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6b Andrew Carverhill and Nick Webber

American options: theory and
numerical analysis

I Introduction

The aim at this paper is to develop a formula for the value of an American
option, and to give a simple and efficient procedure for determining this
value numerically. Many of the ideas that we will use have been presented
before (see references); we see the value of this paper largely as presenting
these ideas in a coherent and rigorous way. We will indicate the points of
contact with these papers, and our work can serve as an introduction to and
review of them.

We will deal mostly with the American put: the option to sell a stock for
a price, c, at any time before T. The case of the call is similar and in some
ways simpler than that of the put, because optimally it will not be exercised
between dividend dates. We will denote the value of this put option at time
t by ¢,(x), if the price of the stock at time ¢ is x. Our standing assumption
about the stock is that it pays no dividend, and its price s, follows a geome-
tric Brownian motion with constant drift, 4, and variance parameter, ¢2,
so that in the notation of the It6 calculus, we have

ds, = s,(udt + odB,), (1)

where B, is a standard Brownian motion. We indicate in Section VI how to
relax these assumptions. Also, we assume throughout that the riskless
interest rate is a constant, r > 0. _

Our point of departure in this paper is the work by Black and Scholes
(1973) on European options (see also Smith, 1976). We will make the
assumptions about market behaviour which are usual to this work, namely
that continuous trading is possible with no transactions costs, that there is
no penalty for selling short, and that there are no taxes.

Our basic technical device is to approximate the American option by
restricting the exercise opportunities to a finite set of times 7 = {0 <1, <
t < ... <t,=T}. This is done in Section III. The value ¢](x) of this ap-
proximation can be determined by regarding it as a succession of European
options (a ‘compound’ option), and it is intuitively clear that ¢;(x) is a
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good approximation to ¢,(x) itself if mesh(n) (that is, max{t; — f_:
i=1,...,q})is small

In Sections IV and V we present procedures for the numerical evaluation
of ¢,(x). The ‘analytic formula’ of Section IV actually values the approxi-
mation ¢7(x) for a given partition z of the interval [0, T], and was first
presented by Geske (1979) (see also Geske, 1977; Geske and Johnson,
1979). This formula involves multinormal distribution functions up to the
- dimension ¢, that is, the number of partition points, but it is quite accurate
for ¢ = 3 or 4. The ‘dynamic’ procedure of Section V is to solve the Black-
Scholes equation by a finite difference method in reverse time, as though
the option were European, but to adjust the solution at each step to allow
for the possibility of early exercise. This procedure is intuitively reasonable,
and is implemented, for instance, in Geske and Shastri (1985). From our
work it is clear that this gives an accurate evaluation.

II Remarks on European options

The material of this section is well known: our purpose here is to prepare
for subsequent sections. Denote by #E(x) the value of a put option if the
only exercise opportunity is T (that is, if the option is European). Then we
have the celebrated Black and Scholes (1973) equation:

der(x) _ O 0gE(x) 1, ,0%¢r(x) |
U Rl vanl A v @)

with initial (final!) condition
¢F(x) = (c —x)" | )

where (c — x)* = max{(c — x), 0} (see also Smith, 1976). Equation (2) is a
diffusion equation in reverse time, and so its solution is determined in a
stable fashion by its final condition (see Oksendal, 1980). |

The following result (Proposition 1) shows how to construct a continu-
ously hedged portfolio from the stock and the European option.

Proposition 1. Consider a continuously adjusted portfolio comprising at
time ¢ quantities Q7 of the European put option, and Q; of the stock. Then
the value of this portfolio is given by

v, = 07 F(Sr) + Os;- (4)
Suppose we have
s d¢pE(x
or=1 g=-2% ©

Then the value of the portfolio grows risklessly at the risk-free rate, r, that
is, we have
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dv, = rv,d:. (6)

Proof. Formula (4) is clear. Now, suppose the portfolio is adjusted
according to equations (5) attimes {0 =1, <, < ... < ty = T} (=nr, say).
Then the change in value over the interval [, t,+|] is given by

i i ad)E 1]
Av, = A'¢p,(s,) — E(s,,)As,.

where A'v, is shorthand for V.., = Vi, etc. Summingoveri =1, ..., g — 1
and letting mesh(xm) — 0, this gives

T T
du, = f d(,(s1)) — a¢' 2L () s,

0

where these integrals are stochastic It6 integrals. (This follows from the
definition of the It6 integral.) Applying the It6 formula to the first term in
the RHS of this equation, we obtain

LT dv, = fT 6(;{1,5 (s,)dr + jT 6(;]1,5 (s,) ds,
5 J a"'s,z 2¢' s,)dt — f O, (s,) ds,

= ¢ f (QP6F() + QHs)sdr

(using equation (2))

T
= rf v, dt.
0

Differentiating yields equation (6) as required. OJ
Proposition 2.

