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Abstract

1. Introduction

The consiruction of hedging strategies that best replicate the outcomes frontoptions (and other
contingent claims) in the presence of transactions costs is an importarit problem. Leland [1985]
presents and describes properties of a method for hedging call options when, inaddition to the
usual Black and Scholes asswumptions, there is a proportional transactions cost. However, this
method is in no sense an optimal one. Other important papers, by Davis [1988], Davisand
Norman [1988], and Taksar, Klass, and Assaf [1988], describe optimal portfolio policies to
maximize expected utility over an infinite horizon. While these papers are concerned with optimal
policies, they are not concerned with the “financial engineering"’ problem of replicating a given
contingent claim.

This paper describes the general problem of best replication of a contingent claim under
proportional transactions costs, and other cost structures. The context in which the contingent
claim is to be hedged is as follows. It is assumed that a financial intermediary or individual already
has selected an optimal portfolio of assets and liabilities. An opportunity occurs to issuea
contingent claim (presumably at a favorable price) and to hedge the risk invol ved by means of
transactions in either a futures contract or the underlying asset itself, and risk-free bonds. Exact
replication at finite cost is generally either impossible or too expensive to bedesirable. The
replication problem must therefore be defined relative to a loss function. The precise formulation
of the problem is conditioned by the optimality of the original portfolio.

The problem isone of stochastic optimal control and can be characterized by a dynamic
programming (Bellman-Hamilton-Jacobi) equation. In general, it is necessary to solvethis
equation numerically. Numerical results are provided for a realistic situation ofreplicating a
conventional call option. The paper also derives some further insights into optimal replicating
strategies by considering an alternative and simpler contigent claim. The optimalstrategies are
shown to beconsiderably better than the alternatives given by the strategies described by Leland.
Finally, some general properties are described, and some further extensions are suggested.

The construction of hedging strategies that best replicate the outcomes from
options (and other contingent claims) in the presence of transactions costsis an
important problem. Hedging is central to the theory of option pricing.
Arbitrage valuation models, such as that of Black and Scholes [1973], depend
on the idea that an option can be perfectly hedged using the underlying asset, so
making it possible to create a portfolio that replicates the option exactly.
Hedging is also widely used to reduce risk, and the kinds of delta hedging
strategies implicit in Black and Scholes are commonly applied, at least
approximately, by participants in options markets. Optimal hedging strategies
are therefore of direct practical interest. Much of the theory of options assumes
that markets are frictionless. This paper considers the impact of transaction
costs on pricing and hedging.

A number of recent papers consider various aspects of the transactions cost
problem. Leland [1985] presents and describes properties of a method for
hedging call options when, in addition to the usual Black and Scholes
assumptions, there is a proportional transactions cost. Neuhaus [1989]
contributes some further theoretical insights to this approach. However, this
method is in no sense an optimal one. Figlewski [1987] gives some interesting
simulation results. Other important papers, by Davis [1988], Davis and Norman
[1988], and Taksar, Klass, and Assaf [1988], describe optimal portfolio policies
to maximize expected utility over an infinite horizon. They extend earlier work
by Merton [1971] and Constantinides [1986]. However, while these papers are
concerned with optimal policies, they are not directly concerned with the
problems of replicating (or, similarly, hedging) contingent claims by means of
the underlying asset.



2. The General
Framework

224

This paper describes the general problem of best replication of a contingent
claim under transactions costs. It describes a normative model from the
perspective of a single agent, and not a model of market equilibrium. Exact
replication at finite cost is generally either impossible or too expensive to be
desirable. The replication problem must therefore be formulated relative to
some loss function (or utility function for marginal wealth changes). We show
that this problem is one of stochastic optimal control and can be characterized
by a dynamic programming (Bellman-Hamilton-Jacobi) equation. In general, it
would be necessary to use numerical methods of solution, and the problem
involves three state variables. By using a suitable utility function (exponential),
we reduce the number of state variables to two and are able to obtain numerical
solutions to realistic problems. By further specializing to a particularly simple
specific contingent claim, we obtain a problem with just a single state variable
and we are also able to derive some analytic results. The optimal strategies are
shown to be considerably better than the alternative strategies described by
Leland. The paper also discusses a number of general insights concerning the
nature of solutions to optimal hedging problems under transactions costs.

