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1. Introduction

Among theories of the term structure of interest rates we distinguish two approaches:
that of Cox, Ingersoll and Ross ([CIR]) and Vasicek ([V]), which we identify together and refer to as
the "CIR/V theory", and that of Ho and Lee ([HL]) and Heath, Jarrow and Morton ([HIM]), which we
refer to as the "HL/HJM theory". See also [C]. Both theories assume that there is just one random
factor which drives the term structure, but they differ fundamentally in that the CIR/V theory assumes
that the whole of the term structure at a given time is determined by the short rate at that time, and the
HL/HIM theory studies the evolution of the term structure from an arbitrary initial structure. These
fundamental differences give rise to the contrasting strengths and weaknesses of the two theories;
HIL/HJM seems preferable in that it is empirically clear that the term structure evolves smoothly but that
it does not depend only on the short rate, also CIR/V seems preferable in that it is transparent, and
gives a sensible prediction for the long-run behaviour of the term structure, whereas the HL/HJM can

easily lead to absurd results in the long-run, such as predicting negative or unbounded interest rates

(see [C], [HIM].)

Our aim in this paper is to present a "primitive" term structure theory, which captures the attractive
features of both the CIR/V and HL/HJM theories, and yet is not too primitive to be empirically
meaningful. The basic assumption of the primitive theory is simply that as time evolves from

t to t+¢& (with € small), then the difference between the forward price at time t , to run from t+
€ and mature at time q , and the spot price at time t+ € to mature at time q , is perfectly correlated
with the evolution of the short rate between times t and t + € . This assumption actually subsumes

that of the CIR/V theory, and is very much like that of HL/HJM.

We present our primitive theory in Section 2 below, and we show how it relates to the CIR/V theory in
Section 3, and to the HL/HJM theory in Section 4. In Section 5 we develop the Primitive Theory in

the light of empirical estimates of the term structure, and in Section 6 we give a summary and

conclusions.



I would like to take this opportunity to thank my colleagues Stewart Hodges, Nick Webber and Jim
Steeley for their help in clarifying the ideas presented here; thanks also to Les Clewlow, who did the

computer work, and Philip Dybvig, who gave us a preview of his paper [D].

2. The Primitive Theory

Assumptions of the Primitive Theory

In this theory we take the short rate r; to be an autonomous stochastic process, drive according to the

equation
dr; = {(ry) dt + n(r)dB,, (1)

where the coefficients { and 1 can depend on the short rate, and must be chosen using empirical

considerations, and B, is a standard Brownian Motion. Our basic assumption is formulated as
Pt+e =gt t+eq+xq- AT t+y(q-DATT B +0p(€) (2

where our notation is as follows:

By p(s, q) we mean the spot rate at time s to mature at time q , i.e p(s, q) = al_s log P(s, q),
is the price at time s of a pure discount bond which yields 1 at time q.

By g(t, s, Q) we mean q—+3 log G(t, s, q), where G(t, s, q) is the forward price given by

P(s, qQ)/P(t, s).

By Ai*®B we mean the increment Bi+g- By, sothatitis N(O, t), i.e. normally distributed with

0 and variance t .

By Ai*% we simply mean (t+¢€)-t=¢ .



The functions y,(s) and W;(s) must be chosen using the empirical and theoretical considerations
discussed below; the fact that their arguments in (2) are both q - t reflects the fact that the model is

time homogeneous.

The notation og(€) represents a remainder term which is of small orderin € in an L2 sense.

This means that if the remainder is X¢ , then E[X%]% =o(e) as e >0 .

Reformulation of the Basic Assumption in Terms of Prices Rather than Rates

We can reformulate our basic assumption, equation (2) as any of the following three equations:
P(t+¢,q) =G, t+¢g,q) [1+v,(q-t) AT t+ Uy, (q-t) AL EB] + og(e); 3)

(Recall: G(t,t+¢€,q) =P, q)/P(t,t +¢)

Pt+g q/Pt, @ =1+1Ai " t+0,(q- ) AtT 8+ (g - £) AT B + 0g(e) ; 4)

dP(t, q)
=7 -t)dt + r dt + -1) dB; .
P(t, q) I (q ) Iy “rl(q ) t (5)

In (3), (4), (5) the functions v and W correspond to ¥ and W of (2), and they are related via

Ve(s) = -8 xr(S)+%s2 i(s)?,

(6)



llr(S) = 'S\Vr(s) .
Proofs of the Reformulations

2) <=> (3)

Rewriting (2) using P(s, q) = exp [ - (q - s) p(s, q)], it becomes

P(t+¢€,q) =[P(t, @)/P(t, t+€)] exp [- (- (t+¢€) {Xrn(q-) ALTEt
+ Y (q-t) AL EB + 0g(e) )]

