estimator θ̂A with a fixed bandwidth size, whereas
ĥ denotes the same estimator with a data-driven bandwidth. (3) HSZ(·) corresponds to the estimator (18), with δn set to the 85%, 90%, and 95% (unconditional)
quantiles of z′

iγ̂ . (4) AS(·,·) corresponds to the estimator in (19), with δn again set to the 85% and 90% quantiles and b ∈ {0.5,1} (the RMSE results for AS(0.95,0.5)

and AS(0.95,1) can be found in the tables in the Supplementary Material).
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can observe that all estimators perform similarly in terms of RMSE. Interestingly
and contrary to theoretical predictions, the performance θ̂A does not seem to
depend much on the relationship of var(wi) and var(vi) in this design built on
joint normality. That is, observe that results in Panels A and B for each of the
tables change only marginally in terms of RMSE relative to Panels C and D.
Interestingly, in the case of sample selection (ρ = +0.5 or ρ = −0.5), we instead
see that all estimators slightly deteriorate in terms of RMSE when var(vi) > var(wi)

relative to the case when var(vi) < var(wi). This deterioration can also be observed
for the mean and median bias, but holds again across all estimators (see the
Supplementary Material for details). This suggests that, at least in the normal
case, the discussion from Section 3 concerning the requirements of the estimator
presented there may not play a crucial role in finite sample considerations, at least
in the present setup. Overall, for h = 0.15, θ̂A behaves very similarly to HSZ(0.85),
AS(0.85,0.5), and AS(0.85,1) in terms of both RMSE. Additional results in the
Supplementary Material show that this is also true for the performance in terms of
Mean and Median Bias, where θ̂A does a slightly better job in terms of achieving
a smaller average mean or median bias relative to HZS(·), though not necessarily
w.r.t. AS(·,·). The same applies for h = 0.1 and h = 0.05. On the other hand, when
we use ĥ, θ̂A performs at least on par with HSZ and AS in terms of RMSE and in
most cases delivers a smaller mean and median bias.

Next, we move to the multiplicative design with a separable Poisson model
(CASE II), whose results can be found in Table 4. Panel A contains the results from
the estimations using the “oracle” index wi, and Panel B from using the index wi.
Moreover, since in the multiplicative case Assumption E3M is actually compatible
with φw(w) = φv(w) as w → ∞, we only consider this design throughout. Turning
to the results, note that, as expected, the variance of the estimator measured by
the RMSE is generally higher than in the additive case. Moreover, as expected
by Theorem 3, the first step estimation of γ̂ does not appear to contribute to this
variance. Turning to the estimates of θ0M using a cross-validated bandwidth (̂h), we
see that the estimator generally performs well in terms of RMSE relative to the case
where a fixed bandwidth is used. In a final step, we compare the latter estimator
also with an estimator where the propensity score is used instead of F̂w(ŵ) (̂p),
and its bandwidth is determined by cross-validation. As can be seen in Table 4, the
RMSE is generally larger than when we use F̂w(·). This does, of course, not come
as a surprise given the nonparametric nature of the propensity score estimator, and
further underscores the advantage of using the estimator in Section 3 when its
assumptions are satisfied.

Finally, in Table 5, we explore the finite sample behavior of the estimator
proposed in Section 4 for the non-monotonic multiplicative model (CASE III).
More specifically, letting zi ∼ N(0,1), while the joint distribution of ei and vi is
left as in (17) before, we set

si = 1{2 · sin(1.5zi) > vi}
= 1{�(2 · sin(1.5zi)) > ṽi},

https://doi.org/10.1017/S0266466623000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000105


INTERCEPT ESTIMATION IN NONLINEAR SELECTION MODELS 29

Table 4. Multiplicative error model

ρ = 0

n Panel A: Oracle index (wi)

OLS h = 0.15 h = 0.10 h = 0.05 ĥ p̂

n = 600 RMSE 0.072 0.209 0.255 0.397 0.242 0.254

n = 1,000 RMSE 0.058 0.157 0.187 0.265 0.187 0.198

n Panel B: Klein–Spady index (ŵi)

OLS h = 0.15 h = 0.10 h = 0.05 ĥ p̂

n = 600 RMSE 0.074 0.209 0.254 0.407 0.239 0.387

n = 1,000 RMSE 0.058 0.156 0.186 0.264 0.168 0.212

ρ = +0.5

n Panel A: Oracle index (wi)

OLS h = 0.15 h = 0.10 h = 0.05 ĥ p̂

n = 600 RMSE 0.235 0.204 0.254 0.382 0.260 0.308

n = 1,000 RMSE 0.230 0.159 0.189 0.278 0.195 0.261

Panel B: Klein–Spady index (z′
iγ̂ )

OLS h = 0.15 h = 0.10 h = 0.05 ĥ p̂

n = 600 RMSE 0.234 0.205 0.253 0.382 0.284 0.325

n = 1,000 RMSE 0.232 0.159 0.189 0.276 0.193 0.229

ρ = −0.5

n Panel A: Oracle index (wi)

OLS h = 0.15 h = 0.10 h = 0.05 ĥ p̂

n = 600 RMSE 0.192 0.213 0.255 0.378 0.225 0.268

n = 1,000 RMSE 0.186 0.158 0.190 0.270 0.198 0.229

Panel B: Klein–Spady index (ŵi)

n OLS h = 0.15 h = 0.10 h = 0.05 ĥ p̂

n = 600 RMSE 0.194 0.214 0.254 0.386 0.243 0.314

n = 1,000 RMSE 0.184 0.158 0.190 0.269 0.197 0.242

Note: (1) Number of Monte Carlo replications: 1,500. (2) Columns h = 0.15,0.10, and 0.05 correspond
to the estimator θ̂M using a fixed bandwidth size. (3) ĥ and p̂ correspond to the estimator θ̂M with cross-
validated bandwidth choice (̂h) or the nonparametric propensity score (̂p).

where ṽi = �(vi) is uniformly distributed on (0,1). The propensity score p(zi) =
�(2 · sin(1.5zi)) exhibits a highly non-monotonic pattern in zi and, thus, violates
the conditions of the estimator θ̂M from Theorem 3. To construct θ̂

p
M(δ), we

proceed as follows: first, we estimate the propensity score p(zi) via a local constant
estimator with second-order Epanechnikov kernel and cross-validated bandwidth
from the np package. Next, we construct the estimator outlined in Section 4.
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Table 5. Non-monotonic model

ρ = 0

(δ,hp) (0.925,0.075) (0.95,0.05) (0.975,0.025) (̂δ,̂hp)

n = 600 RMSE 0.097 0.110 0.212 0.112

n = 1,000 RMSE 0.073 0.081 0.147 0.103

ρ = +0.5

(δ,hp) (0.925,0.075) (0.95,0.05) (0.975,0.025) (̂δ,̂hp)

n = 600 RMSE 0.114 0.121 0.218 0.123

n = 1,000 RMSE 0.095 0.093 0.156 0.108

ρ = −0.5

(δ,hp) (0.925,0.075) (0.95,0.05) (0.975,0.025) (̂δ,̂hp)

n = 600 RMSE 0.100 0.110 0.206 0.109

n = 1,000 RMSE 0.079 0.083 0.142 0.105

Note: (1) Number of Monte Carlo replications: 1,500. (2) Columns (δ,hp) = (0.925,0.075), (δ,hp) =
(0.95,0.05), and (δ,hp) = (0.975,0.025) correspond to the estimator θ̂

p
M(δ) using a fixed δ-hp

combination. (3) δ̂ and ĥp correspond to the estimator θ̂
p
M(δ) using the data-driven choice of the tuning

parameters.

