The FIT Labour Supply Model for Germany

Warwick International Symposium on Employment and Skills Forecasting

University of Warwick, September 29, 2011

Michael Kalinowski and Carsten Hänisch

Introduction - About Fraunhofer FIT

- Established research group in development of microsimulation models
- Major clients: German federal ministries
- Among these projects:
- Long-term (~20 years) labour supply projections for the German Federal Ministry of Education and Research (2007) and the former Bund-Länder Commission for Educational Planning and Research (2001)
- Since 2008 in cooperation with:
 - Federal Institute for Vocational Education and Training (BIBB)
 - Institute for Employment Research (IAB)
 - Institute of Economic Structures Research (GWS)

Main data sources (Labour Supply)

- Education statistics (FSO Federal Statistical Office), yearly
- Projections of future stocks in the educational system (KMK Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic), every 3-5 years
- Population projections (FSO), every 3-5 years
 - Population, births, deaths and net migration
- German Microcensus (MC), yearly, 1% subsample
 - Labour force participation rates
 - Qualification and occupational structure
 - Adjusted to national accounts (NA) and education statistics

Levels of aggregation

- Age, Gender
- 4 skill levels (ISCED)
- Initial vocational qualification by specialisation recoded from MC 05-08

Results:

- Remaining labour force not in education
- New labour force supply from educational system
- New labour force supply from migration

Fraunhofer FIT Model

Labour Supply: Forecasting method

• Starting point: Basic balancing equation where t is the end of the year

(1) $p_t = p_{t-1} + b_{t-1} - d_{t-1} + i_t - e_t$

with $b_{t-1} - d_{t-1} = ni_{t-1}$ (natural increase) and $i_t - e_t = nmig_t$ (net migration)

• Forecasting population by <u>age</u>, <u>sex</u>, <u>qualification</u>: *not* in education (pne):

(2) $pne_{t,a,s,q} = pne_{t-1,a-1,s,q} + ni_{t-1,a-1,s,q} + nmig_{t,a,s,q} + nedu_{t,a,s,q}$

• Total population in t:

(3) $p_{t,a,s,q} = pne_{t-1,a-1,s,q} + pie_{t-1,a-1,s,q}$

• Labour force supply:

(4) If
$$s_{t,a,s,q} = pne_{t,a,s,q} * If rne_{t,a,s,q} + pie_{t,a,s,q} * If rie_{t,a,s,q}$$

 \rightarrow But: How are $nmig_{t,a,s,q}$ and $nedu_{t,a,s,q}$ determined?

Fraunhofer

German Educational System - Transition model to describe stocks and flows

- *Starting point*: Stocks in eductational institutions
- Main Problems:
 - Availability and consistency of data (MC vs. FSO and NA)
 - Use of adjustment algorithms
- Basic method:
 - \circ stock_t = stock_{t-1} + entrants_t graduates_t
 - Stocks at the end of one year are equal to Stocks at the beginning of the following year
- Available information on transitions from GSOEP, FSO-Data on education, ...
- ... are not consistent: Again use of adjustment algorithms to determine most likely transition structure
- Result: Transition matrix of the educational system