= [P(t, /Pt t+€)] [1-(q- Ct+&){ — } + % @-@+e)* { — 2+ o~ 1)
(using exp [-x] =1 - x + /5 x2 + 0(x2))

=[P(t, /Pt t+ €)1 [1-(q- t+8) X (Q- D ATE-(q- (t+8) Wi (q-)ATTEB +
;_— (@- (t+€)? wn(q- 2 A+ ] + og(e)

(expanding the curly brackets, and using dB,.dB, =dt, dB,dt=0, dt. dt =0, and

ALTEB. ALTE B = A" 5. Of course the penultimate term in this last expression is an Ito-type term).
We obtain this last expression if we substitute for v and W in (3), except for some terms involving
eAt and €AB, which come from the (q - (t + €)) factor. These terms can be absorbed into the og(€)

term.

() <=>)

For this, note that



rp= lim [-1/ log P(t, t + €)]
e->0

_ -d(log P(t, t + €))/0e
de/de

e=0

(L'Hopital's Rule)

_ -0P(t, t + €)
oe

€=

and so

Pt,t+efl =1+er + o) .

Substituting for P(t, t +€)-! in (3) using this, and multiplying out, yields (4).

4) <=> (5).

Equation (5) is just a reformulation of (4) in terms of the Ito differential, if we rephrase (4) so that its

LHS becomes (P(t + €, q) - P(t, ))/P(t, q).



Note

Equation (5) is perhaps the most friendly formulation, and as we have just said, equation (4) is
equivalent to (5), except that in (4) we have not gone to the differential limit. This explains the
presénce of the og(€) term in (4) (and hence in (3) and (2)); an Ito difference

oAt EB tends to the Ito differential o,dB, with error og(€) , or to be more technically correct

(since the Ito differential is strictly only meaningful when integrated), the approximate integral

-1
T ooy AB for a=to<ty<-—-<ty=b

1=0
b
tends to the integral j o, dB, in the L? norm, i.e. with error Og(€), where

€= ma {ti+1 -t}
., q-1

Arbitrage Across Maturities: Constancy of the Risk Premium

We will take the constancy of the risk premium as one of the assumptions of the Primitive theory; it is

explained in the following proposition. This idea is common to the CIR/V and HL/HIM theories.
Proposition 1

If our Primitive Theory holds, and there are no arbitrage opportunities, then we must have

Vr(s) L
(s & Vs %)



independent of s . This 7; is the risk premium; it gives the expected return in excess of the riskless
return, which is yielded when the bond has "risk" p,i.e. b =7 +r. Note that ¥ can depend on the

current short rate.

Proof

Attime t form a portfolio comprising quantities &; and &, of discount bonds to mature at times q;

and q, respectively. Then the value of this portfolio at time t is

€1 P(t, q) + &2 P(t, q2) , ®)
and at time t+ € the value is

S1P(t+e,q) +E P(t+e,qo),
which (using (3)) is

&1 [P(t, q)/P(t, t+&)] [1 +v,(qr - ) AF™® t+ pr(qr - 1) At *B]

+ & [P(t, q2)/P(t, t + &)] [1 +Vr(q2 - ) Ag™ %t + pp(qn - ) AL EB]
+ OEg(€) . ©)

Now, suppose we have chosen &; , &, so that the portfolio is hedged to order Og(e) , i.e. so that the

AB terms in (9) cancel and we have
€1 P(t, qiun(q1 - ) + & P(t, q2) pr(q2- 1) =0 . (10)

Then to prevent arbitrage possibilities, we must have



value at time t+¢,ie (9) _
Value at time t ,i.e (8) VPG b ) % oplE) - (11)

Substituting into (11) and taking &; and &, to satisfy (10), we conclude that

Vr(@1-9 _ Vr(g2-9
Mr(q1 - 1) Hr(q2 - 1) ’

and hence our result follows, since q; and qp were chosen arbitrarily.

Recovering the Short Rate: A Consistency Condition

From our basic evolution equation (2), we can recover an equation for the short rate, which must agree

with equation (1), and this leads to the following result.