Specifically, the first three columns of Table 5 display the estimator’s performance
for fixed choices of δ and hp, namely (δ,hp) = (0.925,0.075), (δ,hp) = (0.95,0.05),
and (δ,hp) = (0.975,0.025).8 Finally, in the last column, we use the data-driven
method suggested at the end of the last section (we set the threshold to 0.1 and
use {0.05,0.1, . . . ,0.45,0.5} as a grid for η). Turning to the results, we find that
the estimator has an RMSE that is rather low and that increases as δ increases and
hp decreases, respectively.9 Interestingly, observe that the data-driven choice of δ

and hp generally leads to good and comparable bias and variance results, which is
encouraging for practical applications.

6. EMPIRICAL ILLUSTRATION

We now turn to the empirical illustration of the use of the estimator outlined in
Section 3. The sample for the analysis is drawn from the second round of the British
Health and Lifestyle Survey 1991–92 (HALS2), which was used in the illustration

8We have also experimented with setting hp slightly smaller than H, specifically (δ,hp) = (0.925,0.070), (δ,hp) =
(0.95,0.045), and (δ,hp) = (0.975,0.020). However, results do not vary qualitatively and so we only present the
specifications from the main text.
9Similarly and as expected, results available upon request demonstrate that the estimator generally decreases in terms
of MBias and MEDBias when δ increases and hp decreases, which is particularly pronounced for the case of ρ = −0.5.
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provided in Windmeijer and Santos Silva (1998).10 As we were not able to find
all the relevant survey reports in order to reconstruct the exact sample used by
Windmeijer and Santos Silva (1998), we have created an almost identical sample
except for a minor difference in the number of observations used in the estimation.
We have 4,820 individuals in our estimation sample compared to 4,814 used in
Windmeijer and Santos Silva (1998). The descriptive statistics of our variables
match those provided in Table 1 of Windmeijer and Santos Silva (1998), to the
first or second decimal place.

The outcome variable of interest is the number of visits to or by a doctor (general
practitioner), in the last month prior to the interview, DOCVIS. The objective is to
model the demand for medical care as a function of individual’s health status and
to estimate the effect of the latter on the outcome. We follow Windmeijer and
Santos Silva (1998) and use a binary self-reported health status variable HS as a
measure of this unobserved health status and allow this to be dependent on other
unobserved individual characteristics in the outcome equation. That is, we treat
HSi as an endogenous regressor in the outcome equation, which takes the value
of 1 if health is reported to be poor or fair, and 0 if good or excellent. Adopting the
potential outcome framework, we write

DOCVISi = HSi ×DOCVISi(1)+ (1−HSi)×DOCVISi(0),

where DOCVISi(HS), HS ∈ {0,1}, denotes the potential number of doctor visits
under poor or fair (HS = 0), and good or excellent health (HS = 1), respectively. We
model the conditional mean functions of the potential outcomes in the following
exponential regression framework:

E[DOCVISi(1)|xi,̃εi(1)] = exp(θ1M + x′
iβ0M )̃εi(1), E[̃εi(1)|xi] = 1

and

E[DOCVISi(0)|xi,̃εi(0)] = exp(θ0M + x′
iβ0M )̃εi(0), E[̃εi(0)|xi] = 1,

where ε̃i(0) and ε̃i(1) represent the multiplicative unobserved heterogeneity under
HSi = 0 and HSi = 1, respectively.11 The relative ATE of a positive health status
(relative to poor or fair health) in this multiplicative setup can therefore be
calculated as(

E[DOCVISi(1)]

E[DOCVISi(0)]
−1

)
×100% = (exp(α0)−1)×100%, (20)

10The data and accompanying documents are available for free download for academic users, from the website of
the UK Data Service: www.ukdataservice.ac.uk (accessed on November 22, 2020).
11We model unobserved heterogeneity explicitly by adopting a multiplicative model where the observed and
unobserved heterogeneity enter the conditional mean of the outcome variable in the same way. This is in contrast
to Windmeijer and Santos Silva (1998), who consider an additive model without unobserved heterogeneity.
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where α0 ≡ θ1M − θ0M . By contrast, due to the potential endogeneity of HSi, the
data only allow to identify (provided E[̃εi(0)|xi,HSi = 0] �= 0 a.s.)(

E[DOCVISi|xi,HSi = 1]

E[DOCVISi|xi,HSi = 0]
−1

)
×100% =

(
exp(α0)

E[̃εi(1)|xi,HSi = 1]

E[̃εi(0)|xi,HSi = 0]
−1

)
×100%,

which is not equal to the relative ATE from (20) unless E[̃εi(1)|xi,HSi = 1] =
E[̃εi(0)|xi,HSi = 0] a.s. In what follows, we thus write the conditional expectation
function of DOCVISi as

E[DOCVISi|xi,̃εi] = exp(θ0M + x′
iβ0M +α0HSi)̃εi, (21)

where ε̃i = HSi · ε̃i(1)+ (1−HSi) · ε̃i(0), and assume that endogenous health status
HSi is determined by the following threshold model:

HSi = 1
{
z′

iγ0 > vi
}

. (22)

As a robustness check, we also estimate the model in (21), but with a nonparametric
propensity score,

HSi = 1{p(zi) > ṽi}, (23)

where ṽi is distributed uniformly on (0,1). The choice of variables to include in z
and x are based on Windmeijer and Santos Silva (1998). However, for computa-
tional reasons (in particular, for the estimation of the single index coefficient vector
using Klein and Spady (1993)), we drop those variables with estimated coefficients
that were always insignificant in the models estimated while keeping to the spirit
of the discussions provided by the authors for the choice of variables to act as
instruments. The variables included in xi are sex, education, income, and short-
term health status. The instrumental variables in zi are, in addition to those from xi,
variables that explain an individual’s health but are likely to affect the demand for
doctor services only via the health status. These variables are current work status,
alcohol consumption, and binary indicators for smoking behavior, social class,
and accommodation, as well as long-term disability or infirmity. Of course, since
health status is only coarsely measured through a binary variable, concerns about
these variables affecting the number of doctor visits even after conditioning on the
binary health status might arise. To address this limitation, we carried out checks
for the sensitivity of our results on the choice of these instruments. The estimated
effect of interest, α, however, remained qualitatively similar. The definitions and
the summary statistics for the variables are provided in Table A.1 in the Appendix.
A more detailed discussion of these variables is provided in Windmeijer and Santos
Silva (1998).

