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ABSTRACT 

 

 

We present an improved method for inference in linear regressions with 

overlapping observations.  The method transforms the regression so that 

observations of the dependent variable are non-overlapping, allowing standard 

inference procedures to be used.  These procedures are asymptotically valid 

when applied to the transformed regression, and Monte Carlo analysis shows 

they perform better in finite samples than the more sophisticated methods 

applied to the original regression that are in common usage. The transformation 

is also applicable to panel and Fama-MacBeth regressions.   
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1. INTRODUCTION 

Researchers in empirical finance often regress long-horizon returns onto explanatory 

variables.  Such regressions have been used to assess stock return predictability, to test the 

expectations theory of the term structure of interest rates, to test the cross-sectional pricing 

implications of the CAPM and consumption-CAPM, and to test the efficiency of foreign 

exchange markets. These regressions involve overlapping observations which raise 

econometric issues that are addressed in this paper.  

Regressions with long horizon returns often show much higher R2 than regressions 

with one-period returns. But work by Valkanov (2003), Boudoukh, Richardson and Whitelaw 

(forthcoming) and Hjmarlsson (2006) suggests that long-horizon return regressions have no 

greater statistical power to reject the null of no predictability than their short-horizon 

counterparts.  For testing predictability the use of long-horizon returns (as opposed to one-

period returns) would appear to be of little value.  

Nonetheless, the analysis of long-horizon returns can contribute significantly to 

understanding predictability (or dependence) and its economic significance.  For example, 

one concern with the interpretation of short-horizon regressions is measurement error.  

Cochrane and Piazzesi (2007, p. 139) forecast annual bond returns using monthly data and 

claim that “to see the core results you must look directly at the one-year horizon” and further 

find that estimating a typical one-month return model “completely misses the single factor 

representation” due to measurement error.   

Another reason for analyzing longer horizons is lengthy and uncertain response times. 

A number of recent studies of the consumption-CAPM, including Daniel and Marshall 

(1997), Parker (2001), Julliard and Parker (2005), Jagannathan and Wang (2005, 2007) and 

Malloy, Moskowitz and Vissing-Jorgensen (2005) measure consumption risk using 

consumption growth and returns measured over several periods. In general this approach 

works better than the standard consumption-CAPM. If consumers face costs associated with 

changing consumption, or if information acquisition is constrained, then consumption may 

change more slowly than implied by the standard consumption-CAPM, and this justifies a 

focus on returns and consumption growth measured over longer horizons. Even though long-
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horizon regressions may be no better than single-period regressions for testing predictability,  

the above examples show that researchers are likely to continue using long-horizon 

regressions in order to better understand the nature of predictability.  

Long-horizon return regressions potentially suffer from two econometric problems. 

The first is bias in the usual OLS slope estimate. The bias is not caused by the presence of 

overlapping observations but arises when the predictor variable is persistent and its 

innovations are strongly correlated with returns (see Mankiw and Shapiro (1986) and 

Stambaugh (1999)).  These conditions may also arise in short-horizon regressions. A number 

of studies address the question of how to correct this bias (see Campbell and Yogo (2003) 

and Amihud and Hurvich (2004) and the references therein).  Our paper does not address the 

problem of bias but focuses instead on a problem specific to overlapping observations - the 

strong autocorrelation induced by overlapping observations.  It is now well known that 

commonly used methods to deal with the autocorrelation are inadequate and can be quite 

misleading in finite samples.  

This paper presents a simple procedure that can markedly improve inference in 

regressions with overlapping observations.  We consider an overlapping regression in which 

a multi-period return is regressed onto a set of regressors, and for which observations are 

available each period.  This regression is transformed into a non-overlapping regression in 

which one-period returns are regressed onto a set of transformed regressors.  The OLS 

coefficient estimates from the original and transformed regressions are numerically identical, 

but inference based on the transformed regression is simplified because the autocorrelation 

induced by overlapping observations is no longer present.  The procedure is applicable to 

time-series regressions and to panel regressions.  It can be applied to both predictive 

(forecasting) and contemporaneous (explanatory) regressions.  We also show how the 

method can be adapted to improve the efficiency of regression coefficient estimates. 

We show that standard inference techniques, such as OLS and the White (1980) 

adjustment for heteroscedasticity, are asymptotically valid when applied to the transformed 

regression. To assess the finite-sample performance of our procedure we run Monte Carlo 

simulations.  The simulations show that standard inference procedures (OLS and White 
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1980) perform substantially better when based on the transformed regression rather than on 

the original specification, and indeed these simple procedures when applied to the 

transformed regression perform better than more sophisticated techniques such as Hansen-

Hodrick (1980) and Newey-West (1987) applied to the original regression.  The superior 

performance of our procedure is most marked when the return horizon in the original 

specification is long in comparison to the sample length, and Hansen-Hodrick and Newey-

West standard errors tend to be severely biased down. 

To better understand the bias in the Hansen-Hodrick and Newey-West standard errors, 

we show that it derives in part from a bias in the estimate of the auto-covariance matrix and 

we provide a simple analytical expression for it.  In contrast, the standard errors obtained 

from our transformed regression have much less bias and also exhibit lower sampling 

variability.  The result is that confidence intervals using our method have coverage 

probabilities much closer to their nominal levels than  confidence intervals constructed using 

standard techniques. 

Other papers have documented problems with conventional inference applied to long-

horizon regressions (for example Ang and Bekaert 2007; Nelson and Kim 1993; and Hodrick 

1992) and utilize or advocate simulation techniques for inference.  Another strand of the 

literature develops covariance estimators for specific cases, estimators that impose more 

structure on the serial correlation of moment conditions.  These structured estimators 

generally have excellent small-sample properties, but their applicability is limited.  For 

example, the estimator of Richardson and Smith (1991) provides valid inference only under 

the null hypothesis that returns are serially uncorrelated, and only when the explanatory 

variables are past returns.  Even then, valid inference requires the unpalatable assumption 

(for asset returns) of conditional homoscedasticity. 

The methodology that is mathematically most similar to ours is that presented in 

Hodrick (1992).  He presents a structured covariance estimator that generalizes Richardson 

and Smith (1991) in that regressors need not be past returns and returns need not be 

conditionally homoscedastic.  We show that this estimator is in fact a special case of our 

methodology and produces standard error estimates that are identical to White (1980) 
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heteroscedasticity-consistent standard errors from our transformed regression.  A drawback 

of Hodrick’s approach is that it is fairly complex and is valid only under the null hypothesis 

of no-predictability of returns.  It has not gained widespread acceptance. For example the 

well-known text by Campbell, Lo, and Mackinlay (1997) discusses statistical inference in 

long-horizon regressions at length but does not present the estimator of Hodrick (1992). Ang 

and Bekaert (2007) is an exception. They use Hodrick (1992) standard errors and argue that 

much of the empirical evidence for the time-series predictability of stock returns has been 

overstated in the literature due, in part, to the use of OLS or Hansen-Hodrick (1980) standard 

errors which they find ‘lead to severe over-rejections of the null hypothesis’.  

An approach similar in appearance to ours is advocated by Jegadeesh (1991) and 

Cochrane (1991).  They bypass the problem of overlapping observations by regressing one-

period returns onto the sum of lags of the explanatory variable.   However this is strictly a 

procedure for testing the null of no-predictability.  It does not provide a coefficient estimate 

for a long-horizon regression, and it is restricted to regressions with a single explanatory 

variable, so it is of little use for understanding the sources of long-horizon predictability.  

Our method is easily extended to the analysis of panel data.  We show how Fama-

MacBeth style regressions involving multi-period returns can be transformed into regressions 

involving one-period returns.  The transformation has a natural interpretation in terms of 

‘rolling portfolios’ as used by Jegadeesh and Titman (1993).  Our approach is likely to be 

particularly useful in the panel setting, where the complexity and size of the data precludes 

some of the more sophisticated methods for dealing with overlapping observations such as 

bootstrapping and the Hodrick (1992) procedure. We also show how to adapt the procedure 

to estimate the regression coefficients in an overlapping regression more accurately by 

making better use of the data available. 

Section 2 develops the basic idea in the context of inference for a linear regression 

with overlapping observations.  Section 3 presents results from Monte Carlo studies 

demonstrating the advantages of our approach.  Section 4 shows how the transformation 

method can be used for Fama-MacBeth and panel regressions and Section 5 develops an 

improved estimator of the regression coefficients.  Section 6 illustrates our approach with 
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two empirical examples. The first example analyses the predictability of long-horizon US 

stock market returns and the second example analyses reversal in relative country stock index 

returns. Section 7 concludes. 