We consider an asset whose price, S;, at time f evolves under the diffusion
process described by

dsS = p(S)dt + o(S)dz (1)

The problem is to replicate the outcomes from a contingent claim whose payoffs
at a single future date, T, are given by C(S7). The replication s to be
accomplished by holding x; units of the asset plus either borrowing or lending at
a constant interest rate, 7. The holdings in this replicating portfolio are to be
actively managed through time, but transactions in the underlying asset involve
a transaction cost amounting to k(v,S), where v is the volume of shares
transacted (either positive or negative) and Sis the (mid) share price. For most
purposes, we shall specialize this to the case of costs that are a constant
proportion of the value transacted,

k(v,S) =k |v| S, (2a)
or a constant amount times the number of shares traded,

k(v,S) =k |v| (2b)
We can also consider costs with a fixed and variable component, such as

k(v,S) =k, + ko |v| S forv+0

=0forv=0 (20)

In general, it is either impossible or at least undesirable to replicate the
contingent claim exactly. For many problems, exact replication at finite cost is
impossible. For others, while exact replication at finite cost may be possible, it

will be too expensive to represent an attractive policy. The replication problem is
therefore ill-defined until we have specified a criterion for choosing between
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alternative replicating strategies. We will assume initially a fairly general state-
dependent utility criterion that later will be specialized to a particular function.
Thus, we assume that an initial amount of money is invested through time
(managed between the asset and the risk-free rate). By the terminal date, T, after
liquidating the asset holding, an amount of cash, y7, is available to set against
the contingent liability, C(S7). At this date, we have an accumulated surplus of

wr = yr — C(S1) 3)

net of the option value to be replicated. We definea utility function U(wr, S1)
and seek to characterize and calculate replication strategies that maximize the
expected value of this utility function. We shall focus later on a utility function
U(wr) that is only state dependent in the sense that the definition of writself
involves C(S7). We may also allow the horizon date to be later than the expiry
date of the contingent claim. Also, we wish to allow wrto be negativein some
states, which precludes the use of some commonly employed utility functions,
such as power or logarithmic utility functions for U(w). It is worth noting that
our utility function should be interpreted as the utility of wealth at the margin,
after some other choices have been made, rather than as the utility of total
wealth. We do this to avoid having to solve an impossibly large portfolio
problem. We shall assume that U(w,S) is defined for all real numbers w,S, and
that its first two derivatives exist, are continuous, and satisfy the usual
properties for a risk-averse utility function, i.e., that Uw > O0and Uww < 0.

We now describe the structure of the general problem. Using the notation
already introduced, we define the value function

J(t,S,x,y) = Maximum E[U(wr, S7)] ' C)]
as the maximum expected utility possible starting at time ¢ when the asset price
is S, with initial holding of x shares, and an amount yincash. E[ . ]isthe
expectation operator. The maximum is taken over all feasible transactions
policies. At the last date T, it is clear that, by definition, J( . ) is obtained trivially
as

J(T: S:X:}’) = U(WT: ST) (5)
where

wWr=X S+ yr— C(ST) (63)
corresponding to no costs at termination, or

wr=x St — k(x,S1) + yr — C(S7) (6b)

corresponding to cash settlement after transactions costs have been paid.

The value function is solved recursively backward through time using the
dynamic programming approach of stochastic optimization. J( . ) evolves
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backward as given by
J(1,S,x,y) = Maximum Eqs[J(¢ + dl, S+dS, x*, y(x*)] @)
where the maximum is taken over the choice of the quantity of shares x* to hold.

This optimal control problem is characterized by the second-order partial
differential equation

Jo+ ps)Js + Vaa¥ (S) Jss+yrJy=0 (8a)
for interior values of xe X, subject to the boundary conditions

JT;S,x,y) = U(wr,S7) (8b)
defining J at the terminal date 7, and

J(,S, x+u, y—uS—k,S)) < J(,5,x, ) (8¢c)

which defines the boundary of the region X on which transactions occur. For
the special case of constant proportional transactions costs, equation (8c)
simplifies to an inequality relationship between Jrand J.

The solution to this problem provides the optimal strategy for hedging the
contingent claim, and also a valuation function for it. We believe that for any
<swell-behaved”’ cost function k(1,S), the solution provides functions

x_ (1,5, ¥), X+ (1,S, ), x* (1,5, »), x% (1,S, ¥)

Once xis established within theinterval [x _, x + ], the discovery at a later time
that x < xleads to transactions to reestablish x at the value x*. Similarly, if

X > x.,itisreestablished to x . . If transactions costs are simply proportional to
volume, thenx* = x_ and x* = x,.Iftransactions costs have only a fixed
component, thenx* = xi.

We may define valuations of the contingent claim after adding some further
simple notation. We define J €(1,S, x, y) as the expected utility (under an optimal
hedging strategy) of assuming the state-contingent liability C, (e.g., C(St) as
before). The individual’s selling valuation of C, Vs(C)is defined as the price
required to provide the same expected utility as not selling the contingent claim.
Thus, Vsis defined by the equation

J€(0,8,0,V5) = J°(0,S,0,0) )
where J°is defined as J€, but with no state-contingent liability assumed.