Proposition 2

The assumptions of the Primitive Theory imply that

C@) = %:(0) , n@) = w(0) (12)

Proof

Choose €> 0. Putting q =t + 2¢ in equation (2), we have

P(t+e,t+2€)={2P(t,t+28)-P(,t+€)} +x(28) At "5t + Y ,(2€) A" B

+ og(€)



Now, note that

pit+e,t+2€) =1, +0(),

2p(t,t+2¢)-p(t,t+€) = 1, +0(€) ,

Xr 28) = % (0) +o(e) , (assuming %.(s) and i(s) are smooth in s)

v (28) =y ((0) + o(g),

to deduce that

Tiae- T = Xr(0) A" %t + Wy, (0) A" *B + og(e)

and hence that

dr; = X (0)dt + Y, (0)dB, ,

which must agree with equation (1).

3. The Primitive Theory vs. the CIR/V Theory

The CIR/V theory makes all the assumptions of the Primitive Theory, and the additional assumption
that the entire term structure at a given time is determined by the short rate at that time. These

assumptions suffice to determine a Black-Scholes type equation for the term structure, as in the

following proposition:
Proposition 3

Under the assumption of the CIR/V theory we can write Pi(t, q) for the price at time t of a discount

bond which yields 1 at time q , if the current short rate is r . Also we have the backward diffusion

equation
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R0 =-Lo? az 2 (1,0 + O 0~ 30 52 (6.0) + 1P (4, 0)
(13)
with final condition
Pi(q,q)=1 forall r .
Proof
The Ito formula yields
dP,(t, @) = %{t, Q) dt + % (t,q) dr, + %% P, (t, @) (dr;, dr)
= |Puy . Pr, + L 52 G —P.| dt+ o, =1 Py, dB,
oo ' or or2 or (14)

(the applicability of the Ito formula rests simply on the fact that the process r; enters as the argument

of the function in Py(t, q).)

Comparing (14) to (5) we obtain

_ . |oP 9P ; , @ _
D-—]./p St—'f'pg'f"i'@ a?Pil 5 “—1/})

ocoP

or

b

(15)

and the equation (13) follows by substituting into (7), using (15).
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Notes Concerning the Long Rate

6)) The equation (13) can be solved using standard numerical methods, and both the papers [CIR]
and [V] give analytic solutions, for their assumptions about the forms of the coefficients {,n and
Y. Their analytic solutions are completely different from each other, because their assumptions about
€,m and vy are different. However, they both predict that as q increases from t , the spot rate
p,-*(t, q) will move smoothly from 1; to an asymptotic value (the long rate) which is independent of

ry . This prediction of constant long rates is not unreasonable for a one-factor model.
(ii) In detail, [CIR] assumes that

dr.=% (0 - 1) d, + G vE dBy , Yy = AAE/S (16)
and [V] assumes that

dy=0({-r)dt+p dB,,vr =9, (17)

where in (16) and (17) the symbols with tildas are all positive constants (and the tildas prevent clashes
with other notation.). It is difficult to argue on empirical or theoretical grounds in favour of either of
(16) or (17) rather than the other, and yet these differences lead to important differences between the

conclusions of [CIR] and [V], and this fact must be regarded as a criticism of the CIR/V theory. In

particular, in [CIR] the long rate is
o % O/IR+X)2+28412 + [R+A]) (18)

(see [CIR] equation (26)), and in [V] the long rate is

~ o~~~ __1_ ~ 2
Y +pg/a 5 (p/ov) (19)



12

(see [V] equation (28)), and it seems that there is no elegant formulation for the long rate that

encompasses (18) and (19) together.

(i) Inthe generalised formulation of the CIR/V theory of this present paper, it seems to be unclear

whether the long rate is indeed constant.

The following proposition explains how the conclusions of the Primitive Theory can be made to
encompass those of the CIR/V theory, by making appropriate choices for the functions W and v, or

equivalently x and v .
Proposition 4

Suppose we take 1L and v in the Primitive Theory as in equation (15), which relates to the CIR/V
theory and with P being the solution to equation (13). Also suppose we start the evolution of the
Primitive Theory at time t (i.e. the evolution driven by equation (2), (3), (4) or (5)) from a term
structure which is admissible for the CIR/V theory (i.e. with prices {Py (t, q): q >t}, where 1; is the
current short rate, and Py(t, q) is the solution for equation (12)). Then the evolution according to the

Primitive Theory will conform to that according to the CIR/V theory.

The result follows because both theories give the same stochastic equation for Pr {t, q), namely (5)

and (14).