2. LINEAR REGRESSION WITH OVERLAPPING 

OBSERVATIONS 

Consider a regression in which the future k-period log return yt,k is regressed onto a l-

dimensional row vector xt of time t explanatory variables (this generally includes a constant 

term): 

 , ,t k t t ky x uβ= + . (1) 

The k-period log return yt,k is the sum of k one-period log returns yt,k = rt+1 + rt+2 + … 

+ rt+k (where rt denotes the one-period log return).  We require that these one-period returns 

be available to the researcher. This is generally the case, as multi-period returns are normally 

constructed from one-period returns, though our approach is not applicable in cases such as 

Hansen and Hodrick’s (1980) study of the foreign exchange market.   

  The OLS parameter estimate in (1) can be expressed in terms of one-period returns.  

If {yt,k, xt}t = 1,…,T-k  is a sample of T–k observations of k-period returns and explanatory 

variables, the OLS estimate of β in (1) is 

 ( )
1 1

, 1
1 1 1 1

ˆ ' ' ' ' ... .
T k T k T k T k

t t t t k t t t t t k
t t t t

x x x y x x x r rβ
− −− − − −

+ +
= = = =

⎛ ⎞ ⎛ ⎞
= = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑  (2) 

Now define tx) as the sum of xt and its first k – 1 lags: 1

0

k
t t ii

x x−
−=

= ∑) , where we define 

xt = 0, for  0t ≤  and for t > T–k.  Then the OLS estimate of β can be written in terms of one-

period returns:  

 
1 1

1
1 1

ˆ ' '
T k T

t t t t
t t

x x x rβ
−− −

+
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ) , (3) 

showing that the OLS estimate of β in (1) is a linear function of one-period returns. 
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In fact, the OLS estimate of β can be obtained from a regression in which the 

dependent variable is one-period returns.  This can be seen most clearly using matrix notation.  

Define the matrix of original regressors X as the (T–k) × l matrix with the tth row given by xt, 

and define X
)

 as the (T–1) × l matrix with the tth row given by tx) .  We now construct a 

matrix of transformed regressors Z as  

 ( ) 1
' '

−
=Z X X X X X
) ) )

, (4) 

and define r as a (T–1)-dimensional column vector with tth element given by rt+1. 

 The transformed regression of one-period returns onto transformed regessors:  

 β= +r Z u  (5) 

has an OLS parameter estimate given by ( ) 1' '−Z Z Z r  and this can be expressed as 

 
( ) ( ) ( )( ) ( )

( )

11 1 11

1

' ' ' ' ' ' ' ' ' '

' '

−− − −−

−

=

=

Z Z Z r X X X X X X X X X X X X X X X r

X X X r

) ) ) ) ) ) ) ) )

)
 (6) 

which is equivalent to the expression in (3), showing that the OLS estimate of β in the 

transformed non-overlapping regression (5) is numerically identical to that obtained from the 

overlapping regression in (1).  Since this equivalence is exact it does not depend on the 

assumed data generating process.  Of course, inference does depend on the assumed data 

generating process, and the next section develops inference procedures for the OLS 

parameter estimate based on various stationary data generating processes.  

2.1 Inference on β 

This section shows that several standard inference procedures applied to the 

transformed regression are valid asymptotically.  We first derive a general expression for the 

asymptotic sampling distribution of the OLS parameter estimate assuming only stationarity, 

and we then derive the properties of specific estimators under more restrictive assumptions.  
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Consider the transformed regression (5) which we write in scalar notation as 

 1 1'        1, 2, 1,t t tr z u t Tβ+ += + = −K  (7) 

where zt' is the tth row of the matrix Z defined above.  Now suppose that rt and ut are 

stationary and ergodic random variables, that xt is an l-dimensional stationary and ergodic 

random vector, and that E[xt’xt] is non-singular.  Note we do not make direct assumptions 

about zt since it is a transformation of X.  Now suppose we observe a sample of {rt+1, xt} of 

size T – 1.  The OLS estimate of β  for the transformed regression (5) is 

 
( )

11 1

1 1
1 1

11 1

1 1

11 1

1 1

1 1

1 1

ˆ ' '

' '

' '

' '

T T

T t t t t
t t

T T

t t t t t
t t

T T

t t t t
t t

T k T

t t t t
t t

z z z r

z z z z u

z z z u

x x x u

β

β

β

β

−− −

− +
= =

−− −

= =

−− −

= =

−− −

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= +⎜ ⎟
⎝ ⎠

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑

∑ ∑

∑ ∑ )

 (8) 

To derive the asymptotic distribution consider: 

 ( )
1 1

1
1 1

1 1ˆ ' '
1 1

T k T

T t t t t
t t

T k x x x u
T kT T

β β
−− −

−
= =

− ⎛ ⎞− = ⎜ ⎟−− −⎝ ⎠
∑ ∑ ) . (9) 

Given our assumptions of stationarity and ergodicity, it follows that  

 
1

1 ' [ ' ]
T k

p
t t t t

t
x x Q E x x

T k

−

=

⎯⎯→ ≡
− ∑ , (10) 

and that  

 
1

1

1 (0, )
1

T
D

t t
t

x u N
T

−

=

⎯⎯→
−

∑ S) , (11) 

where S is the long-run covariance matrix of t tx u) : 
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1

1

'lim
N

t t t j t j
N j N

E x u u x
−

− −
→∞ =− +

⎡ ⎤= ⎣ ⎦∑S ) ) . (12) 

Standard asymptotic theory then tells us that the OLS estimate is distributed 

asymptotically normal: 

 ( ) ( )1 1
1

ˆ 0,
1

D
T

T k N Q Q
T

β β − −
−

−
− ⎯⎯→

−
S . (13) 

Furthermore asymptotic normality holds when we replace the population moments with 

consistent estimators of them.  So the asymptotic distribution is normal with mean β and an 

estimated asymptotic covariance matrix: 

 1 1
2

1ˆ ˆ ˆ ˆEst. Asy. Var
( )

T Q SQ
T k

β − −−⎡ ⎤ =⎣ ⎦ −
, (14) 

where Ŝ  is a consistent estimator of S, and 

 
1

1ˆ '
T k

t t
t

Q x x
T k

−

=

=
− ∑  (15) 

The main advantage of the transformed regression is that estimation of S is more 

straightforward than in the usual case with overlapping observations.  By making more 

specific assumptions we can examine specific estimators for S.  

2.2 IID Returns 

When one-period returns are serially uncorrelated and conditionally homoscedastic 

then conventional OLS standard errors from the transformed regression provide 

asymptotically correct inference.  To see this note that if returns are serially uncorrelated and 

conditionally homoscedastic then a consistent estimate of S is 

 
1 1

2
1

1 1

1 1 ˆ'
1 1

T T

t t t
t t

S x x u
T T

− −

= =

⎛ ⎞= ×⎜ ⎟− −⎝ ⎠
∑ ∑) ) . (16) 
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It follows that an asymptotically valid expression for the sampling variance of the 

coefficient estimate is obtained from inserting this expression for S into (14): 

1 1

12
1 1

1 1 1ˆEst. Asy. Var ' '
( )

T k T k

t t t t
t t

T x x S x x
T k T k T k

β
− −− −

= =

− ⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ − − −⎣ ⎦ ⎣ ⎦
∑ ∑ , 

but this expression simplifies to the conventional covariance matrix of OLS parameter 

estimates obtained from the transformed regression, 

 
11

2

1

ˆ ˆEst. Asy. Var '
T

t t
t

z zβ σ
−−

=

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑  (17) 

where 12 1 2
1

ˆ ˆ( 1) T
tt

T uσ −−
=

= − ∑ . 

Note that the assumptions required for this result are weaker than those required by 

Richardson and Smith (1991).  They require that the explanatory variables as well as the 

dependent variable be constructed from one-period returns that are serially independent and 

conditionally homoscedastic, whereas our only requirement of the explanatory variables is 

that they be stationary.  

2.3 Heteroscedasticity 

Similarly, when one-period returns are serially uncorrelated but not necessarily 

homoscedastic, the standard White heteroscedasticity-consistent standard errors from the 

transformed regression are correct asymptotically.  Note that under these conditions we can 

estimate S consistently by 

 
1

2
2

1

1 ˆ '
1

T

t t t
t

S u x x
T

−

=

=
− ∑ ) ) . (18) 

Insertion of this estimator into (14) gives the following expression 

1 11
2

2
1 1 1

1 1 1ˆ ˆEst. Asy. Var ' ' '
( )

T k T T k

t t t t t t t
t t t

x x u x x x x
T k T k T k

β
− −− − −

= = =

⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ − − −⎣ ⎦ ⎣ ⎦
∑ ∑ ∑) ) , (19) 
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which can be rearranged to give White’s (1980) heteroscedasticity-consistent covariance 

matrix of OLS parameter estimates from the transformed regression: 

 
1 11 1 1

2

1 1 1

ˆ ˆEst. Asy. Var ' ' '
T T T

t t t t t t t
t t t

z z u z z z zβ
− −− − −

= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞⎡ ⎤ = ⎜ ⎟ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ . (20) 

This covariance estimator in the form of (19) was presented in Hodrick (1992, p.362) 

in equation (8).  Hodrick (1992) finds this estimator has much better small sample properties 

than the Hansen and Hodrick covariance estimator, but he notes that it is only valid under the 

null of no predictability. 

