Efficient Monte Carlo Valuation of Contingent Claims

ABSTRACT

In this paper we discuss the use of antithetic and control variates for reducing
the variance or error in a Monte Carlo valuation. We describe a choice of control
variates which have an economic interpretation. By combining these two tech-
niques we obtain an increase in the efficiency of the Monte Carlo method of many
orders of magnitude. We also consider how the hedge ratios (DELTA, GAMMA,
THETA, KAPPA, RHO) can be computed efficiently within our variance reduced
Monte Carlo simulation. Finally we describe how recent ideas of Breen (1991)
and Ho et al (1991) can be used to obtain approximate values for American style

options by Monte Carlo simulation.






The Monte Carlo simulation technique for option valuation was first introduced
by Boyle (1977). It is a numerical valuation technique which is typically used to
value complex European-style options. The basis of the technique is the obser-
vation by Cox and Ross (1976) that if a riskless hedge can be formed the option
value can be expressed as the discounted risk-neutrally adjusted expectation of its
payoff. The technique is thus to simulate many times the risk neutrally adjusted
random trajectory of the underlying instrument, and thence its payoff, and to
estimate the option price as the discounted mean of these simulated payoffs.

The technique has been used extensiveiy in the literature to generate com-
parative prices for other valuation techniques and in empirical investigations of
option pricing models (most notably in models with stochastic volatility, Johnson
and Shanno (1987), Hull and White (1987) and Scott (1987)). But little work has
been done on the efficiency of the technique since Boyle (1977). Hull and White
(1988) described how one of the techniques we will discuss, control variates, can be
applied to a generalised lattice valuation technique. Recently Kemna and Vorst
(1990) proposed Monte Carlo simulation as a valuation method for arithmetic
average rate (asian) options. Here they employed the analytical formula for the
geometric average as a control variate in order to increase the efficiency of the

method to an acceptable level.



In section 2 we discuss the use of antithetic and control variates for reducing the
variance, i.e. the error, in this estimation. This allows the implementation of the
Monte Carlo technique to be more efficient, because not so many simulations are
necessary to achieve a given confidence interval for the estimate of the option value.
We describe a choice of control variates which have an economic interpretation
and we show how antithetic and control variates can be combined to obtain an
increase in the efficiency of the Monte Carlo method of approximately 1000 times
for a realistic problem such as a lookback call with stochastic volatility.

Section 3 considers how the hedge ratios (DELTA, GAMMA, THETA, KAPPA,
RHO) can be computed efficiently within our variance reduced Monte Carlo sim-
ulation. By exploiting specific aspects of the model we have for the underlying
random processes we can considerably improve the efficiency of the computations.

In section 4 we describe how recent ideas of Breen (1991) and Ho et al (1991)
can be used to obtain approximate values for American style options efficiently
from Monte Carlo simulations.

Finally, Section 5 contains the conclusions.



I Variance Reduction Techniques

A good introduction to this area can be found in Kleijnen (1974) and Ripley
(1987). The two techniques which we will consider are antithetic variates and con-
trol variates. Firstly we describe the implementation of the simplest, antithetic
variates. Suppose that in order to estimate the mean u of a probability distribu-
tion, we generate M independent random samples (or ‘trials’) {y;, ..., yar} from the
distribution. Then the simple Monte Carlo estimator of y is given by the sample

mean
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Now, suppose we also generate {y7,...,y3s} which have the same distribution
but are negatively correlated with the y;’s. Suppose we estimate g; = (y; + y7)/2,

this is unbiased and

Var(§) = 3 Var(y)(1 + Corr(y,y")) ®)

Thus we will obtain a more precise estimate from n pairs of (y;,y?) than from
2n simulations of y; if Corr(y;,y;) < 0. Furthermore, it may be computationally
cheaper to compute (y;, y¥) than to compute y; twice.

We will now describe the control variate technique in general terms. Suppose
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that simultaneously with generating the samples {yi,...,ym}, We also generate
the control variates {z1, ..., zp}, where each z; is an m-vector (z},...,z7")7, (the
symbol T denoting ‘transpose’), whose components have zero mean. Thus, the
m+1 vectors (y;, ;) are uncorrelated for different values of ¢, but their components
are correlated among themselves in a constant way. Then for any m-vector §, the

quantity

. 1 M m .
fe= 77 Z_}(yi = ;fﬂifj) (3)

will also be an estimator of y, and the variance (i.e. the error) of this will be

minimised if we choose ¢ to be such that

Z):z::x:g = Ezy (4)

where X, is the covariance matrix of z, and %, is the m-vector of covariances
between z and y.