(i)
(1) The value ¢F(x) of the European put (at time ¢, if the stock price then
is x) satisfies equation (2) with final condition (3).
(2) Also, we have
¢r(x) = exp(—=r(T — 1) E[(c = 37)*[3, = x] (7)
where §, satisfies
ds, = 5,(rdt + odB,). (8)

(Replace u by r to obtain equation (8) for §, from equation (1) for s,.)
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(ii) If at time ¢ the market price of the option differs from ¢;(x), then an
arbitrage profit can be gained at time- T. ‘

Proof. If the market price of the option is below (above) ¢,(x). then
one can buy it (sell it short), then construct the hedged portfolio of Pro-
position 1, and then realise the original value of the portfolio (with the
theoretical option value, and with interest) at time T, thereby making an
arbitrage profit. This proves part (ii). To see that ¢,(x) must satisfy equa-
tion (2), note that we used equation (2) in the proof of Proposition 1.

Equation (7) is the standard expression of the solution to equation (2),
given by the stochastic calculus (see Oksendal, 1980). To prove it, consider
the stochastic process Q, given by exp(—r(u — 1)) #5(3.) for fixed ¢ and
with time u increasing from ¢. If we calculate the differential of this using
the It6 formula, we see that it is a martingale, and so

E[Qu|§r =x] = E[Qt|§r = x].

Putting u = T in this last expression yields equation (7). O

The equation (2), together with equation (3), can be solved numerically
by standard techniques for diffusion equations (for example finite differ-
ence methods; see Geske and Shastri, 1985), applied in reverse time. We
refer to this as the ‘dynamic’ approach to.the valuation, and it is extended
to American options in Section V. In fact equation (2), taken together with
equation (3), also has an ‘analytic’ (closed-form) solution, which is as
follows: '

¢r(x) = cexp(—r(T — 1)) N(—=d;) — xN(—d)) 9)
where N(-) is the cumulative normal distribution function and

in(xle) + (r + 30?)(T - 1)
L oVT -t

_In(x/c) + (r + 36°)(T — 1)
2 oVT -t

(See Black and Scholes, 1973; Smith, 1986. Note that call and put are
related via parity: Put, — Call, = cexp(—r(T — 1)) — x.)

In section IV we give an extension of this formula to deal with American
options. (This extension is due to Geske, 1979; Geske and Johnson, 1979;
Selby and Hodges, 1987). We refer to this as the ‘analytic’ approach to the
solution.

To help with Section IV we make the following remarks about formula
(7). The distribution of § given §, = x is log-normal; denote its density
function by F,(y). Then from equation (8) we have
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SEW =exp(—r(T-0) [ F()(e-nd
v=0

=exp(~rT=0)c | F)dy-exp(-rT=0)c | yE()a

= exp(—r(T — 1)) cP[37 < c[3, = x]
— exp(—r(T — 1) E[5t4(5,<|5: = x] | (10)

and the terms in this last expression correspond to those in equation (9).
(Here X(; <. is the characteristic function of the ‘event’ {§; < c},
which is 1 if §7 < ¢ and 0 otherwise.)

Remark on the Girsanov transformation

This is explained in detail in Oksendal (1980, pp. 115-18); it relates two
stochastic processes which differ in their drifts but not in their noise. In this
paper we use it to relate the processes s, and §,, which are given by equa-
tions (1) and (8). The standard Brownian motion, B,, is governed by the
underlying probability measure P (the Wiener measure) on the space of
continuous paths, and equation (1) can be regarded as telling us how s, is
governed by P. The Girsanov idea is to transform P to a new measure P,
such that the process s, governed by Pis the same as the process 3, governed
by P. Thus we can rewrite equations (7) and (10) as

¢r(x) = exp(=r(T = 1)) E[(c = s7)*|s7—, = x]
= exp(—r(T — 1)) cP[st < c|s, = x]
— exp(— ’(T — 1)) E[ST'({sT c}|5: = x], (11)

where E is the expectation assoc1ated with P. The advantage of equation
(11) is that it refers to the original stock process, s,, and not to the artifical
process, $,.