Similarly, we can define the buying price, Vg, as the maximum price worth
paying to buy the contingent claim, defined by the equation

J~€(0,S,0, — V) = J%0,S,0,0). (10)




In addition to calculating optimal hedging strategies and valuations, we can
also calculate recursively as many moments of the distribution of wz-as may be
of interest. The moments of waboul zero simply accumulate as expectations
conditional on the state variables involved.

Note that under this general formulation, at each datein the calculation, the
value function (and also any derived moment functions) depend on the three
state variables of S, x, and y. The computational effort required may be
considerable unless simplifications are found. A general numerical solution
would be daunting. We shall argue in the remainder of the paper that there are
good reasons, both theoretical and pragmatic, to specialize the utility function
to the negative exponential

U(wy) = —exp(—Awr). 1n

This reduces the state variables by one and makes the computations relatively
straightforward. It also enables us to produce strategies that have the
attractively simple properties of not being wealth dependent and not creating
risky positions in the absence of any contingent claim to be hedged.

3.The We first consider the justification for assuming a utility function of the form of

Formulation equation (11). We will also justify transforming the diffusion process to its risk-

with Exponential neutral equivalent. The simplifications that result will then be demonstrated.

Utility e -
The context in which the contingent claim is to be hedged is as follows. It is

The Rationale assumed that the intermediary or individual already has selected an optimal
portfolio of assets and liabilities. An opportunity occurs to issue (or buy) a
contingent claim at a (possibly) favorable price and to hedge the risk involved in
the fashion that has been described. To obtain a more tractable problem, we
wish to ignore the interactions that would normally exist between the new
opportunity and the rest of the portfolio, and between the success of the
replicating strategy and the agent’s risk aversion. Given this background, it
seems appropriate to impose restrictions that will give our optimal hedging
strategies the following properties:

Property 1 The number of shares to be held in the underlying asset is to be independent of
the amount of cash carried forward. We have in mind that a single hedging
transaction will represent a small part of the total operations of our
intermediary. The size of the cash balance partly reflects whether the hedging
strategy has fared well or badly to date. We would not want the hedging strategy
to depend on the cash gained or lost in other operations; it would then be
inconsistent to let it be affected by the cash generated in this operation.

Property 2 If no claim is issued (or purchased), we would like the optimal incremental
transactions to be nil, irrespective of how small transactions costs are. We have
assumed that prior to undertaking the transaction to be hedged, the individual
orinstitution has already optimized its portfolio. This may include plans to
manage a holding of our underlying asset within a finite range. We are interested
in what hedging actions should result from the sale (or purchase) of the
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contingent claim, and we want to make neutral assumptions regarding possible
interactions with existing portfolio holdings or operations.

Property 1 immediately rationalizes our choice of negative exponential utility as
defined in equation (8), since this is the only utility function that has constant
absolute risk aversion. Property 2 enables us to replace the general stochastic
process of equation (1) with its risk-neutral equivalent

dS = rSdt + o(S)dz. (12)

It is convenient (as ever) that we do not need to have information about the drift
of the underlying asset. The proof of this is as follows. It is well known (for
example, see Breeden and Litzenberger [1978] or Dybvig [1988]) that in
complete markets, the state prices are proportional to the risk-neutral (or
martingale) probabilities, 7s. Supposing that the original portfolio was such
that there would have been no incentive to trade in a complete market, the
solution to

Maximize I ws U(ws,S)

subjectto L s ws =0
must be ws = 0 for all states, s.
This gives the conditions,

7s U'(0,8) = y7s. (13)
We need marginal utility to be proportional to w5/ s The simplest way to
accomplish this is to retain a non-state-dependent utility function, but then
adjust the probabilities to 7§ instead of ws. Note how the transformation to the
martingale probabilities ensures very nicely that no holdings in the risky asset
(either positive or negative) are generated at any date in the absence of taking a
position in the contingent claim.
We now examine the effects of our simplifications on the partial differential
equation, its boundary conditions, and on how we obtain valuations. Since,
from equations (4) and (11),

J(t,S,x,y) = Maximum E[—exp{-Awr]], (14)

and the management of x through time is independent of y,

J(1,S,x,y) = J(1,S,x,0)exp{—\y e T~ V] (15)
If we define
H(1,S,x) = J(1,5,x,0), (16)



4. A Numerical
Example

then we may derive the following new equations and boundary conditions for
H, which correspond to our previous equation set (8):

H, + rSHs + Y20%(S)Hss = 0, (17a)
H(T,S,x) = —exp{—-AwT}, (17b)
H(1,S,x+u) = H(t,S,x) exp{ -NuS —k(1,5)) 2T =¥, (17¢c)

For the special case of a constant proportional transaction cost, k(vS) = k|v|S,
this last equation translates to