In general, for good choices of the control variates we will not be able to write
down X., and ., (if we know the matrix ¥,, and vector ., then the Equations
(3) and (4) allow us to use the control variates z; to reduce the variance in our
simple Monte Carlo estimation (1) of p). However, we can use the following

- procedure to obtain the variance-reduced estimate of f.:



Find 8 = (Bo, -, Bm)T to fit in a least squares sense the system of equations

~

X;ﬂ = y,',i = 1,...,M (5)

where X; = (1,z},...,z™). Then (Bl,...,ﬁm) is the choice of (1, ..., &m) Which
will minimise the variance of the estimator (3), and J, is the corresponding

variance-reduced estimator /. of y. In fact ,3 can be calculated simply as

B=(XTx)xTy (6)
provided none of the control variates are redundant. The m x m matrix XTX

and m-vector XTY can be calculated conveniently as the simulations proceed via

the equations

(XT Xk = (X Xim1)ik + (z0)i(zi)k (7)

(XTy:); = (XL 9i-1); + (2:)i(%:) (8)



I. A The Variance Reduction Techniques Applied to the

Elementary European Call

In this section we describe how to use these techniques to value a European call
with strike price X and time to maturity T, on a non-dividend-paying stock with
volatility . Our purpose here is to give an elementary presentation of the imple-
mentation of the variance reduction techniques we have described. In particular
we introduce our specific choices of antithetic and control variates which have a
simple economic interpretation. This example also illustrates the power of these
techniques. We will then apply the approach to the more realistic problem of a
lookback option with stochastic volatility in Section 2.2.

First, divide the lifetime [0, T] of the option into a partition {0 = ¢y < t; <
... <ty = T} such that for each h =1,..., N, we have t;, —tp_; = At = % Then
the logarithmic increments A;s = log S; — log S;_a: of the stock price over each of
these time steps are iid normal, with mean (r — 30?)At and variance ov/At, and

we have

N
log St =1logSo+ D _ Ay,s (9)

h=1

Thus, from N simulations of the standard normal distribution, we can simulate

the final stock price St, and the option payoff value max{(S7—X),0}. This payoff



value plays the role of trial value y; for any of ¢ = 1,..., M. We generate the Ay, s

by

Ay s=(r— %a’z)At + oV ALz (10)

where Z is a standard normal random variable.

Table I shows the results for a typical European Call.

We see that the simple Monte Carlo estimate with no variance reduction has
an unacceptably large error (standard devié,tion) for the 1000 simulations we have
used.

Firstly we apply the antithetic variate technique. The most straightforward
way to do this is to generate an underlying stock price path based on —Z simul-
taneously with the price path in Equation 10. We then obtain our estimate of
the option value as shown in Section 2. This reduces the variance by a factor of
almost 25.

In order to apply the control variate technique we must make a choice of the
functional form for the control variates. They should be chosen so as to capture
as far as possible the variation in the option value created by the random changes
in the underlying stock price. The functions which do this exactly are the partial

differentials of the option value with respect to the underlying price. Now in the



case of the elementary European call we know these exactly, but normally we will
not. However, any reasonable choice of control variates will give good variance
reduction, so we can use analytical results for similar or related options. Our
control variates should also have zero mean so we should design them to capture
the differences from the expected values over each time step.

In fact this approach is equivalent to replicating the option with a hedged
portfolio. By including control variates based on all the relevant hedge ratios we
can hedge away all risk or account for all variation in the option value generated
by changes in the underlying random variables in the continuous time limit. To
be strictly correct we must inflate the differences between our hedged portfolio
and the option over each time step by the riskless rate to maturity. However this
typically has little effect.

In our example we will use DELTA and GAMMA based control variates,

N
=3 55| (BuS = BlauS) (1)

N 2
=3 G| (B8 = BI8uS)) (12)

(Note that we must be able to write down the expectations in these expressions

analytically, this will normally be straightforward.)
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Application of these control variates alone produces a variance reduction of
300 times.