We estimate the following four models:

• Model 1: A standard Poisson (P) specification where HSi is treated as exoge-
nous. This model does not contain unobserved heterogeneity ε̃i.
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• Model 2: A negative binomial (NB2) model with HSi treated as exogenous.
In addition, the unobserved heterogeneity ε̃i is assumed to follow a Gamma
distribution with Gamma (1, 1

τ
), and also to be distributed independently of x.

• Model 3: A general exponential model (ACG-1) where HSi is treated as
endogenous according to (22) and the joint distribution of ε̃i and vi are left
unspecified.

• Model 4: A general exponential model (ACG-2) where HSi is treated as
endogenous according to (23) and the marginal distribution of ε̃i as well as the
dependence of ε̃i and ṽi are left unspecified.

The parameter τ in Model 2 is sometimes called the over-dispersion parameter.
This particular model is commonly used in the case of over-dispersed count vari-
able data as it is the case with our variable DOCVIS, which has an unconditional
mean of 0.402 and a variance of 0.634. However, it does impose independence
between ε̃i and variables in xi. Model 3, on the other hand, allows for dependence
between unobserved heterogeneity ε̃i and the health status variable HSi, whereas
Model 4 relaxes in addition to the index restriction z′

iγ0 and is thus robust against
misspecification of the propensity score.

The estimation steps for Model 3 are as follows:

• Step 1: Estimate γ0 using the estimator of Klein and Spady (1993) from the
np package of Hayfield and Racine (2008). The bandwidth parameter is
chosen via a built-in cross-validation procedure, and F̂z′γ̂ (z′

iγ̂ ) is constructed
subsequently using the distribution function estimator outlined in Section 3. In
addition, we also estimate the propensity score p̂(z′

iγ̂ ) via the local constant
estimator from the np package with second-order Epanechnikov kernel and
cross-validated bandwidth.

• Step 2: Estimate β0M for the entire sample using the one-step estimator proposed
in Jochmans (2015) with the author’s recommended plug-in bandwidth and a
second-order Gaussian kernel.12

• Step 3: As outlined in Section 3.2, estimate the intercept θ0M and (θ0M + α0)

separately for the subsample with HSi = 0 and HSi = 1, respectively, using a
local linear estimator from the np package with second-order Epanechnikov
kernel and cross-validated bandwidth.13

• Step 4: Compute the standard errors for the intercept estimators of Step 3 with
the estimator outlined after Theorem 3 and bandwidth choice hv2 = 0.25 (we
also experimented with slightly different choices for hv2, but results remain
qualitatively similar).

12Changing the order of the kernel as well as the bandwidth did not alter results substantially.
13More specifically, we construct θ̂0M = ln

(
Ê
[

yi

exp(x′
i β̂M )

∣∣F̂w(ŵi) = 0
])

using the subsample with HSi = 0, and α̂ =
ln
(

Ê
[

yi

exp(x′
i β̂M )

∣∣F̂w(ŵi) = 1
])

− ln
(

Ê
[

yi

exp(x′
i β̂M )

∣∣F̂w(ŵi) = 0
])

, where the first term is only estimated for HSi =
1. The cross-validated bandwidth chosen for the estimation of θ0M using the subsample HSi = 0 was 0.052 (211
observations with a positive weight), whereas the cross-validated bandwidth for the estimation of θ0M +α using the
subsample HSi = 1 was 0.074 (274 observations with positive weight).
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Table 6. Estimation results

P NB2 ACG-1 ACG-2

(Ĥ,̂hp) (0.05,0.05) (0.025,0.025)

α̂ 0.534 0.549 0.727 0.560 0.664 0.849

s.e. (robust) (0.064) (0.062)

s.e. (hv2 = 0.25) (0.351)

s.e. (H,hp) (0.294) (0.182) (0.285)

θ̂0M −1.111 −1.102 −1.468 −1.116 −1.094 −1.194

s.e. (robust) (0.053) (0.052)

s.e. (hv2 = 0.25) (0.305)

s.e. (H,hp) (0.251) (0.054) (0.179)

Note: (1) Columns P and NB2 represent the output for Models 1 and 2, respectively, with robust
standard errors. (2) Column ACG-1 provides the estimates of Model 3 with cross-validated bandwidth
choice (cf. footnote 13). Standard errors are computed as in Step 4. (3) Columns ACG-2 provide the
estimates of Model 4 using ad hoc, data-driven (Ĥ,̂hp) or fixed ((0.05,0.05) and (0.025,0.025)) tuning
parameters. Standard errors are computed as in Step 4.

On the other hand, Model 4 parameters are estimated by first estimating the
nonparametric propensity score p(zi) via the local constant estimator from the
np package with fourth-order Epanechnikov kernel.14 We then follow Steps
3 and 4 as outlined above, but replace the estimators from Section 3.2 with the
ones of Section 4. The standard errors for the intercept estimator of Model 4 are
determined as outlined in Section 4, and the threshold value is set to 0.1 when H(η)

and hp(η) are determined in an ad hoc data-driven manner as outlined at the end
of Section 4.

Table 6 reports the estimates of θ0M and α0, which are our main parameters
of interest, for all four models. The standard errors reported for Models 1 and 2
are robust standard errors based on the pseudo-maximum likelihood estimator
(Gourieroux, Monfort, and Trognon, 1984).