2.4 Heteroscedasticity and Autocorrelation 

If returns are predictable then in general the errors from the transformed regression 

are not serially uncorrelated.  This is the case even when the original regression model (1) is 

correctly specified so that the expectation of the k-period return conditional upon the time t 

information set It is a linear function of the explanatory variables: 

 ,t k t tE y I x β⎡ ⎤ =⎣ ⎦ . (21) 

Thus when returns are predictable, consistency requires that we account for serial correlation 

in one-period returns. 

The Newey-West estimator of long-run covariance is probably the most widely used 

heteroscedasticity and autocorrelation consistent (HAC) estimator.  The Newey-West 

covariance estimate with J lags is  

 
( )3

1

1

1

ˆ ˆ ˆ(0) ( , ) ( ) ( ) ' , where

ˆ ˆ ˆ ˆ ˆ( ) '   and  ( , ) 1 .
1

J

j

T

t t t j t j
t j

S w j J j j

jj x u u x w j J
J

=

−

− −
= +

= Γ + Γ + Γ

Γ = = −
+

∑

∑
 (22) 

Inserting this estimate of long-run covariance into (14) gives an expression for the 

asymptotic covariance matrix of the parameter estimates: 
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( )
1 1

2
1 1 1

1 1 1ˆ ˆ ˆ' (0) ( , ) ( ) ( ) ' '
( )

T k J T k

t t t t
t j t

T x x w j J j j x x
T k T k T k

− −− −

= = =

⎛ ⎞− ⎛ ⎞ ⎛ ⎞Γ + Γ + Γ⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ (23) 

This expression can be rearranged to give the standard Newey-West HAC covariance 

matrix of the OLS parameter estimates in the transformed regression.  To see this, denote an 

autocovariance term analogous to ˆ ( )jΓ  but in terms of z: 

 
1

1

ˆ ˆ ˆ( ) '
T

t t t j t j
t j

j z u u z
−

− −
= +

Λ = ∑ , (24) 

and note that the following relation holds between the two autocovariance terms: 

 
1 1

ˆˆ ˆ ˆ ˆ ˆ( ) ' ' ( ) ' 't t t t t t t tj x x x x j x x x x
− −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ = Λ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ . 

Inserting this expression into (23) then gives an expression for the asymptotic 

sampling variance that is identical to the Newey-West HAC covariance matrix of the OLS 

parameter estimates in the transformed regression: 

( )
1 11 1

1 1 1

1 1 1ˆ ˆ ˆ' (0) ( , ) ( ) ( ) ' '
1 1 1

T J T

t t t t
t j t

z z w j J j j z z
T T T

− −− −

= = =

⎛ ⎞⎛ ⎞ ⎛ ⎞Λ + Λ + Λ⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑  (25) 

This estimator is simple, it is consistent, and it is guaranteed to be positive definite.  

Of course the same properties hold for the standard approach where the Newey-West 

covariance estimator is used in conjunction with the original regression specification (1).  

The advantage of our approach lies in its finite sample properties which are explored in the 

next section. 

3. MONTE CARLO ANALYSIS 

We have seen that inference based on the transformed regression (1) is valid 

asymptotically, but conventional methods are also valid asymptotically.  This section shows 

that inference based on the transformed regression has better finite-sample properties than the 

conventional approaches. 
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We run Monte Carlo simulations from two sets of data-generating processes. The first 

set starts with a pair of uncorrelated persistent processes { }1 2,t tx x  and then generates the one 

period returns {rt} and the multi-period returns {yt,k} using a linear model as in equation (1). 

The second is intended to capture the spirit of regressions of k-period returns on lagged k-

period returns as in Fama and French (1988). We use a variety of values for k and for the 

length of the data, and we compare the performance of our procedures based on the 

transformed regression with the more conventional approaches based on Newey-West and 

Hansen-Hodrick estimators of long-run covariance applied to the overlapping data regression. 

Andrews (1991) examines and compares a variety of other HAC estimators, which 

differ from Newey-West in their weighting function w(j, J). We have done the simulations 

using the four other HAC estimators he considers (with kernel functions that are Truncated, 

Parzen, Tukey-Hanning and Quadratic Spectral) and using a comparable bandwidth to ensure 

they have the same asymptotic variance as the Newey-West estimator (see Andrews 1991 p 

829). The results are substantially unaltered, and are not reported1. 

Our main finding from both types of simulation is that conventional OLS standard 

errors obtained from the transformed regression provide the most accurate small-sample 

inference for homoscedastic data generating processes.  In the presence of heteroscedasticity, 

White’s (1980) heteroscedasticity-consistent standard errors from the transformed regression 

provides the most accurate inference in small samples.  When the forecast return horizon is 

long in comparison to the sample period, and when the regressors are strongly positively 

autocorrelated, the Newey-West and Hansen-Hodrick procedures produce standard errors 

that are severely biased downwards.  To help understand the source of this bias we derive a 

simple expression for this bias (under restrictive conditions).    

                                                 

1 The full tables with all the HAC estimators are available [on authors’ website]. 
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3.1 Simulations with two exogenous regressors 

 The results are for inference concerning the OLS parameter estimates in an 

overlapping regression as in (1). The models include an intercept and two exogenous 

regressors. The regressors are homoscedastic, stationary, mutually uncorrelated, AR(1) 

processes with unit variance and AR parameter 0.8. Table 1 presents results from simulations 

from a model where the errors are homoscedastic.  In Panel A returns are unpredictable (at 

all horizons), whereas in Panel B returns are predictable (we choose coefficients such that the 

R2 for one period returns is five percent).  The model in the absence of predictability has one-

period returns that are mean-zero independent normal random variables with variance one. 

For each data generating process, and for each sample length and return horizon we 

present results for four conventional covariance estimators applied to the overlapping 

regression: ‘OLS’ the standard OLS covariance estimator, ‘White’ which is White’s (1980) 

heteroscedasticity-consistent covariance estimator (both these estimators fail to account for 

induced serial correlation), ‘NW’ which uses the  Newey-West HAC estimator of long-run 

covariance, and ‘HH’ which is the heteroscedasticity-consistent version of Hansen and 

Hodrick (1980).  For NW we show results for lag lengths of k - the number of periods in the 

long-horizon return - and 2k.  Of course any fixed lag length is not consistent, but in any 

given sample a lag length must be chosen and the above choices correspond to those 

frequently reported in the empirical finance literature.   

We then present results for covariance estimators based on the transformed regression. 

We consider the three estimators presented in the previous section: OLS, White, and Newey-

West HAC covariance estimators applied to the transformed regression.  

For each covariance estimator and each scenario we report the bias, standard 

deviation, and RMSE (root mean square error), as well as the true confidence levels of the 

nominal 99%, 95%, and 90% regression coefficient confidence intervals. 5000 simulations 

are used for each scenario.  

Table 1 Panel A shows that the OLS and White estimators are severely biased down, 

as expected, since they fail to account for induced serial correlation.  However the Newey-
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West and Hansen-Hodrick estimators also exhibit a downward bias, which is particularly 

strong when the return horizon is long and the sample length short.  For example with a 

forecast return horizon of 12 and 100 observations the downward bias in the NW and HH 

estimators is sufficiently large to result in the 99% confidence intervals from these estimators 

having coverage frequencies below 87%. 

In contrast, the estimators based on the transformed regression have much better 

properties.  In particular, the standard OLS estimator of covariance obtained from the 

transformed regression performs very well in this situation, exhibiting low bias and coverage 

frequencies that are close to their nominal levels.  Note however that the Newey-West 

estimator applied to the transformed regression produces estimates that are also biased down 

quite substantially, though not by as much as the Newey-West estimator applied to the 

overlapping regression. 

Table 1 Panel B reports results from simulations where the regressors and errors 

follow the same processes as in Panel A, but the actual returns are predictable with a one-

period ahead R2- of five percent.  The results are broadly similar to those in Panel A.  Again 

the procedures based on the transformed regression perform best, and the best performing 

estimator is again OLS applied to the transformed regression.  Note however that when 

returns are predictable the OLS covariance estimator is biased down, in some cases 

substantially.  We would expect some bias as OLS applied to the transformed regression 

ignores the serial correlation in one-period returns due to the predictability of returns.  In 

such cases we might expect a HAC estimator such as Newey-West applied to the transformed 

regression to work better, but this is not the case.  