In fact P and P are related via

dB, = dB, + (’ ; “) dt, (12)

where B, is the Brownian motion governed by P. Note that if we denote s,
driven by P as §,, then we have

ds, = 5,(udt + odB,),

and formally substituting for dB, in this equation, using equation (12),
yields equation (8) for 5;, from which we see that 5, = §,. The direct relation-
ship between P and P is given by the formula for M, in Oksendal
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(1930, p. 118). This M, 1s the ‘density” (Radon Nikodym derivative) of
P with respect to P.

[II American options via a discretisation of the exercise opportunity set

The problem of determining a value for the American option is intimately
related to the problem of determining an optimal time to exercise it. This
time can be random (that is, it can depend on the behaviour of the stock
price), but to be a feasible exercise strategy (which does not rely on clair-
voyance), it must be a stopping time, that is, at any given time the question
of whether the option has already been exercised must be independent of
the future behaviour of the stock price (see Oksendal, 1980). In fact since
in our model the stock price is Markovian, at any given time ¢, the optimal
decision about whether to exercise or wait (given that the option has not
already been exercised), must be independent of the past as well as the
future, and must depend only on whether the present stock price, s,, is
greater than some critical price 5, (exercise the put option if s, <5,).
Denote by ¢7(x) the value of the American option if we restrict the
exercise opportunities to the finitesetz = {0 <, <KL < ... <t, =T},
Under this restriction it is easy to find that value and optimal exercise time.
Theorem 3.
(i) Starting from time ¢, the optimal exercise time " and value ¢7(x) are
determined by either of the following equivalent criteria:
(1) The final condition (at time ¢, = T) is

r(x) = (c — x)7.

Take the critical price 5, to be just c.

Solve equation (2) with this final condition to determine ¢7(x) for ¢ €
(tg—1. ty). To obtain @7 _ (x) continue this solution back to ¢t = ¢, (and
denote it by ¢, say) and put ¢7 _(x) = max{¢(x), (c — x)*}. Deﬁne the

critical price 5, _ to be the solution to ¢(x) = (c — x)* and exercise at time
tg-rif s, < s, . (which is equivalent to ¢(s, ) < (¢ — s ")

Now solve equatlon (2) on the interval [tq 2, ty—1] with final condition

7_(x) and replace the solution at time ¢, (say, ¢(x) again) by max{¢(x),
(c — x)*}. Also define the critical price, 5, _,, to be the solution to o(x) =
(c — x)™ and exercise at time t,_ if s, < s, ;

Continue inductively backwards, the last step being over the interval
(¢, tes1]. where k is such that ¢ € [, tx 1]

Starting from ¢, the optimal exercise time 7" is the first time ¢ for which
5, L5

(2) ¢7(x) = sup Elexp(=r(z = 0))(c = §)7[5, = x],
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Figure 6b.1

where S7 is the collection of stopping times t which take values in 7 and
for which t < r < T. The optimum t” is where the sup occurs.

(ii) The continuous hedge represented by equation (5) but with ¢F replaced
by ¢r will risklessly yield the riskless rate of return at time ™. Also any
deviation of the market price from ¢; will allow an arbitrage profit at time

T

"
Proof.

(1)

(1) The Black—Scholes equation (2) is very generally applicable: it will
hold so long as there is no exercise opportunity. In particular it will hold
between the partition points. Replacing the solution ¢(x) at each partition
point by max{¢(x), (¢ — x)*} accounts for the possibility of early exercise.
(2) For this we use Part (1) and the general expression for the solution
w,(x) to equation (2) for ¢ < ¢, given final condition, say, w(x) at f:

wi(x) = exp(—r(z — 1)) E[w(3,)[5, = x]. - (13)

(Cf. equation (7)). Thus for ¢ € [t,—1, t,] we have
Br(x) = exp(—r(t, — ) El(c — 5,)*[5, = x] (14)
or(c—x)"ift =t andx <5, (15)

(i.e.if t = t,—, and we exercise immediately). For ¢ € [t,_, t,—] we have

rx) = exp(—r([(/—l — 1)) E[d)f,, ,(itq l)ls'r = x]
— exp(—rlt,_1 — 0)EL9F (G, Y '+ 7 s, = ] (10
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where 7 ' is the characteristic function of the event ‘exercise at time f,_,
having started at time ', and 7' is the complement, that is, /i ' +
zu! = L. In equation (16). substitute for ¢7 (5, ) using equation (14)
when 7% ' is activated and using equation (15) when /i ' is activated, to
obtain

¢r(x) = exP(“’(fq—l — 1) E[(c - 5!,, ,)+Z:'/ l|-§r = x]
+ exp(—r(t(-,_l - [))exp(—r(tq - tq-—l) E[(C - §I,I)+Z§‘/ IIS‘I = X].