H, = \S(+k)e" " "H (17d)
forx < x-,and

H, = \S(1—-k)e""YH (17e)
forx = X+

Our valuation formulae for selling and buying values, Vs and Vg, simplify as
follows. As before, Vs is defined by the equation

JE(0,S,0,Vs) = J%0,S,0,0) - : : ©)
which now can be expressed as
H€(0,5,0) exp{—\ Vse'T} = H°(0,5,0) = —1,s0

Vs =l>‘ e~ "Tin(=H ). (18)

Similarly, for the buying price, Vg, we have
Ve = “lx e~in(-H ~©). (19)

We now apply the approach we have described to a familiar Black-Scholes
option example under proportional transactions costs. For our example, we
have taken the case of a one-year call option with an exercise price of 100. The
asset volatility is 30 percent and the riskless rate of interest is zero. Transactions
costs are 2 percent of the value transacted and the risk aversion parameter, X, is
taken to be unity. This degree of risk aversion means that the hedger would be
indifferent between two normally distributed outcomes where one has a mean
that is x higher and a variance that is 2x higher than the other. The calculations
were performed using a binomial lattice with a vector tabulating expected utility
starting from alternative x values at each node.

In Graph A, the maximum and minimum hedge ratios (deltas), x + and x -, are
given both for the case where the hedger is short an option and where he islong
an option. Remember that for this problem, x*. = x_ etc., and the transactions
are undertaken to just constrain x to remain between thelimitsof x— andx +.
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These hedge ratios are plotted as functions of the Black-Scholes hedge ratios.
Two points emerge clearly:

1. The optimal hedging strategy varies according to whether the investor is
hedging along or a short position.

2. Itis quite possible for a portfolio that is perfectly hedged according to the
perfect markets theory of Black-Scholes to require rebalancing when
transactions costs are taken into account. In other words, x - (t,S)and x . (1,5)
do not necessarily span the Black-Scholes hedge ratio of N(d,).

Graph A. Optimal hedgingstrategy with transaction costs (sigma = 30%, T = 1year,
transaction costs = 2%, lambda = 1, 40 time steps, 400 hedge ratios, interest rate = expected

return = 0)
X+ and X -
1
0.8
Short 1 call
0.6 —
0.4 —
0.2
/ Long1call
0 | ~ | | | | | L | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Delta

These points become less surprising when our results are compared against the
analysis of Leland [1985]. Leland shows how an investor could write a European
call option at a price C* and hedgeit. By rebalancing the portfolio at regular
intervals of length Az in a prescribed way, he ensures that his terminal wealth,
although uncertain, hasa mean and standard deviation that both tend to zero as
At goes to zero. The price C* differs from the Black-Scholes price C (and the
Leland hedge ratio differs from the Black-Scholes hedge ratio) by using a
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modificd estimate for the volatility. Forashort positionin the option, Leland’s
modified volatility is higher than the true volatility. This gives an increased call
value and a hedge ratio that is a flatter function of Sthan normal. Conversely, if
we are long the option, the volatility adjustment is downward, resultingin a
lower option value and a hedge ratio that is a steeper-than-usual function of S.

The intuition for this variance adjustment is as follows. When covering a short
call option position, arise in the share price requires further shares to be
purchased, and the transaction cost makes it as if an even larger rise had
occurred. The same problem arises if the share price falls. It is asif the volatility
had increased. Conversely, when covering a long call option position with a
short asset one, a rise in the asset price implies more shares must be sold. The
spread on the share price makes it as if the upward movement had been less, and

a reduced volatility is called for.
Vsand Vpare plotted in Graph B for a variety of asset price levels. The figure
here is very similar to what Leland would obtain, but our hedging error will be

smaller than his for a given sum committed.

Graph B. Option value (1 year, 30% vol., K = 100, R = 0,k = 2%, lambda = 1)

Option value
60
50 - Maximum price with transaction costs
40
Black-Scholes value
30 —
Minimum price with transaction costs
20 -
10 -
0 : | | | I | I |
60 70 80 90 100 110 120 130 140 150
Current asset price
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Some further insights can be obtained by considering the following even simpler
hedging problem.

The Y&Z share index stands at 100. The index S follows the additive process
dS=o0dz (20)

with the standard deviation of price changes, g, being constant. Your employer
at the Very Important Bank is keen to offer a new security that will pay the
investor half the square of the future value of the index in 900 days time (i.e.,
£1/25%). It is your job to decide how much to charge for this new product, and
how the funds received should be managed to meet the obligation. The interest
rate s zero. You can invest in the index itself, but all intermediate portfolio
revisions involve a transaction cost of k per unit transacted in the index (i.e.,
currently k percent, but more or less than that if the index falls or rises).