As expected, the estimated α̂ does not differ much between Models 1 and 2. Note
that not accounting for unobserved heterogeneity does not affect the consistency
property of the Poisson MLE estimator. On the other hand, when we relax some of
the parametric assumptions and also account for possible endogeneity of HSi due to
dependence between ε̃i and vi as in Model 3 (ACG-1), the estimate of α increases
to 0.727. Note that this estimate (as the one of ACG-2) cannot be directly compared
to the ones of Models 1 and 2 since the latter does not allow for endogeneity. Also, it

14Note that except for the variable “Wine” (number of units of wine consumption last week), all variables in zi are
binary, and hence the rate conditions for continuous covariates of Section 4 apply for the case dz = 1 (recall that
discrete covariates do not matter for the convergence rate of estimators of conditional nonparametric distribution
functions such as p(zi) (Li and Racine, 2008)). Also, to reduce computational complexity, we follow the method
outlined in Racine (1993) and conduct cross-validation on random subsets of the data (size n = 500), to select the
median values over 50 replications.
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is worthwhile noting that we cannot compare the t-ratio to standard normal critical
values since CIs are based on a cross-validated bandwidth are biased. As remarked
earlier, Armstrong and Kolesar (2020) suggest using wider CIs which account for
the largest possible bias, for a given function class. For instance, following Table 1
of their paper, if E3M holds with r = 1 and the bias was to equal half of the standard
deviation, one should use ±2.36 instead of the common ±1.96 for the common
5% significance level, whereas if r = 3, we may use ±2.11 instead. Hence, when
using “honest” CIs that account for the worst case bias, the ATE parameter α0 is
no longer significant at the 5% significance level.

We next turn to Figure A.4, which plots the estimated propensity score p̂(ŵi)

as a function of the estimated index ŵi for observations with HSi = 0 in Figure
A.4a, and with HSi = 1 in Figure A.4b, respectively. These figures cast some doubt
that monotonicity in the index ŵi, an assumption required for ACG-1, may be
violated for p̂(ŵi) close to one for observations with HSi = 1, whereas this issue
does not seem to arise for p̂(ŵi) close to zero for observations with HSi = 0. We,
therefore, move to the results of Model 4 next, which is robust against violations
of monotonicity due to the nonparametric nature of the propensity score.

Turning to Figure A.5, we observe that p̂(zi) appears to exhibit, in fact, some
(empirical) support in proximity to 0 for the subsample with HSi = 0 and to 1 for
the subsample with HSi = 1, which suggests that the estimator may be applied.
We consider the sensitivity of the results to two different ways of choosing the
tuning parameters δ = 1−H and hp: the first uses the data-driven ad hoc procedure
described at the end of Section 4 setting ε = 0.1, which yields (Ĥ0,̂hp0) =
(0.028,0.020) for HSi = 0 and (Ĥ1,̂hp1) = (0.073,0.056) for HSi = 1, respectively.
The second uses fixed choices for the tuning parameters, which are identical
across health status, namely (H,hp) = (0.05,0.05) and (H,hp) = (0.025,0.025),
respectively.15

As results in Table 6 show, using the data-driven ad-hoc choice for the tuning
parameters yields an estimate of α0 of 0.560, which is very similar to Models 1
and 2 estimates where the health status variable HSi is treated as exogenous in the
outcome equation. On the contrary, when fixed values for the tuning parameters
are used, the estimated α̂ is higher at 0.664 and 0.849, respectively. Since the data-
driven choice of (Ĥ1,̂hp1) is larger than of (Ĥ0,̂hp0), and of the fixed choices,
the sensitivity of the point estimates may primarily be due to the sparsity of
observations with propensity score value close to one for HSi = 1.

We next link the estimates of Model 4 to the implied number of extra visits
to the doctor. The raw difference in the average number of doctor visits between
individuals with HSi = 0 and HSi = 1 is 0.43 (0.73−0.29). However, the estimated
extra doctor visits across the specifications of Model 4 are 1.8, 1.9, and 2.3,
translating into relative ATEs of sizes 80%, 90%, and 130%, respectively. Since
the predicted number of extra visits for Models 1 and 2, on the other hand, are

15As in the previous section, note that setting hp slightly smaller than H did not really affect the results qualitatively.
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1.7 (or 70%), we conclude that, for this particular sample, the numbers are very
similar across the different estimations.

7. CONCLUSION

Identification and estimation of the intercept is crucial for the evaluation of ATEs
in nonexperimental settings where the treatment selection is often dependent
on unobservables (Heckman, 1990). While various estimators for linear additive
sample selection models exist, many other data types, which are also affected by
endogenous selection, are modeled nonlinearly. This paper introduces estimators
of the intercept in nonlinear semiparametric selection models, where the joint
distribution of the error terms remains unknown and the intercept and slope
parameters can be separately identified. We consider multiplicative and general
nonadditive models and propose two different types of estimators depending on
whether the selection equation satisfies a linear index restriction or not: in the first
case where the index restriction holds, our estimator is a standard local polynomial
estimator, and the bandwidth may be selected through cross-validation. In the
second case, we relax the index restriction in the selection equation and base our
estimator on a more flexible nonparametric specification of the propensity score,
that does not require that the marginal density function of the propensity score is
bounded away from zero at the upper limit point. The resulting estimator is a local
constant estimator, which uses observations close but not too close to the boundary.
This estimator is robust against misspecification of the first stage and converges
at a rate that can be arbitrarily close to a cubic rate. Finally, we investigate the
effect of self-reported health on the number of recent doctor visits modeling doctor
visits as a multiplicative function of a binary (self-reported) health status variable,
unobserved heterogeneity, and other observed covariates. Our findings suggest that
for the particular sample used, the estimates of the effect of self-reported health
from using our estimators are very similar to that from a fully parametric model
estimator that treats self-reported health status as exogenous.

APPENDIX

A.1. Proofs

In the following, for 0 ≤ t ≤ 2q, let

μ1,t(K) =
∫ 0

−1
νtK(ν)dν

as well as

γt(K) =
∫ 0

−1
νtK2(ν)dν.
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Also, define the (q+1)× (q+1) dimensional matrix

M1 =
⎡⎢⎣ μ1,0(K) . . . μ1,q(K)

...
. . .

...
μ1,q(K) . . . μ1,2q(K)

⎤⎥⎦ . (A.1)

The matrix 
1 is defined accordingly, but contains elements γj(k) instead of μ1,j(k).

Proof of Theorem 1. We start with the identification of θ0M, and then comment on the
identification of θ0A. First, recall that wi = z′iγ0, and note that

E[̃εi|xi = x,zi = z,si = 1] = E[̃εi|wi = w,vi < w] = E[̃εi|Fw(wi) = Fw(w),Fw(vi) < Fw(w)],

where the first equality follows from A1(iv) and A2(i) and (iv) and the selection model in
(1), whereas the second equality follows from A2(ii)–(iv). In addition, using Assumption
A1(iii), we obtain

E[yi|xi = x,zi = z,si = 1] = E[yi|x′
iβ0M = x′β0M,Fw(wi) = Fw(w),Fw(vi) < Fw(w)]

= gM1(θ0M)gM2(x′β0M)E[̃εi|Fw(wi) = Fw(w),Fw(vi) < Fw(w)]

= gM1(θ0M)gM2(x′β0M)̃λ(Fw(w)).