(17)

Also we have ¢7(x) = (¢ — x)* rather than equations (16) and (17) if ¢t =
t—»and x <5, (that is, we exercise immediately).

The result follows again by continuing inductively backwards.
(ii) For this part proceed as in the proof of Propositions 1 and 2. O

In Theorem 4 we value the full American put option. The result is very
similar to Theorem 3 for the discretised option (as one would expect since
the restriction of the exercise opportunities to 7 should matter very little if
7 is a fine discretisation); however, Theorem 4 is more difficult technically
than Theorem 2.

Theorem 4.
(i) Starting from time ¢, the optimal exercise time, t*, and value, ¢,(x), for
the full American option are determined by either of the following equiv-
alent criteria: :
(1) The stopping time, t*, is the first time, r, after ¢ at which the stock
price, s, finds itself below the critical price, 5,; the critical price function,
t — 5,, and value function, ¢,(x), are the solution to the free boundary
problem: :

9¢,(x) _ 0¢.(x) _ _l_xz 262¢1(x)

o - X)) m e T T YT T (Z)

for x > 5,
0¢,(x) _ 0¢,(x) 1, 262¢r(x)

o o) T T o

for x <5,
0¢,(x) 8
— _ + d T\ 2 _ + = _
¢,(x) = (c — x)” an i o (& — X} 1

forx =5,

for all ¢t € [0, T] we have

¢,(x) > 0asx — .

(2) o dlx) = ?‘EJE E[exp(—r(r - [))(C - §r)+|§t = x],
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where §, is the collection of stopping times t such that t < v < T. The
optimum t* is where the sup occurs.

(ii) The continuous hedge represented by equation (5) with ¢F replaced by
¢, will risklessly yield the riskless rate of return at time t*. Any deviation of
the market price from ¢, will allow an arbitrage profit at time t*.

Proof.

(i) The existence of the solution t* and ¢,(x), and the equivalence of Parts
(1) and (2), follow from general optimal stopping theory. Note that the
criterion of Part (1) in Theorem 3 is the general characterisation of the
superharmonic majorant function, which is discussed in Oksendal (1980).
The function is harmonic in the continuation region and strictly super-
harmonic in the stopping region (see Jacka, 1988).

We will prove Part (2). Any sensible exercise (stopping) time, 7, must
be of the form ‘first time r after ¢ at which stock price s, is less than the
critical price F(r)’, where F is some function [0, T] — R™". This follows
from the first paragraph of this section. Denote by ¢;(x) the value of the
option, having decided on t and F. Then above the function F (that is,
at (x, ) for which x > F(t)), equation (2") must hold for ¢;(x), because
the essential condition for equation (2') is that we do not exercise. It
follows from equation (2') that for fixed ¢ and given §, and as u increases
from ¢, the process exp(—r(u — t)) ¢%(3,) is a martingale so long as (., 4)
is above F (that is, 5, > F(u)). (To see this, calculate the differential
dexp(—r(u — 1)) 5(3,) using the Ité formula. Also Cf. Proposition 2.)

Equation(2) holds here ":
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Thus. if p is a stopping time such thatt < p <7 (that is, p stops above
F). then we have '

o5 (x) = E[exp(—r(p — 1) ¢;(3,)13, = x]. (18)

(Equation (18) is a more refined version of equation (7).) Applying the
Girsanov transformation to equation (17), replacing p by 7, and noting that
d(s;) = (c — s,)* (because we exercise at ), we obtain

¢7(x) = Elexp(—r(z = )(c = s0)"|s; = x]. (19)

The result follows by applying the reverse Girsanov transformation to (19).
(ii) As in Theorem 3(ii). O
Our final result in this section shows how ¢,(x) is approximated by o7 (x):
Theorem 5. Put mesh(n) = max{(ty — tk—1): k=1, ..., q} = ¢. Then
we have, for all x and ¢ € [0, T], that