We can combine the antithetic and control variate techniques. The control
variates become the sum of the appropriate control variates for the two price
processes generated by the antithetic procedure and the samples are the means
of the pay-offs for the two price processes. The combined procedure reduces the
variance of the estimate by 12000 times.

We have achieved a reduction in the standard deviation of the estimate such
that the estimate is now accurate to two decimal places. To obtain this reduction
for the simple Monte Carlo estimate we would have had to perform a factor of

12000 more simulations.

I.B Variance Reduction for a Lookback Call Option

In this section we demonstrate that the same techniques can be applied in straight-
forward way to more complex and realistic problems and give similarly dramatic
results.

Consider the problem of valuing a FX lookback call option with stochastic
volatility. The pay-off of a lookback call option is the difference between the

terminal value of the underlying asset and its minimum value during the life of
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the option. There is an analytical formula for the value of a continuous fixing
lookback option (Goldman, Sosin and Gatto (1979)). But if the fixings occur
at discrete times this has a significant effect on the value of the option and the
stochastic volatility will also affect the value of the option.

We assumed the following processes for the underlying FX rate S and the

volatility o of the FX rate are,

dS = pSdt + 0Sdzs (13)
do = a(d — o)dt + Godz, (14)

We generated control variates corresponding to the first differential with re-
spect to each of the stochastic variables S, and o (DELTA and LAMBDA) and the
second differential with respect to S (GAMMA). That corresponding to S is the
same as equation (11), (but note that A, S is now different), and that correspond-
ing to o is also the same, but with S replaced by o, and finally the third control
variate is the same as equation (12). The partial differentials were obtained from
the analytical formula for the continuous fixing lookback option (the large reduc-
tion in the variance of the Monte Carlo estimate of the elementary European call
was partly due to the partial differentials or hedge ratios in the control variates

being exact).
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Table II shows the results of applying the variance reduction techniques to our
lookback call.

For this example we have obtained a total variance reduction of 1200. We
could increase the variance reduction by adding further hedge ratios, for example
a control variate based on S—Z%. However, we have reduced the error in the estimate
such that the value is accurate to the first two decimal places with only 1000
simulations. Thus the valuation could be performed on a reasonably powerful
desktop computer in approximately 30 seconds. Without these variance reduction

techniques it would take a factor of 1200 more simulations or 10 hours computation

time on the same computer.

II Efficient Computation of Hedge Ratios

The basic technique for obtaining hedge ratios from Monte Carlo valuations is to
compute their finite difference approximations. For example, to compute DELTA =

98¢
35 We compute

#(S + AS) — ¢(S — AS)
2AS

(15)

The first potential problem is that if we compute the estimates ¢(.S +AS ) and

#(S — AS) using independent random variables then the error in the estimates
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may be of the same order of magnitude as the change in the option value over
AS. The second problem is that we immediately double the computational time
by having to compute two estimates of the option value. For other hedge ratios
we will have to compute more estimates. The solution to both problems is to
compute the estimates are far as possible in parallel.

Firstly by computing the estimates using the same standard normal random
variables we ensure that the errors in the estimates are similar in magnitude and
sign and so will tend to cancel out in the calculation of the derivatives. Secondly
by computing the estimates in parallel we can make further computational savings

depending on the particular problem.

For example for DELTA and GAMMA (= %%) for which we compute

#(S + AS) — 26(S) + ¢(S — AS)
AS?

(16)

we need the option value at S—AS, S and S+AS. Now for a lognormal under-
lying where r and o are independent of S the simulated changes in the logarithm
of the underlying price are independent of the initial value of the underlying price
(see equation (10)). Furthermore, although the control variates do depend on the
value of the underlying at each time step, because the initial values are very close

we can use the control variates for the central value for all three estimates. So
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we can simulate a single path for the changes in the logarithm of the underlying
and use this to compute the three different payoffs and from that the three option
values. Note that it is only because we have considerably reduced the variance of
the option value estimates that the GAMMA estimate will be usefully accurate
for the number of simulations we use (even so the error is likely to be of the order
of a few percent).