Table 2 reports results from simulations where returns are predictable and where the 

errors are conditionally heteroscedastic. The standard deviation of the error is proportional to 

the deviation of the lead regressor from its mean.  The presence of heteroscedasticity has a 

clear effect, significantly worsening the performance of the OLS covariance estimates 

obtained from the transformed regression.  The White (heteroscedasticity consistent) 

covariance estimate obtained from the transformed regression  performs quite well.   As in 

Table 1 Panel B the presence of return predictability produces some bias in the White 
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estimator as it does not account for serial correlation in errors.  However the use of Newey-

West to account for this serial correlation actually increases the bias, with the result that the 

best performing estimates in this case are the White covariance estimates obtained from the 

transformed regression. 

The broad conclusions seem to be robust to the choice of parameters. In particular, if 

the regressors are less persistent (AR parameter of 0.1 rather than 0.8) Monte-Carlo 

simulations that are not reported here also show that the procedures performed on the 

transformed regressions work best, with the White estimate being the best in the presence of 

heteroscedasticity and the OLS estimate being best otherwise. As one would expect however, 

the difference between the estimates from the transformed and untransformed regressions is 

less marked than in the case of persistent regressors. 

3.2 Analysis of bias in HAC variance estimators  

Tables 1 and 2 show that both the Newey-West and Hansen-Hodrick estimators of 

variance are biased down, in some cases quite severely.  The bias in the Newey-West 

estimator is also present when applied to the transformed regression.  We can distinguish two 

distinct sources of bias in these estimators.  The first source of bias relates to the non-unitary 

weights that are applied to sample autocorrelations.  The true long-run covariance matrix is 

an unweighted sum of all autocovariance terms.  The Newey-West estimator uses weights 

that are strictly less than one, and if the true autocovariances are positive then this understates  

the long-run covariance.  Note that this argument does not apply to the Hansen-Hodrick 

estimator under the null hypothesis since it uses a truncated kernel with unit weights up to the 

truncation point.  The other source of bias results from the use of estimated residuals rather 

than true errors in forming the sample autocovariances. 

We can analyze the bias induced by the use of estimated residuals in more detail.  

Consider the difference between the ‘true’ error terms in a regression model and the (OLS) 

estimated errors or residuals in a generic regression of a T-vector y onto a T by l matrix X: 

 β= +y X u . (26) 
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The estimated residuals are given by ˆ =u Mu where M is the idempotent error projection 

matrix: 

 ≡ -1M I - X(X'X) X' . (27) 

‘True’ errors are transformed into estimated residuals by M.  This transformation also alters 

the covariance structure of errors.  Denote the covariance matrix of true errors by Ω .  Then 

the covariance of the estimated residuals is given by: 

 ( )ˆcov .= Ωu M M  (28) 

When the covariance matrix of the true errors is proportional to the identity matrix: 

 ( ) 2cov σ=u I  (29) 

then the covariance matrix of the estimated residuals is simply proportional to the error 

projection matrix: 

 ( ) 2ˆcov σ=u M . (30) 

The elements on the main diagonal of the error projection matrix M sum to T – l.  

This fact lies behind the commonly used degrees of freedom adjustment for estimation of the 

error variance in a linear regression.  Unfortunately, no general rules (that we know of) apply 

to the summation of elements along the other diagonals.  However, we can use the specific 

error projection matrix M associated with the regression under consideration, to obtain an 

estimate of the bias of the HAC covariance estimators, under the assumption that there is 

zero autocorrelation in true errors.  All we need do is replace the terms utut-j that appear in the 

expression for the HAC estimator with an estimate of the expectation of this term.  Denote 

the element in row i column j of the matrix M by mi,j.  Then the estimate of bias in the 

Newey-West covariance estimator presented in (22) is  
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Applying this approach to the Hansen-Hodrick estimator of long-run covariance 

results in estimates of bias that are close to those reported in Table 1.  The bias in each of 

these autocovariance terms may be small, but the Newey-West and Hansen-Hodrick 

procedures involve the summation of many autocovariances and this can result in a 

substantial overall bias.  Indeed, the bias observed in Table 1 for the Hansen-Hodrick 

procedure is removed if the true errors are used in place of the estimated residuals.   

This analysis and the Monte Carlo studies shows the need for caution in using HAC 

covariance estimators in small samples.  A desire to be conservative and account for positive 

autocorrelation leads many to use HAC covariance estimators, but in the absence of strong 

positive autocorrelation this can backfire and produce covariance estimates that are actually 

more downwardly biased (i.e. less conservative) than estimators that ignore autocorrelation.  

The advantage of the transformed regression approach is that it removes the autocorrelation 

induced by overlapping observations, thus reducing the cost of ignoring autocorrelation.  We 

leave to future research whether it is possible to extend the above analysis to make finite-

sample adjustments to HAC estimators to remove or ameliorate this finite-sample bias. 

3.3 Fama-French style regressions 

In this second set of simulations, one period log returns {rt} are generated as 

independent normal random variables. The k-period return at time t, yt,k, is then regressed on 

the lagged k-period return, yt-k,k. The experiment is in the spirit of Fama and French (1988). 

It is natural to think of the period length as annual. For the simulations, we use k = 5 

and 10 years, and the data length is 60 and 120 years. The results are reported in Table 3 

which is set out in a similar way to Tables 1 and 2. We also report the analytic estimator of 

the standard error as proposed in Richardson and Smith ( 1991). In panel A, the volatility of 
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returns is constant, while in panel B, volatility σt follows a mean reverting process. More 

specifically: 

 ( )1ln 1 ln .t t tuσ κ α κ σ+ = − + + %  (32) 

In the simulation we take κ = 0.8, and the volatility of volatility is chosen so that the 

unconditional standard deviation of log volatility is 0.5. 

The conclusions are very similar to the previous regressions. The OLS and White 

estimators are severely biased down, as expected, since they fail to account for induced serial 

correlation.  The Newey-West and Hansen-Hodrick estimators also exhibit a downward bias, 

which is particularly strong when the return horizon is long and the sample length short.  For 

example with regressions of ten year returns on lagged ten year returns using sixty years of 

data, the downward bias in the NW and HH estimators is sufficiently large to result in the 

99% confidence intervals from these estimators having coverage frequencies below 72%. 

In contrast, the estimators based on the transformed regression have much better 

properties.  In particular, the standard OLS estimator of covariance obtained from the 

transformed regression performs very well in this situation, exhibiting low bias and coverage 

frequencies that are close to their nominal levels.  Note however that the Newey-West 

estimator applied to the transformed regression produces estimates that are also biased down 

quite substantially, though not by as much as the Newey-West estimator applied to the 

overlapping regression. 

The analytic estimator from Richardson and Smith also has little bias and has the 

advantage that it has a far lower root mean square error than the other estimators. Its 

coverage frequencies are close to their nominal levels. Panel B suggests that it may be 

slightly downward biased when the error term in the regression is heteroscedastic, but its 

coverage frequencies are at least as close to their nominal levels as is the White’s estimator 

from the transformed regression, despite the assumption of homoscedasticity being violated. 
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4. FAMA-MACBETH AND PANEL REGRESSIONS 

4.1 Fama-MacBeth Regressions 

Regression analysis of panel data with overlapping observations is complicated by the 

need to account for both correlation between contemporaneous errors in the cross-section and 

the autocorrelation induced by overlapping observations.  The Fama-MacBeth methodology 

is a simple approach that neatly accounts for cross-sectional correlation in errors.  We can 

use our transformed regression approach in combination with the Fama-MacBeth 

methodology to also remove the autocorrelation induced by overlapping observations.  

Consider a set (indexed by 1,...,t T= ) of cross-sectional regressions of k-period log 

returns on N assets denoted by the N-vector yt,k onto a matrix of explanatory variables Xt: 

 , ,t k t t t kvβ= +y X . (33) 

In the Fama-MacBeth approach the cross-sectional OLS parameter estimates 

 ( ) 1
,

ˆ ' 't t t t t kβ −= X X X y  (34) 

are averaged over time to give an estimate of the effect of the explanatory variables: 

 1

1

ˆ
T

t
t

Tβ β−

=

= ∑ . (35) 

Inference is based on the long-run variance of ˆ
tβ .  With non-overlapping observations, the 

conventional time-series t and F statistics are commonly used.  In the case examined here, 

with overlapping observations, adjustments for autocorrelation are required and typically 

Newey-West standard errors are used for inference (for example, see Hong, Lee, and 

Swaminathan 2003).  Given the results in the previous section and from Monte Carlo studies 

in other papers this is likely to be misleading.   