0 < ¢i(x) — ¢7(x) < (1 — exp(=re)),

that is, convergence is uniformly order ¢ as ¢ — 0.
Proof.
(1) Take t* to be the optimal exercise time and denote by 7, the first time
in the set 7, after t*. Note that 7 is still a stopping time, and 0 < 77 —
™ <. : )
We will show that
E[exp(—r(t* = D)(c — 3:)"[5 = x]
— Elexp(—r(tt — ) (c = 3:)"[5, =x] s c(1 — exp(—re)),  (20)
and our result will follow from this because
b(x) = 97(x) = sup E[exp(=r( = D)(c = 3)"15, = ]
= E[exp(—r(ti — £)(c — §) 715 = x].
(2) The idea of the proof is to note that waiting until time 7; beyond * to
exercise the option (that is, a time t; — t* past the optimum) will reduce its
value by at most c(1 — exp(—re). For this note that this extra wait is equiv-
alent to taking out a European option when time t* arrives, to mature at

time ¥ — t* (<¢). This wait must be disadvantageous because t* is the
optimum, and the disadvantage is equal to

°(y) — ¢"(¥).

where s, = y and n = t} — t*, and ¢"(y) (or #°(y)) is the current value of
a European option which matures at time, 7 in the future (or immediately).
But we must have y < c if exercise is optimal for s. = y, and so
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"(y) — ¢"(y) = (c — y)" — exp(=rn) E[(c — 3,)7[5) = y]
= (C - _V) - exp(_r”) E[(C - §1/)l~§() = )’]

(including negative values makes minus the expectation bigger)

= (¢ — y) — exp(=rn)c + Elexp(—rn)3,l30 = y].

But this last term is just y, because exp(—ry)$, is a martingale as
increases. (To see this, calculate the differential d[exp(—r#)3,].) Thus

¢°(y) — ¢"(y) < (1 — exp(=rn)) (21)

as required.
(3) Here we formally deduce equation (20) using equation (21):
Now,

Elexp(—=r(ti — 0(c — 3.)7[5, = x] = E[exp(—r(z* — 1))
Elexp(=r(ti — ))(c = 5:)"|@, 7) and § = x][5, = x]
(conditioning on (s,, 7)). Therefore, the LHS of equation (20) is equal to

Elexp(—r(z* = 0{#'G.) — G}, = 2] < (1 = exp(=rm)
by equation (21) as required. []

Notes :
(1) Theorem 5 crucially uses the fact that ¢,(x) corresponds to an optimal
stopping time.

If 7 is not optimal and 1, is the first time after 7 in the set = then we only
have

|E[exp(—r(z = H)(c = 5[5, = «] |
— Elexp(—r(tx — )(c = 5.)*5, = x]| = 0(mesh(x)2).

(ii) Using the ideas of Theorem 5, one can deduce that ¢™ is a Cauchy
sequence as mesh(n) — 0, and hence Theorem 4, Criterion (2).

IV The analytic approach for American options

This approach gives an ‘analytic’ formula, which is an extension of equa-
tion (9) for European options, and is actually a formula for the approxi-
mation ¢7(x) rather than ¢,(x) itself. This approximation is surprisingly
accurate in view of Theorem 5 above: if the annual interest rate is 10% (s0
that » = In(11/10)) then the approximation for a nine-month option with
three quarterly exercise opportunities has error at most ¢(1 — exp(—r/4)) =
0.024c, that is, about 25 per cent of the exercise price. The approach was
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developed by Geske (1979); see also Geske (1977): Geske and Johnson
(1979); Selby and Hodges (1987).

To help our presentation, we will assume that the present time, ¢, is 0.
The approach is to go through the procedure of Theorem 3 Part (1) cal-
culating @7 in turn for k = q. g — 1, ..., by using an explicit formula
(which is an extension of equation (9)) for the solution.to equation (2) over
each interval [, t+,]. We present the procedure in detail:

~ First, at time t,-= T we have

Br(x) = (c = 0)*. 5, =

Now, the solution, say, (,b, _, at time f,_, to equation (2), with final
condmon (,b, is glven by formula (9) for qS, . Having this, we can put

r(x) = max{¢>, (x), (c — x) }, and take the critical price 5,  to
be the solution to the equation d), (x) = (¢ — x). (Note that this equa-
tion must be solved numerically.)