Thus, without loss of generality, we may write

yi = gM1(θ0M)gM2(x′β0M)̃λ(Fw(wi))+ ũi,

where E[̃ui|xi = x,Fw(wi) = Fw(w)] = 0 by construction. Moreover, by A1(ii), it holds that

E

[
yi

gM2(x′
iβ0M)

|Fw(wi) = Fw(w),Fw(vi) < Fw(w)

]
= gM1(θ0M)̃λ(Fw(w)).

Now, observe that under A2(ii) and (iii),

lim
Fw(w)→1

(
gM1(θ0M)̃λ(Fw(w))

)= gM1(θ0M)E[̃εi] = gM1(θ0M),

where the last equality follows from E[̃εi] = 1 in A1(v). Finally, since gM1(·) is known and
invertible by A1(ii), this establishes the unique identification of θ0M.

For the additive case, note that by A1(ii) and (iii), it holds similarly that

E[(yi −gA2(x′
iβ0A))|zi,si = 1] = gA1(θ0A)+E[εi|Fw(wi) = Fw(w),Fw(vi) < Fw(wi)]

and therefore

lim
Fw(w)→1

E[(yi −gA2(x′
iβ0A))|Fw(wi) = Fw(w),Fw(vi) < Fw(w)]

= gA1(θ0A)+E[εi] = gA1(θ0A),

where the last equality follows from E[εi] = 0 in A1(v). Finally, since gA1(·) is known and
invertible by A1(ii), this establishes the unique identification of θ0A. �

Proof of Theorem 2. We first show that under A1 and A2, E1–E6, and the rate conditions
in the statement of the theorem,
√

nh(m̂A(1)−gA1 (θ0A))
d→ N

(
0,σ 2

A(1)
)
, (A.2)
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where

σ 2
A(1) = lim

Fw→1
E
[
siu

2
i |Fw (Fw),Fw (vi) < Fw(w)

][
M−1

1 
1M−1
1

]
00

,

with [A]00 denoting the upper-left entry of matrix A, and M1 and 
1 are defined above.
Given Assumption A2(i)–(iii), limFw→1 E[si |Fw (Fw),Fw (vi) < Fw(w) ] = 1. More-

over, let m̃A(1) be defined as m̂A(1) in the text, with F̂w(wj) replaced by Fw(wj), which
we will abbreviate by F̂j replaced by Fj in what follows. Finally, we write K̂j (1) =
K((F̂j − 1)/h), P̂j(1) =

(
1,(F̂j −1), . . . ,(F̂j −1)q 1

q!

)′
, and Ŷj = yj − gA2(x′

jβ̂A), and let

Kj (1), Pj(1), and Yj be defined accordingly with F̂j and β̂A replaced again by Fj and β0A.
First, letting e′ = (1,0, . . . ,0)′ denote a vector of dimension ((q+1)×1), note that m̂A(1)

is defined as the first element of the ((q+1)×1) vector

m̂A(1) = e′
⎛⎝ 1

nh

n∑
i=1

siP̂i(1)K̂i (1) P̂i(1)′
⎞⎠−1⎛⎝ 1

nh

n∑
i=1

siP̂i(1)K̂i (1) Ŷi

⎞⎠,

whereas m̃A(1) is the first element of the corresponding ((q+1)×1) vector, i.e.,

m̃A(1) = e′
⎛⎝ 1

nh

n∑
i=1

siPi(1)Ki (1)Pi(1)′
⎞⎠−1⎛⎝ 1

nh

n∑
i=1

siPi(1)Ki (1)Yi

⎞⎠ .

Also, note that gA1 (θ0A) is the probability limit of m̃A(1). Given Assumption E5 and
recalling Assumptions A2(i) and E1, the empirical process

1√
n

n∑
j=1

(
1
{
wj ≤ wi

}−Fw(wi)
)

satisfies a central limit for i.i.d. random variables. Thus, standard mean value expansion
arguments (joint with the fact that for any two symmetric, nonsingular matrices A1 and A2,
it holds that A−1

1 −A−1
2 = A−1

2 (A2 −A1)A−1
1 ) yield that

√
nh(m̃A(1)− m̂A(1)) = op(1).

Then, recalling that the density of Fw (wi) is uniform on (0,1), note that by E1, E6, and a
Law of Large Numbers for triangular arrays,

1

nh

n∑
i=1

G−1
h siPi(1)Ki (1)Pi(1)′ p→ M1,

where M1 was defined before, and the ((q+1)× (q+1)) diagonal matrix is given by

Gh =

⎛⎜⎜⎜⎜⎝
1 0 . . . 0

0 h
. . .

...
...

. . .
. . .

...
0 . . . . . . hq

⎞⎟⎟⎟⎟⎠ .
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Next, using the fact that min{r,q + 1} (left) derivatives of λ(·) exist and are finite by
Assumption E3, we obtain after standard arguments for local polynomial estimators

√
nh(m̃A(1)−gA1 (θ0A))

= e′M1
−1(1+op(1))

1√
nh

n∑
j=1

G−1
h sjPj(1)Kj (1)uj

+ e′M1
−1(1+op(1))

1√
nh

n∑
j=1

G−1
h sjP(1)Kj(1)

(
1

min{r,q+1}!
(
∇min{r,q+1}

− λ(Fj)
∣∣Fj=1

)
×(Fj −1

)min{r,q+1})
+ e′M1

−1(1+op(1))
1√
nh

n∑
j=1

G−1
h sjP(1)Kj(1)εn(1)

= In,h + IIn,h + IIIn,h,

where ∇min{r,q+1}
− λ(Fj)|Fj=1 denotes the min{r,q+1}th left derivative of λ(·) evaluated at

Fj = 1, whereas (see, e.g., Masry, 1996, p. 575)

εn(1) = (Fj −1
)min{r,q+1}

∫ 1

0

(
1

min{r,q+1}!∇
min{r,q+1}
− λ(Fj)

∣∣∣Fj=1−τ(Fj−1)

− 1

min{r,q+1}!∇
min{r,q+1}
− λ(Fj)

∣∣∣Fj=1

)
(1− τ)dτ .