The approach we propose, again focuses on the one-period returns that comprise the 

k-period returns.  We first show how such a focus relates to the ‘rolling-portfolio’ approach 
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popularised by Jegadeesh and Titman (1993), and we then show how the approach can be 

implemented using a set of transformed regressions.   

Similar to the time-series case, we can express the average of the cross-sectional OLS 

parameter estimates in terms of one-period returns: 

 ( ) 11
1

1

' '( ... )
T

t t t t t k
t

Tβ −−
+ +

=

= + +∑ X X X r r . (36) 

Now define ( ) 1' ' 't t t t
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This approach is used by George and Hwang (2003) to study momentum based 

forecasts of annual and semi-annual returns.  The expression in thesecond line of (37) has an 

interesting interpretation.  Each column of Ut can be viewed as a set of portfolio weights.  

The entire term in the summation is thus the sum of the return at time t to k lagged sets of 

portfolio weights.  This is exactly the ‘rolling-portfolio’ methodology as popularized by 

Jegadeesh and Titman (1993) and advocated in different contexts by Fama (1998). 

Inference can be based on direct analysis of these rolling-portfolio returns.  

Alternatively we can implement this approach by application of standard Fama-MacBeth 

methodology to a set of transformed cros-sectional regressions.  Define 

 
( )
1 2

1

,  and

' .
t t t t K

t t t t

− − −

−

= + + +

=

A U U U

Z A A A

K
 (38) 

The cross-sectional OLS regression of one-period returns onto Z gives an OLS parameter 

estimate that is identical to the ‘rolling portfolio return’ term inside the summation in (37): 
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 ( ) 1' ' 't t t t t t
− =Z Z Z r A r . (39) 

Conventional time-series t and F statistics can then be used on these cross-sectional OLS 

parameter estimates. 

4.2 Panel Regression 

Now consider estimation of the panel regression 

 , ,           1, 2,...,t k t t kv t T kβ= + = −y X  (40) 

where the notation is the same as in (34).  The OLS estimate of the panel regression 

coefficient is 

 
1

,
1 1

ˆ ' '
T k T k

t t t t k
t t

β
−− −

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑X X X y . (41) 

This can be rearranged to show the role of one-period returns, where the N-vector tr  

denotes the one-period log returns on the N assets: 
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0
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t t ii

−
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= ∑X X , where Xt = 0, for  0t ≤  and for t > T – k. The OLS 

panel coefficient estimate can be expressed in terms of one-period returns as  
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Define the large block matrices: 
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The OLS panel coefficient estimate is 

 ( ) 1ˆ ˆ' 'β −= X X X r . (44) 

We can obtain this estimate by regressing one-period returns onto a set of transformed 

regressors Z: 

 ,β= +r Z u  (45) 

where Z is defined as ( ) 1ˆ ˆ ˆ' '
−

=Z X X X X X .  The OLS coefficient estimate in the transformed 

regression is ( ) 1' '−Z Z Z r . The matrix algebra detailed in (6) shows this is identical to the 

expression in (44), showing that the regression of one-period returns on transformed 

regressors gives the same estimate as OLS estimation of the original panel regression in (40).  

Inference can then be based on this transformed regression using the approaches detailed in 

Section 2.  Of course it is likely that errors across stocks will be contemporaneously 

correlated and one might wish to use GLS techniques to estimate and account for this 

contemporaneous correlation.  But this will be easier to do in the case of the transformed 

regression (45) since the autocorrelation induced by overlapping observations has been 

removed. 

5. IMPROVED ESTIMATOR FOR β IN PREDICTIVE 

REGRESSIONS 

The regression parameter β in an overlapping regression is a linear function of one-

period returns. We can exploit this insight to increase the efficiency of the standard OLS 

estimation procedure by not discarding the ending data points.  To see this, note that the 

regression parameter β is the sum of regression parameters from regressions of one-period 

returns at leads of 1,2,…, k onto the explanatory variables: 
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 where βi  is the regression parameter for forecasting a one-period return i periods ahead:   

 [ ]( ) [ ]1
' 'i t t t t iE x x E x rβ

−

+≡ . (47) 

Wwhen we run a standard OLS regression with overlapping observations, we 

implicitly estimate the sum of regression coefficients, as equation (3) makes clear. But 

consider estimating each of the coefficients with separate regressions.  Start with estimation 

of β1: 

 1 1 1t t tr x eβ+ += + . (48) 

The implicit estimation of this regression in equation (3) uses observations t = 1,…,T-

k.  But there is no reason to exclude the ending observations t = T-k+1,…,T-1.  Typically the 

explanatory variables at these dates are known.  The standard procedure uses T-k 

observations for estimation of β1, β2,..., βκ.   The number of observations available to estimate 

βι is T–i, so for all parameters apart from βk the standard procedure throws data away.  

Our proposed estimator is the sum of OLS estimates of β1, β2,..., βk, where those 

estimates use all the available data:  
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The available data varies for each of the components, but overall we are using more 

data. We can obtain this estimate by running a regression of one-period returns on 
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transformed regressors. As in the previous section this approach simplifies inference. We 

first write ˆ
iβ  as 

 
1 1

ˆ ' '
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i t i t i t i t
t i t i

x x x rβ − − −
= + = +
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⎝ ⎠
∑ ∑ . (50) 

Define a (T-1)-dimensional column vector r with the tth element rt+1. Define k 

matrices Di  (i = 1,…, k) of explanatory variables lagged i periods.  Each matrix has T-1 rows 

with the tth row given by xt-I where xt = 0 for 0t ≤ .  We can then write 

 ( ) 1ˆ ' 'i i i iβ −= D D D r . (51) 

Now define  

 ( ) 1

1
' ' '

k

i i i
i

−

=

= ∑U D D D . (52) 

It follows that we can write the proposed estimator in (49) as 'β = U r
(

 and that we can 

obtain this estimate by regressing r onto a transformed matrix of regressors Z where  

 ( ) 1' −=Z U U U . (53) 

 Inference can then be based on this transformed regression using the approaches described in 

Section II. 

6. EMPIRICAL EXAMPLES OF THE METHODOLOGY 

Overlapping regressions have been central to the debate over the predictability of 

stock market returns (Fama and French 1988; Campbell and Shiller 1988).  To illustrate the 

relevance of our approach we conduct two empirical analyses. In the first we re-examine the 

issue of the predictability of long-horizon US stock market returns using Robert Shiller’s 

data on stock market returns and earnings.  In the second we illustrate our approach to Fama-

MacBeth regressions by looking at the predictability of relative country stock returns. 
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It should be emphasised that the purpose of this analysis is to illustrate the approach 

to overlapping regressions we have developed in this paper rather than to cast new light on 

the debate over the predictability of stock prices. In particular, we have not attempted to 

allow for other econometric issues raised by the use of a highly persistent regressor, or the 

joint endogeneity of the dependent and independent variables.  

6.1 US Stock Market Predictability 

Taking data from Robert Shiller’s website (http://www.econ.yale.edu/~shiller/ 

data.htm) for annual US stock returns and price-earnings ratios from 1871 to 2004, we 

estimate the regression: 

 , , ,t k t k k t ky y uβ−= + . (54) 

where yt,k is the log real return over years t+1 to t+k.  The results are set out in Table 4. 

Where the dependent variable is the ten-year return (k = 10), the standard approach, 

with either Newey-West or Hansen-Hodrick estimates of the covariance matrix, leads to 

severe underestimates of the standard error, with corresponding over-estimates of the t-

statistics, in comparison to the analysis based on the transformed regression. This bias is 

observable also in each of the sub-periods.  The coefficient on the lagged return, which 

appears to be significantly negative over the whole period and in the first half period, is 

indistinguishable from zero when using the transformed regression. For the five year return, 

the position is broadly similar except that the coefficient is not significantly different from 

zero in either the standard or the transformed regression except when looking at the first half 

of the period. The table also shows that making better use of the end-data, using the 

improved methodology described in Section 5, has a measurable effect on the results, though 

the data from the end of the period is not sufficiently different in this case from the rest as to 

alter the broad conclusions. 

We now examine the predictability of long-period returns from the price earnings 

ratio.   We consider the regression: 

 , 1 , 2 ,t k t t k k t ky x y uβ β−= + + . (55) 

http://www.econ.yale.edu/~shiller/ data.htm�
http://www.econ.yale.edu/~shiller/ data.htm�
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where yt,k is the log real return over years t+1 to t+k, and xt is the year t ratio of price to 

smoothed earnings.  The results are set out in Table 5. 

The results are similar to the previous regression in that the standard approach, with 

either Newey-West or Hansen-Hodrick estimates of the covariance matrix, leads to severe 

underestimates of the standard error, with corresponding over-estimates of the t-statistics, in 

comparison to the analysis based on the transformed regression. This bias is observable also 

in each of the sub-periods.  The coefficient on the price earnings ratio is significantly 

negative at conventional significance levels both over the period as a whole, and in the 

second half, under both the standard approach and the transformed regression, but the 

standard errors are roughly doubled. This holds both for five and ten year rolling returns. The 

use of the full data set in the improved transformed regression brings the results to close to 

conventional significance levels. 