For THETA (= %g) we simply additionally accumulate the relevant variables
before the final time step is made along each path and perform the estimation as
normal. This gives us ¢(¢) and ¢(¢ + At),v so we can compute THETA from its
finite difference approximation. Note that this will be sensitive to size of the time
step, but for typical times to maturity of one year or less and a reasonable number
of time steps (of the order of 100) the accuracy is good.

For RHO (= 2¢) and LAMBDA (= 22) we need to consider how the changes

in the logarithm of the underlying price ( As; ) along the ith path are formed,

N
As; = (r — —;-az)T +oVALY 7, (17)
h=1

Now if r is not stochastic we can form,

N
As; |._p, = ((r—Ar) — }2-02)T +oVAtY 3, (18)

h=1
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and

N
Asiyar = ((r+ A7) = 30N +oVATY 4 (19)

h=1

easily by simply accumulating the sum of the standard normal @ables Zh.
Similarly for LAMBDA we can form the relevant changes As;. If r or o are
themselves stochastic then we can first check to see if we can simulate random
changes which are independent of the initial value of the variable. If this is not

the case then we may have to fully simulate the separate paths.

IIT American Style Options

As stated in the introduétion the basis of the Monte Carlo technique is that any
option can be expressed as the discounted risk-neutrally adjusted expectation of
its payoff. In order to value American style options we would have to check at
each time step along each path whether it was optimal to exercise the option and
if so we would take its payoff at that point in time discounted over the time the
option had lived. However, to test if the option should be exercised we must know
its value if held, so we would have to perform another Monte Carlo valuation at
that point. Thus the computational cost explodes for this problem.

Geske and Johnson (1984) and more recently Breen (1991) and Ho et al (1991)

16



have shown that the value of an American style option can be obtained accu-
rately by extrapolating from the values of options exercisable at a finite number
of times. In particular Breen (1991) extrapolates from options exercisable at one
(European), two and three times, valued by the binomial method. Ho et al ex-
trapolate from the European option and the maximally valued twice exercisable
option. Using this approach we can prevent the computational cost of the Monte
Carlo method exploding for American style options.

Consider the valuation of a complex, path dependent option on a single under-
lying random variable which can be exercised halfway through its life as well as at
maturity. In order to value this option we need to know the position of the early
exercise boundary or in other words the value of the underlying asset at which it
becomes optimal to exercise the option at the halfway point. Figure A depicts how
we might value this option by Monte Carlo simulation. Let ¢ = 0 be the current
time and ¢t = T be the maturity time of the option. At ¢ = T'/2 we need to know
the value of the option if held to maturity as a function of the underlying asset
price. We can obtain this approximately by performing Monte Carlo simulations
at the points indicated in Figure A. If the computational cost of the simulations
is low we would add more points and use a simple linear interpolation between

the points. If the computational cost is high then we would use a small number
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of points and fit a C1 peicewise quadratic function to the points. From this we
can easily obtain the position of the early exercise boundary. Valuation of the
option is then simply a matter of simulating the underlying from ¢t = 0 to t = T'/2,
computing the payoff as the maximum of the option value if held and the value if
exercised and then taking the discounted mean of the payoffs.

Figure B illustrates how the value of a twice exercisable put changes with the
time of the intermediate exercise point (X = 100, T = 1.0, S = 100, o = 0.1).
As r increases (and as T increases and as the option becomes more in the money)
the value depends more sensitively on the exact time of the intermediate exercise
opportunity. But for reasonable values of these parameters an intermediate time
of exercise of halfway through the life of the option gives an option value close to
the maximum for a twice exercisable option. For certain types of option it may be
possible to determine specific points in its life where the early exercise opportunity
maximally affects the option value. In this case these points would be used as the
limited early exercise points in the Monte Carlo simulation.