Now, given E1, E5, and E6, by a CLT for triangular arrays, we have that

In,h
d→ N

(
0,σ 2

A(1)
)
, (A.3)

where σ 2
A(1) was defined in Theorem 2. Note that IIn,h and IIIn,h, on the other hand,

characterize the bias term. In particular, note that our estimator is computed at the boundary,
but that for local polynomial estimators of odd order, the bias is of the same order in the
interior and on the boundary (see, e.g., Fan and Gijbels, 1996). Thus, starting with the case
of r ≥ q + 1, and using similar arguments to the ones used for Proposition 2 and Theorem
4 of Masry (1996), it follows that

E

⎡⎣ 1√
nh

n∑
j=1

G−1
h sjP(1)Kj(1)εn(1)

⎤⎦= o(hq+1)

and∣∣∣∣∣∣ 1√
nh

n∑
j=1

G−1
h sjP(1)Kj(1)εn(1)−E

⎡⎣ 1√
nh

n∑
j=1

G−1
h sjP(1)Kj(1)εn(1)

⎤⎦∣∣∣∣∣∣
= hq+1Op

(
1

n
1
2 h

1
2

)
= op(hq+1),
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where we note that the last term does not involve a ln(n) term as in Masry (1996) since we
are dealing with the pointwise (and not the uniform) case. Moreover, note that for IIn,h∣∣∣∣∣∣h

−(q+1)

√
nh

n∑
j=1

G−1
h sjP(1)Kj(1)

(
1

(q+1)!

(
∇(q+1)

− λ(Fj)
∣∣∣Fj=1

)
×(Fj −1

)(q+1)
)

−B(q+1)

∣∣∣
= Op

(
1

n
1
2 h

1
2

)
,

where the ((q+1)×1) vector B(q+1) is defined as

B(q+1) =

⎡⎢⎢⎣
∫ 0
−1 νq+1K(ν)dν

...∫ 0
−1 ν2q+1K(ν)dν

⎤⎥⎥⎦ .

For the case of r ≤ q, we follow Fan and Guerre (2016). Define(
aA0 (1), . . . ,aAq (1)

)
= arg min

ak,k≤q
E

⎡⎢⎣si

⎛⎝yi −gA2(x′
iβ0A)−

∑
0≤k≤q

ak (Fw(wi)−1)k

⎞⎠2

K

(
Fw(wi)−1

h

)⎤⎥⎦,

where mA(1) = aA0 (1). Now,

√
nh(m̂A(1)−gA1 (θ0A)) = √

nh(m̂A(1)−aA0 (1))+√
nh(aA0 (1)−gA1 (θ0A)), (A.4)

where the first term on the RHS of (A.4) has the same limiting distribution as in (A.3)
regardless of r being larger than q or not. Hence, it suffices to consider the second term on
(A.4). Our Assumption E3 is equivalent to Assumption S2 in Fan and Guerre (2016) (which
in turn implies their S1), whereas our Assumption E6 corresponds to their Assumption
K. Finally, their Assumption X holds since Fw(wi) has marginal density equal to one
everywhere on (0,1). Thus, it follows from Theorem 1 in Fan and Guerre (2016) that

|aA0 (1)−gA1 (θ0A)| ≤ Chr,

and so the bias is of order hr whenever r ≤ q.
Finally, to complete the proof, recall that m̂A(1) = âA(1) and m0A(1) = aA0(1), Given

A1(ii), we can define

θ̂A = g−1
A1 (̂aA(1)) and θ0A = g−1

A1 (aA0(1)),

and by a mean value expansion, for θA ∈ (θ̂A,θ0A
)
,

âA0(1)−aA0(1) = g
(
θ̂A
)−g(θ0A) = ∇θA g

(
θA
)(

θ̂A − θ0A
)

.

https://doi.org/10.1017/S0266466623000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000105


INTERCEPT ESTIMATION IN NONLINEAR SELECTION MODELS 41

Hence,
√

nh
((

θ̂A − θ0A
))

= 1

∇θA g
(
θA
)√nh (̂aA0(1)−aA0(1))

and given (A.2), it follows that

√
nh
(
θ̂A − θ0A

) d→ N

(
0,

σ 2
A(1)

∇θA g(θ0A)2

)
. �

Remark A.1. In this remark, we sketch how the procedure of Armstrong and Kolesar
(2018) can be used in the context of this paper to construct CIs that are valid uniformly in
some range h ≤ h ≤ h. Now, since the F̂w(·) and β̂A do not depend on h and converge at a
parametric rate, note that, uniformly in h, it holds that
√

nh(m̃A(1−h)− m̂A(1−h)) = op(1).

Next, recalling the definitions of M1, Pj(1 − h), and uj, using similar arguments as in the
supplement of Armstrong and Kolesar (2018), we have that
√

nh(m̃A(1−h)−gA1 (θ0A(h)))

= e′M1
1√
nh

n∑
j=1

G−1
h sjPj(1−h)K

(
Fj −1

h

)
uj1
{
Fj < 1

}+op

⎛⎜⎜⎝ 1√
ln ln

(
h
h

)
⎞⎟⎟⎠ .

Analogously, one can obtain that
√

nh
(
θ̂A(h)− θ0A(h)

)
σ̂A(h)

= 1

∇gA1 (θ0A(h)) σ̂A,h(1)
e′M1

1√
nh

n∑
j=1

G−1
h sjPj(1−h)K

(
Fj −1

h

)
uj1
{
Fj < 1

}

+op

⎛⎜⎜⎝ 1√
ln ln

(
h
h

)
⎞⎟⎟⎠,

with σ̂A,h(1) defined as in the main text. Now, let

K†(z;1) = e′M−1
1 P(z)K(z).

From Section 2.1 of the Supplementary Material of Armstrong and Kolesar (2018),

suph≤h≤h

√
nh
∣∣θ̂A(h)−θ0A(h)

∣∣
σ̂A,h(1)

has the same limiting distribution as sup1≤t≤h/h |H(t)|, where

H(t) is a zero mean Gaussian process with Cov(H(t),H(s)) = ρ (s,t;1), where

ρ (s,t;1) =
∫ 0
−1 K†(z/s;1/s)K†(z/t;1/t)dz√∫ 0

−1 K†(z/s;1/s)2dz
∫ 0
−1 K†(z/t;1/t)2dz

.
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This suggests that we may simulate from a mean-zero multivariate Gaussian process with
covariance kernel ρ (s,t;1) from a grid s,t ∈ [1,h/h], and compute the 1−α/2 critical value
using the maximum value from each draw, say c1−α/2(h/h,r,1), where r is the order of the
local polynomial and 1 the boundary point. The 1 −α uniformly valid confidence interval
(CI) is then given by

θ̂A(h)± σ̂A,h(1)c1−α/2(h/h,r,1)/
√

nh.

As established in Corollary 3.1 in Armstrong and Kolesar (2018), such a CI is uniformly
valid in h ≤ h ≤ h. Note that this approach requires that the bias goes to zero sufficiently
fast uniformly over h ≤ h ≤ h.