The coefficient on lagged returns, which appears to be significantly positive in the 

second half of the period for both 5 and 10 year returns, and to be significantly negative in 

the first half for 10 year returns, turns out, to be insignificantly different from zero when 

using the transformed variables,. 

6.2 Country Stock Returns 

To illustrate our approach to Fama-MacBeth regressions, we analyze return 

predictability in international equity indices. Richards (1997) documents reversal in the 

relative returns of international equity indices. Countries that have done relatively well in the 

past period tend to under-perform their peers in the future. The reversal is strongest at the 

three year horizon. The finding is confirmed by Balvers, Wu and Gilliland (2000). 

A natural way of exploring the predictability of relative country returns at different 

horizons is to follow the Fama-MacBeth procedure using country stock indices as the assets. 

Specifically we run the cross-sectional regression: 

 , , ,t k t k k t t kvβ−= +y y .  
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where  yt,k is the vector of k-month returns across different countries at month t, and then test 

whether the estimated slope coefficient differs from 0. The individual country returns are 

equity index returns less the return on the US market, over the period January 1982 to May 

2007.  The countries are Austria, Australia, Belgium, Canada, Denmark, Germany, Hong 

Kong, Ireland, Italy, Japan, Netherlands, Norway, Singapore, Sweden, Switzerland, and the 

UK. The data come from Datastream. The results are shown in Table 6. 

The point estimate of beta is positive at the one year horizon. This is consistent with 

the findings of Bhojraj and Swaminathan (2003), and suggests some momentum in returns at 

shorter horizons. The value of beta goes negative at longer horizons, taking its largest 

negative values at around the six year horizon.  

According to the untransformed regression, the beta is significantly less than zero for 

horizons of four years or more (the reason that no Hansen-Hodrick t-statistics are available 

beyond 6 years is that the covariance matrix is not positive definite). According to the 

transformed regression, however, the positive beta at the one year horizon is just significant, 

but at all other horizons the beta does not significantly differ from zero. 

7. CONCLUSION 

The main contribution of this paper is to show how a long-horizon overlapping 

regression can be transformed into a short-horizon non-overlapping regression, greatly 

simplifying inference.  While the paper is written in terms of predictive (forecasting) 

regressions, nothing material changes when considering a regression in which the regressors 

are contemporaneous with the long-horizon return: we simply redefine the explanatory 

variables in (1) from being variables observed at time t to variables observed at time t + k.  

The transformation then proceeds exactly as in the predictive regression. 

The transformation of a long-horizon regression into a short-horizon regression casts 

new light on the desirability of using long-horizon regressions.  It strongly suggests that 

long-horizon regressions cannot have more statistical power than short-horizon regressions, 

since the former can be transformed into the latter without changing the estimated 

coefficients.  Nonetheless there are strong economic reasons for considering longer horizons 

such as measurement error, adjustment costs, etc. Statistical inference is then made 
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considerably easier and simpler by formulating the analysis in terms of long-horizon returns 

and then transforming to short-horizon returns. It is not immediately clear how to formulate a 

short horizon return regression so as to be informative about longer period returns, but the 

transformation presented here does just that. 
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Table 1 – Panel A: Monte Carlo Simulations. Regressors follow an AR1 process 
with AR parameter 0.8. No return predictability, homoscedastic errors. 

No. 
Obs. 

Forecast 
Horizon 

Variance 
Estimator Bias Std. Dev. RMSE 99% 95% 90% 

   Overlapping Regression 
250 3 OLS -0.364 0.058 0.369 89.5% 78.6% 69.6% 
  White -0.368 0.068 0.375 89.0% 77.7% 69.4% 
  NW(k) -0.148 0.148 0.210 96.9% 90.3% 83.6% 
  NW(2k) -0.116 0.175 0.210 97.3% 90.9% 84.6% 
  HH -0.055 0.204 0.212 97.9% 92.4% 86.7% 
   Transformed Regression 
  OLS -0.001 0.110 0.110 98.8% 95.0% 89.6% 
  White -0.006 0.132 0.132 98.7% 94.8% 89.2% 
  NW(k) -0.032 0.164 0.167 98.6% 93.7% 88.3% 
         
   Overlapping Regression 
100 3 OLS -0.994 0.263 1.028 89.5% 77.8% 69.5% 
  White -1.021 0.297 1.064 87.9% 76.3% 67.8% 
  NW(k) -0.521 0.588 0.785 94.7% 87.3% 80.3% 
  NW(2k) -0.484 0.674 0.829 94.5% 87.0% 80.3% 
  HH -0.345 0.786 0.858 95.1% 88.3% 81.9% 
   Transformed Regression 
  OLS -0.007 0.472 0.472 98.8% 94.7% 89.8% 
  White -0.041 0.566 0.567 98.6% 94.0% 88.7% 
  NW(k) -0.211 0.650 0.683 97.6% 91.4% 85.7% 
         
   Overlapping Regression 
250 12 OLS -4.631 0.315 4.642 71.0% 57.9% 49.8% 
  White -4.671 0.357 4.685 69.3% 56.5% 49.3% 
  NW(k) -1.964 1.822 2.679 94.1% 85.7% 78.6% 
  NW(2k) -1.842 2.169 2.846 93.8% 85.1% 78.5% 
  HH -1.469 2.526 2.922 94.4% 86.6% 79.6% 
   Transformed Regression 
  OLS -0.108 0.963 0.969 98.8% 94.9% 89.8% 
  White -0.155 1.152 1.162 98.6% 94.3% 89.3% 
  NW(k) -1.024 1.885 2.145 96.6% 90.7% 84.9% 
         
   Overlapping Regression 
100 12 OLS -11.244 1.478 11.341 70.8% 57.9% 50.3% 
  White -11.463 1.524 11.564 67.6% 55.4% 48.1% 
  NW(k) -7.176 5.271 8.904 86.6% 76.2% 68.4% 
  NW(2k) -7.746 5.532 9.518 83.2% 72.9% 65.1% 
  HH -7.334 6.591 9.861 80.3% 69.9% 63.0% 
   Transformed Regression 
  OLS 0.006 4.206 4.206 98.9% 94.6% 89.0% 
  White -0.200 4.863 4.867 98.5% 93.9% 88.8% 
  NW(k) -5.167 5.426 7.493 92.5% 83.9% 77.1% 
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Table 1 – Panel B: Monte Carlo Simulations. Predictable Returns 
No. 
Obs. 

Forecast 
Horizon 

Variance 
Estimator Bias Std. Dev. RMSE 99% 95% 90% 

   Overlapping Regression 
250 3 OLS -0.346 0.058 0.351 90.1% 79.2% 71.2% 
  White -0.351 0.069 0.357 89.6% 78.6% 70.4% 
  NW(k) -0.130 0.150 0.198 97.2% 90.5% 84.1% 
  NW(2k) -0.097 0.179 0.204 97.4% 91.2% 84.8% 
  HH -0.037 0.208 0.211 97.9% 92.8% 86.7% 
   Transformed Regression 
  OLS 0.015 0.110 0.111 99.0% 95.3% 90.2% 
  White 0.010 0.134 0.134 98.8% 94.9% 89.8% 
  NW(k) -0.018 0.164 0.165 98.6% 94.1% 88.4% 
         
   Overlapping Regression 
100 3 OLS -1.064 0.261 1.095 88.4% 76.9% 68.3% 
  White -1.092 0.298 1.132 86.8% 75.4% 67.0% 
  NW(k) -0.594 0.585 0.834 94.3% 85.9% 79.5% 
  NW(2k) -0.563 0.673 0.877 93.7% 85.6% 79.3% 
  HH -0.423 0.781 0.889 94.4% 87.0% 80.8% 
   Transformed Regression 
  OLS -0.086 0.468 0.475 98.8% 94.0% 88.5% 
  White -0.124 0.553 0.567 98.5% 93.2% 87.6% 
  NW(k) -0.298 0.638 0.704 96.9% 90.6% 84.6% 
         
   Overlapping Regression 
250 12 OLS -5.171 0.349 5.183 71.3% 58.8% 50.3% 
  White -5.228 0.397 5.243 69.6% 57.2% 48.8% 
  NW(k) -2.082 2.045 2.918 93.2% 85.9% 79.0% 
  NW(2k) -1.973 2.431 3.131 92.7% 85.3% 78.6% 
  HH -1.556 2.880 3.273 92.7% 85.8% 79.4% 
   Transformed Regression 
  OLS -0.670 0.960 1.171 98.2% 92.9% 86.9% 
  White -0.727 1.163 1.372 97.9% 92.7% 86.6% 
  NW(k) -1.382 1.992 2.424 95.8% 89.3% 83.1% 
         