In terms of our general model, we are assuming that

1. therisklessinterestrater = 0

2. the asset follows an arithmetic Brownian process, so o(S) = ¢

3_transaction costs are a fixed amount per share, so k(v,S) = k| v|

4. the claim Cis the entitlement to receive at time 7, Srunits of the risky asset for
4 Stper unit

In the absence of transactions costs, the value of the claim C(£,S) satisfies the
partial differential equation

Ci= —Y20*Css (21a)
subject to the terminal boundary condition

C(T,S) = A8 (21b)
The solution to this problem is

C@t,S) = 28* + o*(T-1)/2. (22)

The replicating portfolio involves holding S units of the index, with the
remaining value 0*(T — #)/2 — ¥28%in cash.

This problem has a particularly simple structure, which we will now exploit for
the case where we take account of transactions costs. Since this contingent claim
has Css constant, it requires only a little cunning to eliminate the index value as
a state variable. The only state variable becomes the difference between the
number of units held and the *“ideal’’ number, S;. Using the assumptions just
described, and applying the methodology of Section 3, we can rewrite equation
set (17) as:

H, + V40*Hss = 0,(x- < X< X4) (23a)




H(T,S,x) = —exp{-Awr] (23b)

wr=Sx - 'A2§? (23¢)
H.= —NS+k)H, (x <x_),and (23d)
H, = NS-KH, (x=x4+), (23e)

where H(z,S, x) is the expected utility if the intermediary is holding a portfolio of
x units of the risky asset and no cash.

We can simplify equation set (23) and remoye one of the state variablesin the
following way. Recall that in the absence of transactions costs, the replicating
portfolio would be long S units of the risky asset and s*(T — £)/2 — ¥28*in
cash. So we define the function:

G(1,S,2) = H(1,S,x)exp(~No*(T—1)/2+5*/2—Sx]} (24a)
where

7= No*(T-1),and (24b)

z = JVNx=S). (24¢)

Gis the expected utility starting with a replicating portfolio plus z/ VA
additional shares, offset by zS/+/\ of borrowing. Using (24), we can derive an
appropriate partial differential equation and boundary conditions from (23).
The boundary conditions become:

G(0,S,2) = -1 (25a)
G, = —kJ\G, (2 =2-), (25b)
G, = kJNG, (2= 2+). (25¢)

Note that the boundary conditions do not depend on S, so the solutionto the
partial differential equation does not depend on Seither, and
Gs = Gss = Gzs = 0.S0(23a) becomes

G, = (226G + 22G; + Gz, (2- < 2 < 2+) (25d)
and the specification of G is complete.
The solutionto (25)is

G(1,2) = —exp{—[2/(1—- N —1]7/2}/ vVi-7, (26)

corresponding to the problem we have described, and

G(r,2) = —exp{[-22/(1+D-1]7/2) /N 1+ 7, 27
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corresponding to the complementary problem of hedging along positionin the
contingent claim.

By considering the free boundary condition, we can obtain an inequality for the
position of z . (7), as

2+ (1) = kIN1-17)/7, (28)
and similarly for z _ (7).

For small 7, this curve should be a good approximation of the barrier on which
transactions occur, and the equation clearly establishes its hyperbolic behavior
for small 7.

For large 7, we may hypothesize that the free boundary converges
asymptotically to a constant. In this case, theintermediary will incur a constant
cost per unit time in terms of risk and transactions costs in maintaining the
hedge, and G(7, z) will converge to some function e® F(z), where bis a constant.
The only solution to (25) of this form that is symmetrical about z = Ois:

G(r,7) = Aexplbr—z3/2}cosh{V 14+2b2},(z- = 2 =< 2+) (29)
where A is a constant. Since G must satisfy (25¢) and (25d), and also have

continuous first and second derivativesatz = z- andz = 2+, wecan solve
simultaneously for b and the free boundary distances to get:

b= Yilz+ + kJN\? ' (30a)
tanh(z+ v 1+2b] = ¥ 2b/(1+2b) (30b)

A graph of z + and b for different values of k+/\is shown in Graph C. Rather
surprisingly, z + is not monotonically increasing in k. This result is probably
caused by the effect of the variation of transactions costs incurred. For high
levels of costs or high degrees of risk aversion, it is worth having a tighter control
region to reduce the variability of the costs involved.

Finally, we can compare the performance of the optimal hedging strategy
against Leland’s method. Graph D provides plots of the mean cost in excess of
the ““fair’’ value against the standard deviation for the two methods. A variety
of rebalancing intervals, At, are employed for Leland’s method, and a variety of
risk aversion parameters, \, for our own. Mean variance efficiency would not be
an appropriate criterion for constructing hedge positions, and it is not used by
either method. Nevertheless, the plot provides a useful way of describing the
performance of the two methods. As expected, the optimal control approach
does dominate Leland’s, and particularly where high levels of turnover are
involved.