To obtain qb, , we solve equatlon (2) with final condition ¢, _,» now
using a more comphcated version of formula (9), which we glve in its
general form below as formula (23), and then we replace this solution (say,
(;b;‘ (x)) by max{qS, (x), (¢ = x)}. To obtain the critical price,
5, ., We solve the equatlon qb, (x) = (c — x).

Now continue inductively ‘backwards. The formula for the solution
¢, to equation (2) over the time interval [¢, ;. ], with initial condition
(j),A 1S as follows Suppose we have critical prices 5, _, ..., 5 .

Put Q. = Event{s, >5, _,..., Sty > Si_» St S E,I_}
(that is, ‘exercise at time ¢ having started at time ). If the event
occurs then we profit by (c — s,) at time ¢, and so

q

QASZ(X) = 2 E[exp(—r(t/ o tk))(c - Sr,-)XQk,-Ika =X

j=k+1
q

=c X exp(—r(t; — %)) P[Quls;, = x

j=k+1
4q

- 2 exp(—r(t — &) E[SI,XQk,lsrk =X

j=k+1

(We have used the Girsanov transformation in equation (22); we refer to s,
(rather than §,), and to the transformed measure P, and E. Com-
pare equation (22) to equations (10) and (11).) s,, driven by P, is a geo-
metric Brownian motion. This fact can be used to rewrite equation (22) in

terms of multinormal distributions (cf. equation (7)). We obtain '
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4q q
(Mi(x) =cC Z exp(—r(t,- - tk)) Nj—k(dkaa Rk/) - Z N,'—k(dkﬂ. Rk,')

(23)

where N,;_,(-, R) is the multinormal cumulative distribution with dimen-
sion j — k and covariance matrix R, and

< dkjl = (dk.k+ls dk./'—lv - dk.j)v
dijp = dijiy — o(Vkeyy — tey oo s Vo — b, = VI — 1)

where
d ln(X/E,I) + (r + %0'2)(t[ = tk)
k.l = 5
oVI — tk
and
[ =
+ 1 B N TS T N R I %
+ re s, 1
Ry =
+ e '
L_ rk] . . . . . . - . + 1 ]
where
Fo, = EE—
Pq 2, — b

Notes on the analytic approach

(i) The efficient evaluation of equation (23) is studied by Selby and Hodges
(1987). Note that we might have to calculate cumulative multinormal func-
tions of dimension 3 or 4 in this approach, which is time-consuming for the
computer, but not prohibitively so.

(ii) The analytic approach can be adapted to deal with stocks paying divi-
dends, but this requires even more complicated formulae (see Whaley,
1981). To adapt the approach for more general price processes seems very
difficult. '

(iii) Geske and Shastri (1980) conclude that it might be almost optimal to
exercise just after a dividend is paid. Given this, the analytic approach is
very accurate if we take 7 to be the set of dividend dates.
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V The dynamic approach for American options

Our approach here is to apply a standard finite difference method for
diffusion equations to equation (2) (developing the solution backwards
from time T), and simply to replace the calculated solution, say, é,(x) at
each time by max{®,(x), (c — x)} to account for the possibility of early
exercise. This approach seems reasonable and is widely implemented (see
for example, Geske and Shastri, 1985), but it has not quite been made clear
that it will succeed. Geske and Shastri (1985) discuss various finite differ-
ence methods for equation (2), and conclude that the explicit version ap-
plied to a logarithmic transformation of equation (2) is efficient. (Note that
such a transformation causes equation (2) to have constant coefficients.)

If the (logarithmically transformed) x-axis is split up into intervals of
length A for the finite difference method, and the time axis to intervals of
length k, then Geske and Shastri (1985) show that for stability of the
explicit finite difference method we require k = O(h?) and that the errorin .
the finite difference solution is order O(k) and order O(kh?). The device of
replacing this solution, say, $,(x) at each step by max{¢,(x), (c — x)}
means that we are actually calculating the discretised optioh value ¢7 with
mesh(r) = k; thus, since |¢7 — ¢, = O(k) (Theorem 5), we see that with
this device the error in the explicit finite difference method is still O(k).

Note that the dynamic approach is easily adapted to dealing with stocks
paying dividends, and to more general price processes. Thus, it is more
flexible than the analytic approach.

Our device can be used similarly with the binomial evaluation (see also
Geske and Shastri, 1985), which is in theory almost the same as an explicit
finite difference method.

Note

We would like to thank Stewart Hodges, Michael Selby and Saul Jacka for their
help in clarifying many of the ideas presented here.
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