Proof of Theorem 3. By a similar argument as in the proof of Theorem 2,

√
nh(m̂M(1)−gM1 (θ0M))

d→ N
(

0,σ 2
M(1)

)
,

where σ 2
M(1) was defined in Theorem 3. The statement in the theorem then follows by an

application of a standard delta method argument as in the proof of Theorem 2. �

Proof of Theorem 4. First, note that the auxiliary model writes as

yi = gM1 (θ0M)gM2
(
x′

iβ0M
)
λ(pi)+ui,

and let

m̃p
M (δ) =

1
nhpHη

∑n
i=1 si

yi
gM2
(
x′

iβM
)K ( p(zi)−δ

hp

)
1

nhpHη

∑n
i=1 siK

(
p(zi)−δ

hp

) .

We first show that

m̃p
M (δ)−gM1 (θ0M)√

v̂ar
(

m̃p
M (δ)−gM1 (θ0M)

) d→ N(0,1),

where v̂ar (.) denotes the estimated variance. Then, by a standard delta method argument,

g−1
M1

(
m̃p

M (δ)
)

− θ0M√
∇θM gM1 (θ0M)2 v̂ar

(
m̃p

M (δ)−gM1 (θ0M)
) d→ N(0,1),

where θ0M = mp
M (1). Now,

1√
nhpHη

∑n
i=1 si

yi
gM2(x′

iβM)
K
(

p(zi)−δ
hp

)
1

nhpHη

∑n
i=1 siK

(
p(zi)−δ

hp

)
=

1√
nhpHη

∑n
i=1 sigM1 (θ0M)λ(pi)K

(
p(zi)−δ

hp

)
1

nhpHη

∑n
i=1 siK

(
p(zi)−δ

hp

) +
1√

nhpHη

∑n
i=1 si

ui
gM2(x′

iβM)
K
(

p(zi)−δ
hp

)
1

nhpHη

∑n
i=1 siK

(
p(zi)−δ

hp

)
= In,hp,H + IIn,hp,H .
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Note that

In,hp,H = gM1 (θ0M)+
1√

nhpHη

∑n
i=1 si

(
λ(pi)−1

)
K
(

p(zi)−δ
hp

)
1

nhpHη

∑n
i=1 siK

(
p(zi)−δ

hp

) ,

and because of Assumption E10M and the nonnegativity of the kernel function,∣∣∣∣∣∣∣
1√

nhpHη

∑n
i=1 si

(
λ(pi)−1

)
K
(

p(zi)−δ
hp

)
1

nhpHη

∑n
i=1 siK

(
p(zi)−δ

hp

)
∣∣∣∣∣∣∣

≤
√

nhpHη sup
p∈(1−hp−H,1+hp−H)

∣∣λ(p)−1
∣∣≤ C

√
nhpHηH1−η = o(1)

by rate condition (i). As for the denominator of IIn,hp,H, letting u = p−δ
hp

,

E

⎡⎣ 1

nhpHη

n∑
i=1

siK

(
p(zi)− δ

hp

)⎤⎦
= E

[
1

hpHη
siK

(
p(zi)− δ

hp

)]
= 1

hpHη

∫ 1

0
Pr (s = 1|p)K

(
p− δ

hp

)
fp(p)dp

= 1

Hη

∫ 1

0
Pr
(
s = 1|p = uhp + δ

)
K (u) fp

(
uhp + δ

)
du

= H−η Pr (s = 1|p = 1−H) fp (1−H)+o(1) = c(1)+o(1),

where the second last equality follows from Assumption E8M(i), and the last equality from
E8M(ii). Also, recall that c(1) = fp(1) when η = 0.

As for the limiting distribution of the numerator in IIn,hp,H, recalling that ux,i =
ui

gM2
(
x′

iβM
) and v = p−δ

hp
,

var

⎛⎝ 1√
nhpHη

n∑
i=1

siux,iK

(
p(zi)− δ

hp

)⎞⎠
= 1

hpHη
var

(
siux,iK

(
p(zi)− δ

hp

))
= 1

hpHη

∫ 1

0

∫
supp(ux)

Pr (s = 1|p,ux)u2
xK2

(
p− δ

hp

)
fp,u(p,ux)duxdp

= 1

Hη

∫ 1

−1

∫
supp(ux)

Pr
(
s = 1|vhp + δ,ux

)
u2

xK2 (v) fp,ux (vhp + δ,ux)duxdv

=
∫ 1

−1
K2 (v)dv

∫
supp(ux)

u2
xwu,p(ux,1)dux +o(1),
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where the last equality follows from Assumption E9M. Hence, as nhpHη → ∞, using
standard arguments together with E7M, it follows that∑n

i=1 siux,iK
(

p(zi)−δ
hp

)
√∫

K(v)2dv
∑n

i=1 u2
x,isiK

(
p̂i−δ

hp

) d→ N(0,1),

which gives the limiting distribution of the re-scaled IIn,hp,H . It remains to show that√
nhpHη

(
m̂p

M (δ)− m̃p
M (δ)

)
= op(1),

as this implies that√
nhpHη

(
g−1

M1

(
m̂p

M (δ)
)

−g−1
M1

(
m̃p

M (δ)
))

= op(1).

Given Assumption E4M, and recalling that nhpH2−η → 0, to this end, it suffices to show
that

1√
nhpHη

n∑
i=1

ux,isi

(
K

(
p̂i − δ

hp

)
−K

(
pi − δ

hp

))
= op(1).

Given Assumption E7M,

1√
nhpHη

n∑
i=1

siux,i

(
K

(
p̂(zi)− δ

hp

)
−K

(
p(zi)− δ

hp

))

= 1√
nhpHηhp

n∑
i=1

siux,i∇K

(
p(zi)− δ

hp

)
(̂p(zi)−p(zi))

= 1√
nhpHηhp

n∑
i=1

siux,i∇K

(
p(zi)− δ

hp

)
�n(zi)

+ 1

n3/2h3/2
p hdz

1 H
η
2

n∑
i=1

n∑
j=1

siux,i∇K

(
p(zi)− δ

hp

) K
(

zi−zj
h1

)
f (zi)

ψj

= op(1)+ 1

n3/2h3/2
p hdz

1 H
η
2

n∑
i=1

n∑
j=1

siux,i∇K

(
p(zi)− δ

hp

) K
(

zi−zj
h1

)
f (zi)

ψj︸ ︷︷ ︸
In,h1,hp

,

where the op(1) term follows because of E7M, E8M, supz |�n(z)| = O(hr
1), r ≥ max{2,dz},

nhph2r
1 Hη → 0, as well as standard change of variables and integration by parts arguments.