The paper has contributed some new theoretical perspectives on the problems
of hedging contingent claims under transactions costs. It also describes
practical procedures for computing solutions to realistic problems. The spirit




that has motivated this work is a desire to relax the unrealistic assumptions that
the pure Black-Scholes model requires. The imposition of transactions costs
immediately constrains turnover to be bounded and implies that replication will
not be exact. The problem therefore has much in common with the issues of
valuation and hedging where the nature of the market dictates that trading is
discontinuous, or that the asset process is such that the market isincomplete
and contingent claims are not spanned by existing securities.

GraphC. Propertiesofsimple example
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We have shown that the problem of finding the optimal replication policy is one
of solving the partial differential equation correspondingto (8), subjecttoa
terminal condition and to a free boundary condition that determines the
position of the control boundary. The combination of the assumption of a risk-
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averse utility function, U( . ), with the use of the equivalent risk-neutral asset
process, (12), would seem to be sufficient to ensure that J( . )is concavein x, and
that solutions exist and are ‘‘well behaved.”” The optimal control xis
constrained to evolve between control limits that depend on time, and on the
asset price. Under the negative exponential utility assumption, the amount of
cash accumulated in the replicating portfolio is irrelevant. No controlling action
is taken until the control parameter x attains one of its limits.

GraphD. Comparison of two hedging methods
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The optimal strategies involve a trade-off between the expected level of

transactions costs and the exactness of the replication. Both the strategy and the
reserve price for the contingent claim depend on the investor’s preferences.




Some further, more direct, extensions of our work may also be of interest.
Within the framework of our analysis and computations, it is entirely

straight forward to optimize the hedging of a portfolio of contingent claims on
the same asset, but with a single expiry date. Itis also obviously cheaperto
hedge in this way than it would be to hedge each component of the portfolio
individually. Financial intermediaries clearly enjoy some benefits of scalein
this kind of activity.

Our analysis has been confined to contingent claims that are Europeanin
nature. The liability crystallizes at a single known date in the future. However,
the extension to American options is not too difficult. If we sell an American
call option, C, then our partial differential equation, (8), is constrained by the
additional free boundary condition that

JEt, S, x,y) = J°(t, 5, x, y—C(1,5)) (€)Y)
where C(#, S) is the option’s cash in value at date fas a function of the asset price
S. Conversely, if we buy the call option C, then (8)is constrained by the
condition

J S, S, x,y) = J°(, S, x5, y+C(1,S)). (32)
Finally, one could envisage combining these two extensions to hedge portfolios

of long and short positionsin American options with a range of different expiry
dates and exercise prices.

237



References

238

Aczel,M.A., and J.E. Broyles, 1986, ‘‘Option Pricing Reflecting Transaction Costs,”’ Working
paper, MRP 86/8, Templeton College, Oxford.

Beja, A., and H.E. Leland, 1976, “‘Direct Evaluationand Corporate Financial Theory,’ Working
Paper No. 46, IBER, University of California, Berkeley.

Black, F., and M. Scholes, 1973, *“The Pricing of Options and Corporate Liabilities,”” Journal of
Political Economy 72, 637-59.

Boyle, P.,and D. Emanuel, 1980, *‘Discretely Adjusted Option Hedges,”” Journal of Financial
Economics8,259-82.

Breeden, DT.,and R.H. Litzenberger, 1978, ‘‘Prices of State-Contingent Claims Implicitin
Option Prices,” Journal of Business 51, 621-51.

Constantinides, G.M., 1986, ‘‘Capital Market Equilibrium with Transaction Costs,”’ Journal of
Political Economy 94, 842-62.

Cox, J.C.,and H.E. Leland, 1982, ‘On Dynamic Investment Strategies,”’ Proceedings, Seminar
on the Analysis of Security Prices 26, No. 2, Center for Research in Security Prices, University
of Chicago.

Cox, J.C., S. Ross, and M. Rubinstein, 1979, ‘‘Option Pricing: A Simplified Approach,’”” Journal
of Financial Economics7,229-63.

Davis, M.H.A., 1988, “‘Local Time on the Stock Exchange,”’ Stochastic Calculus in Application,
ed. J.R. Norris, Pitman Research Notes in Mathematics, London: Longman.

,and A.R. Norman, 1988, ‘‘Portfolio Selection with Transactions Costs,”” Working paper,
Imperial College London.

Dumas, B., and E. Luciano, 1988, *‘Bid-Ask Portfolio Choice and Option Pricing,”” Working
paper, Centre HEC-ISA.