One might say that the difference between the Primitive Theory and the CIR/V Theory is that the
Primitive Theory concentrates directly on the functions v and p of the equation (5), and does not

assume that they are as in equation (14).
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4. The Primitive Theory vs the HL/HJM Theory

Formulation of the HIL/HIM Theory

The paper [HIM] starts from the formulation

NL®=eHﬂ-ff&TNhL
t (20)

where f is the forward rate, and it satisifes the following stochastic equation for fixed T and variable

p<T:

df(p, T) = o(p, ) dp + S(p, 1) dBy 1)

where By is a standard Brownian notion. This formulation is equivalent to the following, which is

presented in [C] as the continuous time analogue of the formulation of [HL]:
For t<s<q we have

P(s, @) = [P(t, @)/P(t, s)] H(t, s, q) , (22)

where

H(, s, q) =exp [ - L“Lq[a(p, 1)dp +6(s, T) dB,] dt . -

In the spirit of [HL], [HIM], equations (22) and (23) tell us how to predict the term structure at time s

. . . . <
given that attime t , and in terms of the random input {BP}Z; ;
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From equations (20) - (23) we see that the HL/HJM theory takes the forward rates of equation (21) to
be the fundamental driving process of the term structure, rather than the short rate, and the work of

[HL], [HIM] and [C] is mostly concerned with arriving at reasonable choices for the coefficient

functions o and o .

Attempts to Solve the HL/HIM Theory

It is reasonable, as a first attempt to solve the model, to assume that o and G are nonrandom, i.e.
that they do not depend on the behaviour of the term structure. This assumption is essentially made in
[HL] itself (compare equation (22) with equations (7) and (8) of [HL]) and in [HIM] Section 7, and in
[C]. With this assumption, and applying the arguments of [HL], it is possible to solve the model

completely (see [C], also [HIM]), to obtain

o(s, ¥) = o(constant) , o(s,Y) =- Y0 - 62(T-p), (24)

where 7 is the risk premium. (We make no assumptions about the form of 7).

From (21) and (22) we obtain

f(s, 1) = f(t, 1) - Gf ydp +;—[(Y -1)2- (Y- 5)%] + o[Bs - By,
- (25)

and hence

ro=1(s,s) =f(t,s) - © j Ydp +06%2 (s- )2 + 6(Bs - By .
B (26)
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Also, we can use (25) in (20) - (23) to obtain explicit formulae for the evolution of the term structure.
Unfortunately, these solutions are absurd; for instance (26) predicts that the short rate grows

unboundedly, and that with high probability it can become negative.

To avoid such absurd conclusions, we must allow the coefficients o and ¢ to be random. This is
done in [HIM] Section 8, where o is assumed to be small when the forward rate is small (a device to
ensure that the short rate remains positive), but then o must be made random to present arbitrage -

across - maturities. If oo and ¢ are random, then it seems that they will be very difficult to interpret

and to measure empirically.

The Primitive Theory vs the HL/HIM Theory

To compare these theories, it is useful to rephrase the HL/HIM formulation as

P(s, ) = g(t, 5, @) + glg ] [atp, v dp + o(p, 7) dB,ldr.

From this we can deduce that

pt+&,q) =gt t+€,q) + ﬁ U;oc(t, 7) d'c} AP

T

+ ﬁ“qﬂc(t, 7) dr} A{™*B + ok (e), 27)

and comparing (27) with (2) yields

xX(@-t = % L:‘oc(t, dt ,  yr(Q-H=

q
o(t, T)dt
q L:t

-1
q-t (28)

From (28) we see that we can recast the Primitive formulation into the HL/HJM formulation (i.e. we

can go from 7y , y(or v, L) toa , ©),if we allow o and G to depend on the short rate; infact
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ol q>=ada[<q-t> x@-01, o, q)=§—q[(q-t> Vg - 0] . -

Alsoif % and y are such that they prevent arbitrage - across - maturities, then sodo o and ¢ of
the HL/HIM theory, if they are as in (29). Also, we can go from a,c to y, Y (orv, p) if
a(p, 7) and o(p, T) depend on rp, but we cannot do this if o and ¢ are random in a more general

way than this. Thus we conclude that the Primitive Theory is a well-motivated special case of the

HL/HIM Theory.

Some Technical Notes

@) Since the HL/HJM formulation given here starts from the forward rates, it is instructive for our
comparison between HL/HJM and the Primitive Theory, to derive the equation for forward rates in the

Primitive Theory. Note first that from (19) we have

£t q) =- ?)_l;“’ /P ) -

(30)
also from (5) we have

P(,0) = PO, 0) xp ||| [0 (5,6 dp - 5pdp +(p, ) dBp + (o, %ol
and hence

P, . 9P l

0 =50.9ep [ 1.