   Overlapping Regression 
100 12 OLS -13.749 1.661 13.849 68.9% 56.0% 48.4% 
  White -14.057 1.714 14.161 65.8% 53.1% 45.6% 
  NW(k) -8.981 5.996 10.798 84.2% 74.1% 66.5% 
  NW(2k) -9.785 6.187 11.577 79.9% 70.1% 62.6% 
  HH -9.446 7.462 12.038 75.9% 66.9% 60.4% 
   Transformed Regression 
  OLS -2.520 4.282 4.968 97.5% 91.0% 84.8% 
  White -2.789 5.022 5.744 96.8% 90.3% 83.8% 
  NW(k) -7.180 5.952 9.327 89.6% 80.7% 73.1% 
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Results from a Monte-Carlo simulation of an overlapping regression on two regressors. The 
two regressors are homoscedastic, stationary, mutually uncorrelated, first order 
autoregressive processes with unit variance and autoregressive parameter 0.8. The error term 
is homoscedastic.  The dependent variable is k-period returns, where k, the forecast horizon is 
3 or 12. The sample length is 100 or 250 periods. In Panel A the dependent variable is 
unpredictable, while in Panel B returns are predictable with a one-period ahead R2 of five 
percent. The simulation is based on 5,000 runs. Four conventional covariance estimators 
(Ordinary Least Squares; White 1980; Newey-West 1987; and Hansen-Hodrick 1980) are 
used for the overlapping regression, and the first three are also used for the transformed 
regression. For each estimator, the bias in the estimate, its standard error and its root mean 
square error are shown, as well as the true confidence levels of 99%, 95% and 90% 
regression coefficient confidence intervals. 
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Table 2: Monte Carlo Simulations.  Heteroscedastic errors and predictable returns. 
No. 
Obs 

Forecast 
Horizon 

Variance 
Estimator Bias Std. Dev. RMSE 99% 95% 90% 

   Overlapping Regression 
250 3 OLS -1.172 0.047 1.172 70.1% 57.0% 49.2% 
  White -0.922 0.187 0.941 85.8% 73.2% 65.2% 
  NW(k) -0.435 0.460 0.633 95.8% 88.2% 80.6% 
  NW(2k) -0.371 0.536 0.652 96.0% 89.0% 81.6% 
  HH -0.234 0.637 0.678 96.8% 90.7% 84.1% 
   Transformed Regression 
  OLS -0.835 0.090 0.839 89.7% 78.3% 70.1% 
  White -0.053 0.461 0.464 98.4% 93.8% 88.6% 
  NW(k) -0.165 0.525 0.551 97.9% 92.4% 86.5% 
         
   Overlapping Regression 
100 3 OLS -2.676 0.180 2.682 70.8% 58.5% 50.9% 
  White -2.223 0.533 2.286 82.7% 70.3% 62.2% 
  NW(k) -1.384 1.184 1.821 92.3% 82.8% 74.6% 
  NW(2k) -1.360 1.299 1.881 91.7% 82.0% 74.5% 
  HH -1.130 1.558 1.924 92.0% 83.3% 76.2% 
   Transformed Regression 
  OLS -1.849 0.353 1.882 90.1% 78.5% 71.2% 
  White -0.261 1.451 1.474 98.0% 92.4% 86.6% 
  NW(k) -0.794 1.381 1.593 95.9% 88.8% 81.9% 
         
   Overlapping Regression 
250 12 OLS -7.358 0.368 7.367 62.4% 49.6% 42.6% 
  White -7.159 0.550 7.180 65.5% 52.9% 45.5% 
  NW(k) -3.383 3.197 4.655 91.7% 82.7% 74.5% 
  NW(2k) -3.272 3.668 4.916 90.9% 81.9% 74.2% 
  HH -2.765 4.385 5.184 90.7% 82.2% 75.0% 
   Transformed Regression 
  OLS -3.055 1.196 3.280 95.2% 87.0% 80.0% 
  White -0.841 3.106 3.218 97.5% 92.2% 86.1% 
  NW(k) -2.346 3.482 4.199 94.6% 86.5% 79.6% 
         
   Overlapping Regression 
100 12 OLS -15.203 1.441 15.271 62.4% 50.1% 43.1% 
  White -15.126 1.642 15.215 63.0% 50.2% 43.5% 
  NW(k) -10.603 5.945 12.156 80.5% 69.4% 61.7% 
  NW(2k) -11.415 5.924 12.860 76.9% 65.2% 57.8% 
  HH -11.271 6.982 13.258 71.9% 61.7% 55.2% 
   Transformed Regression 
  OLS -5.349 4.734 7.143 95.2% 86.8% 80.1% 
  White -2.817 8.713 9.157 95.7% 88.7% 81.3% 
  NW(k) -8.474 6.899 10.927 87.5% 77.6% 69.2% 
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Results from a Monte-Carlo simulation of an overlapping regression on two regressors. The 
two regressors are homoscedastic, stationary, mutually uncorrelated, first order 
autoregressive processes with unit variance and autoregressive parameter 0.8. The error term 
is heteroscedastic, with the standard deviation of the error proportional to the deviation of the 
lead regressor from its mean.  The dependent variable is k-period returns, where k, the 
forecast horizon is 3 or 12. The sample length is 100 or 250 periods. Returns are predictable 
with a one-period ahead R2 of five percent. The simulation is based on 5,000 runs. Four 
conventional covariance estimators (Ordinary Least Squares; White 1980; Newey-West 
1987; and Hansen-Hodrick 1980) are used for the overlapping regression, and the first three 
are also used for the transformed regression. For each estimator, the bias in the estimate, its 
standard error and its root mean square error are shown, as well as the true confidence levels 
of 99%, 95% and 90% regression coefficient confidence intervals. 



- 37 - 

Table 3 – Monte Carlo Simulations of Fama-French Regressions. 
Panel A: Overlapping regression of long period returns on previous long period return 
where log prices are iid normal  

No. 
Obs. 

Forecast 
Horizon 

Variance 
Estimator Bias Std. Dev. RMSE 99% 95% 90% 

   Overlapping Regression 
60 10 OLS -0.151 0.012 0.152 59.2% 45.1% 37.8% 
  White -0.156 0.013 0.157 52.0% 39.1% 32.4% 
  NW(k) -0.130 0.035 0.135 71.6% 57.8% 49.5% 
  NW(2k) -0.139 0.033 0.143 64.3% 50.6% 43.0% 
  HH -0.143 0.030 0.146 61.0% 47.5% 40.1% 
   Transformed Regression 
  OLS -0.001 0.074 0.074 98.7% 93.7% 87.6% 
  White -0.007 0.083 0.083 98.2% 92.3% 85.5% 
  NW(k) -0.092 0.047 0.103 88.8% 76.8% 67.8% 
   Richardson Smith Analytic Estimator 
   -0.010 0.000 0.010 99.7% 97.0% 91.1% 
         
   Overlapping Regression 
120 5 OLS -0.0222 0.0007 0.0222 82.8% 69.7% 61.1% 
  White -0.0230 0.0018 0.0231 79.8% 66.7% 58.2% 
  NW(k) -0.0125 0.0064 0.0141 92.7% 83.9% 77.1% 
  NW(2k) -0.0118 0.0084 0.0144 92.1% 83.7% 76.8% 
  HH -0.0132 0.0082 0.0156 91.0% 82.0% 75.0% 
   Transformed Regression 
  OLS  0.0001 0.0053 0.0053 99.0% 94.5% 89.1% 
  White -0.0008 0.0075 0.0076 98.6% 93.7% 88.2% 
  NW(k) -0.0060 0.0074 0.0096 96.9% 90.5% 84.2% 
   Richardson Smith Analytic Estimator 
   -0.0003 0.0000 0.0003 99.3% 95.2% 90.0% 
 
Panel B: Overlapping regression of long period returns on previous long period return 
where log prices are normal with a standard deviation that is stochastic  

No. 
Obs. 