German Educational System - Accounts

German Educational System – Accounts

	in 100	0					Germa	ny			Year	2000				
	Education									Labour Market						
to	BVJ/ BGJ	BVM	BFS	BL	SdG	FS	FOS/ FGY	FHS	UNI	ALO	WPFL/ Zivi	EWT	NEP	AWT	Ab- gänge	JA
HSA	38,5	25,2	60,1	123,6	0,8	0,5	0,0	0,0	0,0	38,9	0,2	8,0	11,9	7,3	315,0	315,0
MBA	13,8	5,6	81,0	157,7	4,1	1,6	60,0	0,0	0,0	15,4	0,4	12,3	4,2	13,0	369,0	369,0
HSR	1,0	0,0	4,4	37,7	1,2	1,9	0,0	12,2	60,5	3,8	77,1	15,3	11,4	6,9	233,4	233,4
BVJ/BGJ	0,0	6,5	15,7	56,3	0,4	0,0	1,3	0,0	0,0	0,6	0,1	3,7	3,0	5,1	92,6	92,6
BVM	11,7	14,8	2,2	27,4	1,0	0,0	2,9	0,0	0,0	13,3	0,8	8,6	7,5	4,8	80,1	94,9
BFS	3,8	0,5	206,6	91,0	13,4	8,4	3,1	3,7	10,0	2,7	21,2	102,6	1,2	1,7	263,2	469,8
BL	0,0	0,0	2,5	1079,0	1,9	9,2	12,2	2,4	11,4	77,5	28,9	435,5	29,5	8,2	619,3	1698,3
SDG	0,0	0,0	0,3	0,6	76,9	0,3	2,5	1,2	1,1	1,1	0,5	29,8	0,8	0,8	38,9	115,8
FS	0,0	0,0	0,1	0,2	0,1	50,5	0,2	1,6	4,6	0,4	0,6	40,4	0,2	0,3	48,7	99,2
FOS /FGY	0,0	0,0	4,2	4,4	0,7	3,3	120,8	18,7	7,7	3,4	17,5	19,5	2,6	4,6	86,5	207,3
FHS	0,0	0,0	0,6	1,0	0,2	0,6	0,0	357,5	5,8	1,8	3,1	65,9	2,4	2,4	83,7	441,2
UNI	0,0	0,0	1,1	2,9	0,7	1,2	0,0	12,7	1105,4	5,2	2,3	161,3	10,4	8,3	206,2	1311,5
ALO	2,1	7,8	4,4	18,1	1,5	2,4	2,4	9,4	17,1	1408,5	4,0	1237,1	1130,4	202,0	2638,7	4047,2
WPFL/ZIVI	0,0	0,0	2,1	53,0	0,3	1,5	1,6	21,8	52,3	0,8	0,0	128,3	1,1	4,0	266,8	266,8
EWT	13,7	7,5	3,3	18,1	1,4	8,8	4,2	7,1	16,3	1150,2	88,3	33484,3	1114,4	383,7	2817,1	36301,4
NEP	8,7	13,5	2,9	4,3	1,9	2,0	2,8	4,1	4,2	963,4	0,6	613,3	19379,9	880,8	2502,4	21882,3
ZUW	3,8	17,2	10,1	26,7	6,6	6,0	4,9	4,1	25,2	121,8	0,2	288,7	303,8			819,1
Zugänge	97,2	83,8	194,9	622,9	36,1	47,7	98,0	98,9	216,1	2400,4	245,8	3170,3	2634,7		Σ JA =	67945,7
JE	97,2	98,6	401,5	1702,0	113,0	98,2	218,8	456,4	1321,4	3808,9	245,8	36654,6	22014,6	1533,8	Σ JE =	67231,0
Source: IAB	Bildun	gsgesa	mtrechn	ung												

- Focus on transition into/out of labour market
- On main diagonal: "Stayer"
- Off the main diagonal: Transitions
- First three rows:
 Secondary education

Example: Stocks and Transistions (BVM= vocational preparation scheme)

```
BVM
  zugbvm := uhsabvm + umbabvm +uhsrbvm
                         +ubfsbvm + ublbvm + usdgbvm
        + ubgjbvm
                                                        Entrants in BVM
        + ufsbvm + ufosbvm +ufgybvm +ufhsbvm + uwhsbvm
        + uwpfbvm + uambvm + uzuwbvm;
bvm1 := zugbvm;
                                                        Eorecast BVM
bvm2 := uqbvm2 * bvm1(t-1)/100;
bvm := bvm1 + bvm2;
- Abgänger insgesamt
abgbvm := (1-ugbvm2/100) * bvm1(t-1) + bvm2(t-1);
                                                        Exits in other accounts
ubvmbgj := ugbvmbgj*abgbvm/100;
                                                           including labour
ubvmbfs := ugbvmbfs*abgbvm/100;
                                                           market with transition
ubvmbl := uqbvmbl *abgbvm/100;
ubvmsdg := ugbvmsdg*abgbvm/100;
                                                           rates "udxxxyyy"
ubvmfs := ugbvmfs *abgbvm/100;
ubvmfos := ugbvmfos*abgbvm/100;
ubvmfgy := uqbvmfgy*abgbvm/100;
                                                           xxx = source
ubvmfhs := uqbvmfhs*abqbvm/100;
ubvmwhs := ugbvmwhs*abgbvm/100;
ubvmwpf := ugbvmwpf*abgbvm/100;
                                                          yyy = target
ubvmam := ugbvmam *abgbvm/100;
ubvmawt := ugbvmawt*abgbvm/100;
```


Pitfalls

- Curtailment of schooling at the Gymnasium from nine to eight years
- Suspension of compulsory military service

Additional school leavers and inflows in tertiary education

Selected Results for Germany

Thank you

www.**qube**-projekt.de/ http://www.**fit.fraunhofer**.de/fb/risk/mikmod_en.html

© Fraunhofer Institute for Applied Information Technology FIT