Now, consider the case of a lognormal underlying asset where the changes in
the log of the asset are independent of its initial value. We simulate paths of
the underlying process and its antithetic counterpart as normal together with the

relevant control variates from ¢t = 0 to t = T. At t = T'/2 we store the changes in
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the logarithm of the underlyings (which are independent of the initial underlying
value) and the control variates. We then compute the value of the European option
at £ = 0 by the normal least squares estimation procedure. We then partition the
range of underlying values reached at ¢ = T//2 and compute the European option
value if held from T'/2 to T at these discrete values of the underlying. We do
this using the previously stored set of simulated changes in the logarithm of the
underlyings and the control variates in the normal way. Note that the control
variates will not be exactly correct but they will still be good control variates
and therefore give good variance reduction. This is much faster than simulating
the paths again and we can do this because the changes in the logarithm of the
underlying are independent of its initial value. We can now compute the value
of the twice exercisable option at T'/2 (as the maximum of its immediate exercise
value and its value if held) for each value of the underlying reached from its initial
value via the original simulated changes. We obtain the options held value at T'/2
by interpolating from our discrete partition values. Using these we can compute
the twice exercisable option value at ¢t = 0 by the normal least squares estimation
again using our stored control variates (see Figure A).

Finally, following Ho et al (1991) we can estimate the American option value by

extrapolating from the European and twice exercisable option values. Assume an
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exponential relationship between the American option value ¢(oo) and the value

of an option with a limited number of exercise points ¢(n),

¢(00) = é(n) exp(a/n) (20)

Setting n =1 and n = 2 gives

_ P20
¢4 = 45 (21)

where ¢4 is the American option value, ¢g is the European option value and
@2 is the twice exercisable option value.

Figure C shows a comparison of the various option values (T' = 0.5, S = 100,
o = 0.2, r = 0.1). The American put option values are computed from the
Barone-Adesi and Whaley (1987) approximation.

Now, suppose the option is a function of more than one underlying random
variable, for example if we have stochastic volatility or interest rates. The early
exercise boundary will be multidimensional. We must therefore obtain the option
value if held at the early exercise points by simulating from the range of possible
values of all the random variables. However, if we fit a polynomial to early exercise
boundary then the number of simulations we must perform will only be roughly

an order of magnitude greater. By applying the variance reduction techniques we
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have discussed this level of computation can be still be achieved in realistic times.

IV  Conclusions

Careful use of variance reduction techniques can make Monte Carlo simulation an
efficient and powerful method for valuation of complex contingent claims. The
number of simulations required to obtain acceptable levels of error can be reduced
to a level such that the valuations can be performed in almost real-time on a
powerful desktop computer. Furthermore, the hedge ratios can also be computed
accurately and efficiently by careful implementation of the simulation. Finally,
American style options can be valued approximately by extrapolating from the
value of European options and options exercisable at limited points during their
life. Often, these computations can be made very efficiently by exploiting the
lognormal nature of the underlying asset.

Finally the techniques we have described have implications for the rapidly ex-
panding field of parallel processing. The number of simulations needed to obtain
accurate valuations has been reduced to a similar level as the number of processing
units which current parallel hardware contains. This greatly simplifies the imple-
mentation of Monte Carlo simulations on this type of hardware and simultaneously

we obtain a real-time valuation technique.
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Table I
Results of applying variance reduction techniques

to Monte Carlo valuation of an elementary European call

Elementary European call option value 18.58

Variance reduction method Variance
None 0.18 (0.42)
Antithetic variate 0.0073 (0.085)
Control variates -_ 0.0006  (0.024)
Antithetic and Control variates 0.000015 (0.0039)

Exercise price = 100

Time to Maturity = 2 years

Initial Stock Price = 100

Volatility = 10%

Riskless Rate = 10%

Number of time steps (V) = 104
Number of simulations (M) = 1000

(Figures in parentheses are standard deviations)
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Table II
Results of applying variance reduction techniques

to Monte Carlo valuation of a lookback call

Continuous fixing analytical formula value 2.79
FX lookback call option value 4.525

Variance reduction method Variance
None 0.0096 (0.098)
Antithetic variate " 0.00092 (0.030)
Control variates 0.000046 (0.0068)
Antithetic and Control variates 0.000008 (0.0028)

Time to Maturity = 0.5 years

Initial FX Rate = 100

Volatility = 6%

Domestic Interest Rate = 5%

Foreign Interest Rate = 7%

Rate of Mean Reversion (a) = 1.35
Volatility of the Volatility () = 0.085
Number of time steps (V) = 128
Number of simulations (M) = 1000

(Figures in parentheses are standard deviations)
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Figure A: Valuation of a twice exercisable option by Monte Carlo simulation
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