Now,

In,h1,hp

= 1

n3/2h3/2
p hdz

1 H
η
2

n∑
i=1

siux,i∇K

(
p(zi)− δ

hp

)
K(0)

f (zi)
ψi
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+ 1

n3/2h3/2
p hdz

1 H
η
2

n∑
i=1

n∑
j>i

⎛⎝siux,i∇K

(
p(zi)− δ

hp

) K
(

zi−zj
h1

)
f (zi)

ψj

+sjux,j∇K

(
p(zj)− δ

hp

) K
(

zi−zj
h1

)
f (zj)

ψi

⎞⎠
= IA

n,h1,hp
+ IB

n,h1,hp
.

For the first term IA
n,h1,hp

, note that

IA
n,h1,hp

= 1

n3/2h3/2
p hdz

1 H
η
2

n∑
i=1

siux,i∇K

(
p(zi)− δ

hp

)
K(0)

f (zi)
ψi

=
√

hpHη

√
nhdz

1

⎛⎝ 1

nHηh2
p

n∑
i=1

siux,i∇K

(
p(zi)− δ

hp

)
K(0)

f (zi)
ψi

⎞⎠
=
√

hpHη

√
nhdz

1

Op(1)

by Assumptions E6M and E7M, and bandwidth condition (iii). For the second term on the
RHS of In,h1,hp , IB

n,h1,hp
can be written as a second-order U-statistic:

IB
n,h1,hp

= 1

n3/2h3/2
p hdz

1 H
η
2

n∑
i=1

n∑
j>i

⎛⎝siux,i∇K

(
p(zi)− δ

hp

) K
(

zi−zj
h1

)
f (zi)

ψj

+sjux,j∇K

(
p(zj)− δ

hp

) K
(

zi−zj
h1

)
f (zj)

ψi

⎞⎠
∼= 2

√
n

n(n−1)

n∑
i=1

n∑
j>i

(
�i,j,n +�j,i,n

)
,

where

�i,j,n = 1

h3/2
p hdz

1 H
η
2

siux,i∇K

(
p(zi)− δ

hp

) K
(

zi−zj
h1

)
f (zi)

ψj.

Given that ux,i has conditional mean zero, it follows that E
[
�i,j,n|si,xi,zi,pi

]= 0, and hence
that the U-statistic is degenerate. Also, by change of variables and standard arguments, from

nhdz
1 h2

pHη → ∞ and E7M, we have that

E
[
�2

i,j,n

]
= o(n).
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Hence, by Lemma 3.1 in Powell, Stock, and Stoker (1989) and the degeneracy of the
U-statistic, we can conclude that the second term is⎛⎝ 2

√
n

n(n−1)

n∑
i=1

n∑
j>i

(
�i,j,n +�j,i,n

)⎞⎠= op(1),

which completes the proof. �

A.2. Additional Figures and Tables

Figure A.1. RMSE comparison—additive error model (CASE I)—ρ = 0.
Note: (1) Number of Monte Carlo replications: 1,500. (2) h = 0.15,0.10, and 0.05 correspond to the
estimator θ̂A with a fixed bandwidth size, whereas ĥ denotes the same estimator with a data-driven
bandwidth. (3) HSZ(·) corresponds to the estimator (18), with δn set to the 85%, 90%, and 95%
(unconditional) quantiles of z′

iγ̂ . (4) AS(·,·) corresponds to the estimator in (19), with δn again set
to the 85% and 90% quantiles and b ∈ {0.5,1} (the RMSE results for AS(0.95,0.5) and AS(0.95,1) can
be found in the tables in the Supplementary Material).
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Figure A.2. RMSE comparison—additive error model (CASE I)—ρ = +0.5.
Note: (1) Number of Monte Carlo replications: 1,500. (2) h = 0.15,0.10, and 0.05 correspond to the
estimator θ̂A with a fixed bandwidth size, whereas ĥ denotes the same estimator with a data-driven
bandwidth. (3) HSZ(·) corresponds to the estimator (18), with δn set to the 85%, 90%, and 95%
(unconditional) quantiles of z′

iγ̂ . (4) AS(·,·) corresponds to the estimator in (19), with δn again set
to the 85% and 90% quantiles and b ∈ {0.5,1} (the RMSE results for AS(0.95,0.5) and AS(0.95,1) can
be found in the tables in the Supplementary Material).
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Figure A.3. RMSE comparison—additive error model (CASE I)—ρ = −0.5.
Note: (1) Number of Monte Carlo replications: 1,500. (2) h = 0.15,0.10, and 0.05 correspond to the
estimator θ̂A with a fixed bandwidth size, whereas ĥ denotes the same estimator with a data-driven
bandwidth. (3) HSZ(·) corresponds to the estimator (18), with δn set to the 85%, 90%, and 95%
(unconditional) quantiles of z′

iγ̂ . (4) AS(·,·) corresponds to the estimator in (19), with δn again set
to the 85% and 90% quantiles and b ∈ {0.5,1} (the RMSE results for AS(0.95,0.5) and AS(0.95,1) can
be found in the tables in the Supplementary Material).
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Figure A.4. Empirical distribution of p̂(ŵi) with index restriction ŵi = z′
iγ̂ .
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Figure A.5. Empirical distribution of estimated nonparametric propensity score.
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Table A.1. Descriptive statistics

Variable Description Mean Std. Dev. Min Max

Dependent variable: DOCVIS Number of doctor visits/seen in the last month 0.401 0.796 0 9

Endogeneous covariate: H Self-reported health is poor or fair 0.252 0.434 0 1

Male Sex=male 0.437 0.496 0 1

Edu Highest educational qualification: GCSE OL or higher 0.557 0.497 0 1

Inc Post-tax weekly personal income is at least £250 0.185 0.389 0 1

Tempsick Out of work as temporarily sick 0.004 0.064 0 1

Hlim Activities in last month limited by health 0.109 0.312 0 1

Excluded covariates (not in xi)

Perm_Sick Current work status—permanently sick 0.029 0.167 0 1

Retired Current work status—retired 0.276 0.447 0 1

Soc3 Social class—other nonmanual 0.192 0.394 0 1

Soc4 –Skilled manual 0.336 0.472 0 1

Soc5 –Semi skilled manual and personal services 0.150 0.357 0 1

Soc6 –Unskilled 0.049 0.216 0 1

Accom Accommodation—Bungalow 0.106 0.308 0 1

Wine Number of units of wine consumption last week 1.483 3.677 0 53

Winesq Wine squared/100 15.718 87.877 0 2809

Crntsmkr Current smoker 0.286 0.452 0 1

Disab Has long-standing disability 0.343 0.475 0 1
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SUPPLEMENTARY MATERIAL

Arulampalam, Wiji, Valentina Corradi, and Daniel Gutknecht (2023). Supple-
ment to “Intercept Estimation in Nonlinear Selection Models,” Econometric
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