Forecast 
Horizon 

Variance 
Estimator Bias Std. Dev. RMSE 99% 95% 90% 

   Overlapping Regression 
60 10 OLS -0.160 0.017 0.161 58.8% 45.4% 38.5% 
  White -0.164 0.018 0.165 51.9% 39.9% 33.0% 
  NW(k) -0.137 0.044 0.144 71.5% 58.3% 50.0% 
  NW(2k) -0.145 0.043 0.151 65.5% 51.9% 44.1% 
  HH -0.149 0.040 0.155 62.2% 48.7% 41.5% 
   Transformed Regression 
  OLS  0.005 0.107 0.107 98.9% 94.3% 88.0% 
  White -0.005 0.131 0.131 98.4% 92.3% 85.5% 
  NW(k) -0.095 0.116 0.116 90.5% 78.4% 68.6% 
   Richardson Smith Analytic Estimator 
   -0.020 0.000 0.020 99.2% 96.0% 90.8% 
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   Overlapping Regression 
120 5 OLS -0.0264 0.0011 0.0264 79.7% 66.8% 58.8% 
  White -0.0262 0.0034 0.0264 79.2% 66.3% 58.0% 
  NW(k) -0.0160 0.0090 0.0183 91.5% 82.4% 74.5% 
  NW(2k) -0.0160 0.0101 0.0190 90.4% 81.3% 73.8% 
  HH -0.0177 0.0096 0.0201 89.0% 79.2% 71.8% 
   Transformed Regression 
  OLS -0.0037 0.0068 0.0077 98.0% 92.9% 87.2% 
  White  0.0003 0.0166 0.0166 98.4% 93.7% 88.4% 
  NW(k) -0.0082 0.0117 0.0143 96.7% 90.0% 83.2% 
   Richardson Smith Analytic Estimator 
   -0.0045 0.0000 0.0045 98.7% 93.7% 87.6% 
 
Results from a Monte-Carlo simulation of the regression is , ,t k t k ky yα β−= +  where 

1

,
0

k

t k t u t u
u

y ε σ
−

− −
=

= ∑ , and the εt are iid normal. In Panel A, the volatility σt is constant, 

while in Panel B log volatility follows an AR-1 process with auto-regressive parameter 
0.8, and where the unconditional standard deviation of log volatility is 0.5. The forecast 
horizon, k, is 5 or 10 periods. The sample length is 60 or 120 periods. The simulation is 
based on 10,000 runs. Four conventional covariance estimators (Ordinary Least 
Squares; White 1980; Newey-West 1987; and Hansen-Hodrick 1980) are used for the 
overlapping regression, and the first three are also used for the transformed regression. 
The Richardson Smith (1991) analytic estimator ( ( ) ( )22 1 3 2k k T k+ − ) is also 
computed. For each estimator, the bias in the estimate, its standard error and its root 
mean square error are shown, as well as the true confidence levels of 99%, 95% and 
90% regression coefficient confidence intervals. 
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Table 4: Regression of US stock market returns on lagged returns 
 

1881-2004 1881-1942 1943-2004 Dependent 
variable 

Variance 
Estimator β t-stat β t-stat β t-stat 

10-year log  Overlapping Regression 
Real return NW(k) -.272 -2.32 -.489 -3.36 -.155 -1.10 
 NW(2k)  -2.65  -4.14  -1.61 
 HH  -5.80  -4.88  - 
  Transformed Regression 
 White -.272 -1.22  -1.26  -0.62 
  Improved Transformed Regression 
 White -.313 -1.39 -.451 -1.14 -.260 -0.97 
        
5-year log  Overlapping Regression 
Real return NW(k) -.132 -0.93 -.366 -2.66 .141 0.65 
 NW(2k)  -0.85  -2.71  0.65 
 HH  -0.86  -3.49  0.60 
  Transformed Regression 
 White -.132 -0.67  -1.32  0.53 
  Improved Transformed Regression 
 White -.141 -0.73 -.360 -1.31 .112 0.42 
        
1-year log  Standard Regression 
Real return White .022 0.23 -.008 -.07 .053 0.34 

 
The table estimates the regression , , ,t k t k k t ky y uβ−= +  where y is the k-year log real return on 
the S&P index. The estimate of beta and its t-statistic are shown for 10, 5 and 1 year returns, 
for a variety of different time periods. The estimates based on overlapping regressions apply 
OLS to the data as is, and use Newey-West and Hansen-Hodrick to estimate the covariance 
matrix. The transformed regression uses the methodology described in this paper and uses 
White to estimate the covariance matrix. The improved transformed regression uses the 
methodology described in section 5 of this paper, which makes fuller of all the annual return 
data. The last row of each panel shows the non-overlapping case where annual returns are 
regressed annually. The data are from http://www.econ.yale.edu/~shiller/data.htm.

http://www.econ.yale/�
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Table 5: Regression of US stock returns on price earnings ratio and lagged return. 
 Panel A: Coefficient on the price earnings ratio 

1881-2004 1881-1942 1943-2004 Independent 
variable 

Variance 
Estimator β t-stat β t-stat β t-stat 

10-year log  Overlapping Regression 
Real return NW(k) -.075 -3.20 -.012 -0.80 -.133 -4.83 
 NW(2k)  -2.78  -0.90  -5.17 
 HH  -2.72  -0.81  -4.60 
  Transformed Regression 
 White -.075 -2.12  -0.20  -2.37 
  Improved Transformed Regression 
 White -.055 -1.68 -.022 -0.41 -.091 -2.02 

5-year log  Overlapping Regression 
Real return NW(k) -.030 -3.02 -.036 -1.50 -.035 -4.18 
 NW(2k)  -2.79  -1.46  -3.89 
 HH  -2.54  -1.34  -3.69 
  Transformed Regression 
 White -.030 -2.28  -1.25  -2.26 
  Improved Transformed Regression 
 White -.029 -2.02 -.038 -1.30 -.033 -2.04 
        
1-year log  Standard Regression 
Real return White -.0056 -2.48 -.0121 -2.31 -.0043 -1.81 

Panel B: coefficient on lagged returns 
1881-2004 1881-1942 1943-2004 Dependent 

variable 
Variance 
Estimator β t-stat β t-stat β t-stat 

10-year log  Overlapping Regression 
Real return NW(k) .246 1.30 -.390 -2.34 .675 2.91 
 NW(2k)  1.14  -3.28  3.07 
 HH  1.22  -2.86  2.80 
  Transformed Regression 
 White .246 0.74  -0.58  1.60 
  Improved Transformed Regression 
 White .137 0.43 -.291 -0.46 .467 1.19 
        
5-year log  Overlapping Regression 
Real return NW(k) .177 1.10 -.006 -0.27 .573 3.09 
 NW(2k)  0.96  -0.26  2.73 
 HH  0.96  -0.29  2.53 
  Transformed Regression 
 White .177 0.69  -0.14  1.70 
  Improved Transformed Regression 
 White .152 0.60 -.040 -0.10 .524 1.65 
1-year log  Standard Regression 
Real return White .073 0.75 .111 0.82 .084 0.54 
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The table estimates the regression , 1 , 2 ,t k t t k k t ky x y uβ β−= + +  where y is the k-year log real 
return on the S&P index, and x is the ten year rolling price earnings ratio. The estimate of 
beta and its t-statistic are shown for 10, 5 and 1 year returns, for a variety of different time 
periods. The estimates based on overlapping regressions apply OLS to the data as is, and use 
Newey-West and Hansen-Hodrick to estimate the covariance matrix. The transformed 
regression uses the methodology described in this paper and uses White to estimate the 
covariance matrix. The improved transformed regression uses the methodology described in 
section V of this paper, which makes fuller of all the annual return data. The last row of each 
panel shows the non-overlapping case where annual returns are regressed annually. The data 
are from http://www.econ.yale.edu/~shiller/data.htm. 
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Table 6: Cross-country estimates of auto-correlation in stock returns 
 

Horizon Mean
(years) beta Transformed

NW(k) NW(2k) HH regression
1 0.123 1.72 1.59 1.44 1.98
2 0.041 0.39 0.36 0.32 0.52
3 -0.083 -1.01 -1.27 -1.10 -0.84
4 -0.179 -3.12 -3.83 -4.69 -1.59
5 -0.172 -3.20 -4.28 -3.41 -1.25
6 -0.240 -5.36 -7.30 -6.03 -1.61
7 -0.212 -5.54 -9.05 n/a -1.47
8 -0.174 -6.85 -9.73 n/a -1.22
9 -0.139 -2.78 -3.92 n/a -0.84

10 -0.096 -7.32 -10.33 n/a -0.50

t-statistic using:
Untransformed regression

 
The table shows the estimate of the regression coefficient of long horizon country index 
returns lagged returns. The basic regression is , , ,t k t k k t t kvβ−= +y y .where  yt,k is the vector of 
k-month log returns (in excess of the US log return) across 22 different countries at month t, 
and the slope estimates are then pooled and tested for whether the mean (‘mean beta’) differs 
from zero. Since the regressions are done each month, the data are overlapping, so the t-
statistics are adjusted for autocorrelation using a Newey-West (NW) or Hansen-Hodrick 
(HH) procedure. As an alternative the regression is transformed as described in the text and 
the standard error calculated from the transformed regression (‘transformed regression’). The 
data are from Datastream. 
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