: C
+P(0, q) exp LJ ]} . L"E['"]
=P, ) 2 (0, 4/ PO, ) + Pt q) - [ [ ..]
dq P=dq (32)

(Substituting using (31).)
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Using (30) in (32) we have

@ = 10,0 F1..1,

which yields the stochastic equation (for fixed q and time variable t with t<q)

a(t @) = -2t g dt + pt @) e, ) dt - 0 2 1, g) dB,
dq aq da (33)

(ii) Comparing (33) with (21) yields the correspondence

op, 1) = -g—\\; (p,T) + p1lp, T)%:— P17,

(34)
o(p,T) = g—Tu(p,'c) .

between HL/HJM and the Primitive Theory. This agrees with the correspondence (26) in view of the

correspondence (6) between P,V and Y, ¥ .

(iii)  Having obtained equation (33) for the forward rate in the Primitive Theory, we can go on to
obtain from it an equation for the short rate, which is like equation (24) of the HL/HJM theory. This

equation is

- 1 |00 Jp ou
rq=1£(q, @) = (t, Q) - {[—(, ) - 1P, ) = (p, )] dp +=(p, q) dB
o=@, 9=t q-|[_ 5q P>~ P D5 (0. D] dp +5(p. @) dBp a5

Equation (35) gives the stock price process as time q increases from t , but conditioned on a
knowledge of the forward rate curve (or equivalently the term structure itself) at time t . Note that this

equation cannot easily be reduced to equation (1) for the unconditioned behaviour of the short rate.
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5. Empirical Considerations

This section is intended only as a pilot study, to show how to estimate the coefficients of the Primitive
Theory. The application of the theory to interest rate option evaluation will be studied in subsequent
work. We believe that for a more detailed empirical study of the Primitive Theory, we should develop
a more sophisticated version of the theory, because it is empirically clear that there is more than one
dimension of random input in the term structure evolution. Infact the paper [S3] identifies three factors
of random input. One might say that the Primitive Theory as developed in this paper gives an optimal
account of the evolution of the term structure, in as much as it is driven by the short rate. As our
empirical data we use the 4-weekly term structure estimates of [S1]. These refer to British gilts, and

cover the period 6 March 1986 to 15 October 1987.

For our empirical study, we cast the Primitive model into another formulation. This formulation

involves eliminating the noise term in equation (2) using (1), to obtain
p(t +¢€,q) = g(t, t +&, q) + Xu(q - ) ATt + Yr(q - ) AT 1 + Og(e), (36)

where

X:@- 0 =%(q - 1) - C@Vo@) ne(q - 1),
Wi(q - 0 = (1/40) yil(q - 1) 37)

Equation (36) makes clear the fact that in our theory, the term structure is driven by the short rate.
We will actually estimate % and . Having done this, ¥ and \ can be estimated using (33) if we als

estimate the parameters { and m of equation (1). The parameters { and m are estimated in

paper [S2]. We will assume that ¥ and ¥ are independent of the short rate r . This is perhaps
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not unreasonable, but it is unreasonable to assume that % and Y are independent of r , in view of

Proposition 2; if they were, then { and 1 would be also and the short rate would not be mean-

reverting.

Our procedure for estimating ¥ and V is as follows: First denote by {ty, tp, ...} the times at which
the term structures have been calculated. Thus t; - ti.; is one month for all i . Take € of equation
(36) to be one month. Now for each time to maturity of say k months calculate empirically the

quantities

AZp(tisk) 5 Agpliaa),

iz i3
Agr , Aels 5w

where
Lis
A ' p(tiek) = Ptis1, tiak) - 8t tiel, k),
and the short rate 1y_is actually calculated as the one month rate p(tj, ti+1)-
]

Finally obtain (k months) and \f (k months) by a least-square regression on the equation

A¢" p(ti) = ¥(k months). (1 month) + ¥ (k months) A r. (38)
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The result of this estimation is given in the following graph:

$—73 ( \P‘,""’*\

2 4 6 8 10 12 14 16 18

Our estimated Y in this graph behaves in a reasonable manner; it decreases gradually from 1 and shows
that the volability of the short rate is reflected in that of the long rate but is an attenuated manner. Our
estimated % is more difficult to explain; it seems to be unstable for short term-to-maturity.

We suspect that in a statistical sense Y is not very robustly determined.
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6. Summary and Conclusions

We have presented a Primitive Theory of the evolution of the term structure of interest rates, in which
the basic assumption is simply that the evolution of rates for all maturities is perfectly correlated to that
of the short rate. We have shown that this theory subsumes the theories of [CIR] and [V]. and is a
well-motivated special case of the theory of [HIM]. We have also indicated a procedure for estimating

the coefficients of the Primitive Theory.

There is much empirical work to be done to develop and verify the Primitive Theory. Before this is
done it will be necessary to develop a higher-factor version of the theory, because it is empirically clear

that the short rate alone is not adequate to determine the evolution of the term structure.
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