Dybvig, P.H., 1986, ‘A Multiperiod Recoverability Result,”” Working Paper No. 16, Yale School
of Management.

, 1988, “‘Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars
in the Stock Market,’ Review of Financial Studies 1(1), 67-88.

Eastham, J.F., and K.J. Hastings, 1988, ‘‘Optimal Impulse Control of Portfolios,” Mathematics
of Operations Research 13, 588-605.

Figlewski, S., 1987, ‘‘Options Arbitrage in Imperfect Markets,”” Working paper, New York
University.

Garman, M.B., and J.A. Ohlson, 1981, ‘‘Valuation of Risky Assetsin Arbitrage Free Economies
with Transactions Costs,”’ Journal of Financial Economics9, 271-80.

Gilster, J., and W. Lee, 1984, ‘‘The Effects of Transactions Costs and Different Borrowing and
Lending Rates on the Option Pricing Model: A Note,”’ Journal of Finance 39, 1215-22.

Leland, H.E., 1985, ““‘Option Pricing and Replication with Transaction Costs,’” Journal of
Finance 40, 1283-1301.

Magill, M.J.P., and G.M. Constantinides, 1976, ‘‘Portfolio Selection with Transaction Costs,”’
Journal of Economic Theory 13,245-63.

Merton, R.C., 1971, “Optimum Consumption and Portfolio Rulesin a Continuous Time
Model,”’ Journal of Economic Theory 3,373-413.

———, 1973, *“Theory of Rational Option Pricing,”” Bell Journal 4, 141-83.

. 1989, ““‘Onthe Application of the Continuous Time Theory of Financial Intermediation
and Insurance,”’ The Geneva Papers on Risk and Insurance, Vol. 14, No. 52, 225-61.

Neuhaus, H., 1989, ¢‘Discrete Time Option Hedging,'* Doctoral dissertation, London Business
School.

Rubinstein, M., 1976, ‘“The Valuation of Uncertain Income Streams and the Pricing of Options,”
Bell Journal of Economics7,407-25.



Shreve, S.. 1989, ‘A Control Theorist’s View of Asset Pricing,”” Working paper, Carnegic Mellon
University, Presented at Workshop on Applied Stochastic Analysis, Imperial College London,
April 7, 1989.

Taksar, M., M.J. Klass, and D. Assaf, 1988, *‘A Diffusion Model for Optimal Portfolio Selection
in the Presence of Brokerage Fees,”” Marhematics of Operations Research 13,277-94.

239



R St

Dan Galai
The Hebrew University of Jerusalem

s SR

Introduction

The objective of Hodges and Neuberger (NH) is
to find ¢ . . the best replication of a contingent
claim under transactions costs.”” The emphasis in
their paper is on optimalreplication. The
question is why should we be interested in the
optimal replication of an option? One reason isto
derive a pricing model for options by comparing
an option to the price of its replicating portfolio.
The second rationale is to control risk by forming
a trading strategy in order to exploit mispricing of
options relative to the underlying stock.

Replication in a World with

No Transactions Costs

Black and Scholes (BS) addressed the issue of
replicating an option in continuous time in their
seminal paper [1973] under the condition of zero
transactions costs. They use continuous-
replication strategy to derive the equilibrium price
of an option, given the price of the underlying
stock. They also show how continuous hedging
can be used, theoretically, to exploit mispricing of
options and apply it in their empirical study
[1972].

With zero transactions costs, optimal replication
of a contingent claim leads simultaneously to
both pricing model and trading stretegy. This
characteristic is also maintained if a discrete-time
framework is adopted. Rubinstein [1976] derives
such amodel, and by introducing compensating
assumptions about the shape of the utility
function of the average investor, he is able to
derive a model that is identical in structure to BS.

The Problems of Introducing Transactions Costs

to the Pricing of Options
In general, the introduction of transaction costs
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poses special problems for valuation of securities.
These problems are even more significant for the
valuation of contingent claims as derivative
assets. Theissue of the investment horizon and
the time preferences of consumers becomes very
important. For short investment horizons, the
individual will select an asset with reduced
transaction costs even if it yields lower rates of
return. The rate of return on an asset will reflect its
risk and also the transaction costs involved in
trading it. These problems may lead to effective
market segmentation, which is dependent on the
preferred holding periods of different investors.
By introducing transaction costs, the separation
of investment decisions from the consumption
decision may not be valid, and pricing of assets is
no longer utility-independent.

The valuation problems are even more complex
when transaction costs are incorporated ina
continuous-time model. With proportional
transaction costs and a diffusion process, assets
cannot be traded continuously since total
transactions costs are unbounded with probability
one (see Merton [1989]). Hence, investors cannot
perfectly hedge options and other derivative
assets. With transactions costs, trading will take
place at discrete points only.

Leland [1985] assumes that trading takes place at
discrete, fixed intervals only. The discrete intervals
lead to finite transactions costs but also to
hedging errors. The trade-off is that with more
frequent revisions, transactions costs tend to
increase while hedging errors tend to decrease and
be less correlated with the market portfolio.

As can be seen, by introducing transactions costs,
continuous-time models eventually become




discrete-time models. Moreover, the pricing
model is not necessarily fully compatible with
optimal trading strategics. In other words, the best
trading rule for exploiting options mispricing
does not necessarily yield the options model
prices.

Trading strategies define boundary conditions for
pricing options. Such s the model of Leland,
which is derived under the assumption that the
underlying stock follow a diffusion process and
that options can be replicated at fixed points only.
This approach yields boundaries for options
prices that are very narrow for low, proportional
transactions costs and/or short revision-intervals.
Leland acknowledges that his bounds are not
necessarily the narrowest due to the assumption
of fixed time intervals for revising the position.

The HN Model

HN use a stochastic optional control approach to
find optimal replication strategy. Thetrading
intervals are endogenized in their model. They
impose several restrictive assumptions in order to
optimize the strategy subjecttoa well-specified
loss function. While they also assume that the
underlying stock follows a diffusion process, they
impose two additional strong assumptions:

1. Investors possess a negative exponential utility
function, which implies a constant absolute risk
aversion.

2. Investors’ attitude to pricing optionsis
characterized by risk neutrality.

Though HN try to justify the two assumptions on
economic grounds, it should be clear that they
were imposed in order to simplify the
optimization problem. These assumptions are not
necessarily the most favorable ones in finance,
and, expecially in a world with transactions costs,
the “‘shadow prices’’ of these restrictions should
be discussed.

By maximizing the utility function recursively,
subject to several boundary conditions, HN find
the optimal policy in terms of the number of
shares of the underlying security. Two values are
determined; the number of shares of the
underlying security in the replicating portfolio

must be kept between the two values, which may
be considered as the hedge ratios. These hedge
ratios are not necessarily equal to the hedge ratios
of BS. The hedge ratios will also be different if the
option s held long or short.

HN derive bounds on the pricing of options. The
bounds may be narrower than those derived for
the Leland model; but this is achieved at the cost
of imposing additional restrictive assumptions.

Since, even in a world with transactions costs,
there is one clearing price for an asset in an
auction marketplace (and also in a dealer market,
if the bid-ask spread is ignored), we know there is
a “‘true’’ model that should yield the equilibrium
price. HN do not achieve this goal. In this context,
the approach suggested by Dumas and Luciano
[1988] should be noted. They claim that when
{ransactions costs are present, an exact replication
is not generally the most efficient method of
manufacturing an'option. The replication
technique can only yield the upper and lower
bounds on the price. Therefore they employ an
optimal portfolio-investment framework to derive
the equilibrium option price.

HN tackle a major problem and yield interesting
results. However, it is hard to fully appreciate their
achievement; more accurate and detailed
simulations of options strategies should be
provided. Leland’s paper provides an excellent
illustration of the detailed examples that allow the
reader to appreciate the results. HN should show
the pattern of hedging over time, and the resulting
cumulative transactions costs. It isimportant to
indicate how often the portfolio is revised and by
how much.

It should be noted that in order to exploit profit
opportunity from mispriced options, one need
not necessarily wait until the option’s maturity
date. Thisis the limiting case. It is sufficient that
sometime during the life of the option, the price
moves to its fair value.! This should be integrated
into the model as a stopping rule.

1See Galai [1983].
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When constructing a pricing model for options in
a world with transactions costs, and especially
when alternative models are compared, careful
attention should be given to the following
questions:

1. What is the structure of costs? Are they
proportional, fixed, ora combination?

2 Should transactions costs be applied to the
option only, or should they also be imposed on
trading the underlying stock and bonds?

3. Should transactions costs be considered for
opening a position, and/or for any changeina
position, and/or for closing a position?

4. Who is the dominant or marginal trader that
determines market prices? Should the analysis be
carried out from the point of view of an average
individual investor, or should it be the dealer
whom the analysis should consider?

The various studies that dealt with option pricing
in a world with transactions costs used different
assumptions concerning the above issues. The
different assumptions may lead to different results
and undoubtedly complicate any comparison
between alternative models. I think that
replication to exploit profit opportunities (and,
hence, determine boundaries for options prices)
should be analyzed from the point of view of the
more efficient dealers. In addition, transactions
costs should be imposed on any changeina
position, not only of the option but also of the
stock and bonds (maybe with a reduced rate on
bonds). And, it isimportant to compare the
replicating portfolio to the option when costs are
imposed on trading both the portfolio andthe
option.
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