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THE TERM STRUCTURE OF VOLATILITY
IMPLIED BY FOREIGN EXCHANGE OPTIONS

Abstract

This paper illustrates methods for estimating the time-varying term structure of volatility
expectations, as revealed by options prices. Short and long-term expectations can be
estimated using the Kalman filter. These expectations are estimated for four currencies from
1985 to 1989 using daily PHLX options prices. Throughout the five-year period there were
important differences between short and long-term expectations. The slope of the term |
structure changed frequently and there were significant variations in long-term volatility

expectations. The four currencies had very similar term structures, particularly in 1988 and

1989.

I. Introduction

Options provide information about the expected future volatility of the underlying
asset. Implied volatilities at any moment in time vary, however, for different times to option
expiry T and different exercise prices X. A matrix of impliéd volatilities is frequently
available, say with columns ordered by T and rows ordered by X. Rational expectations of the
average volatility during the next T years should vary with T because volatility is known to
be stochastic, as reflected by the considerable literature on ARCH models reviewed by
Bollerslev, Chou and Kroner (1992). Thus the rows of the implied volatility matrix will give
information about the term structure of expected future volatility when option traders are
rational. This paper describes and illustrates methods for estimating this term structure from
one row of the implied volatility matrix, corresponding to nearest-the-money options. It is

also rational for the implied volatility to vary with X when the asset volatility is stochastic



(Hull and White (1987), Stein and Stein (1991, Table 1)). Bid/ask spreads and
nonsynchronous options and asset prices can also cause implied volatilities to vary (Day and
Lewis (1988)).

The term structure of implied volatilities has been discussed by Poterba and Summers
(1986), Stein (1989), Franks and Schwartz (1991) and Heynen, Kemna and Vorst (1991).
Only two values of T are considered at any moment of time in these papers. Any number of T
values can be studied using the estimation methods presented here and the number can vary
from day to day. Time series studies involving one implied volatility figure per day are
reported in several papers, for example Merville and Pieptea (1989) and Day and Lewis
(1992), but such studies ignore term structure effects because T then varies from day to day.
Our empirical analysis shows that it is possible to estimate interesting time series models for
both short-term and long-term expected currency volatility using the Kalman filter.

Several methods of estimating volatility appear in the literature, including standard
deviations calculated from recent asset returns. Although the historical volatility is a
reasonable estimate when volatility varies slowly, Merville and Pieptea (1989) note that it
fails to capture instantaneous changes. There is a general consensus in options research that
the volatility implied by options prices and extensions of the Black-Scholes pricing model is
a better predictor of future volatility than a standard deviation predictor based on historical
data (Latane and Rendleman (1976), Chiras and Manaster (1978), Gemmill (1986), Shastri
and Tandon (1986), Scott and Tucker (1989)). Insight into the relative importance of
historical and implied predictors can be obtained by including both predictors in the
conditional variance equation of an ARCH model (Day and Lewis (1992)). Further
applications of this method for making comparisons would be interesting especially if the
implied predictor is an estimate of short-term expectations.

A composite implied volatility can be obtained from the implied volatility matrix using
some weighting scheme. We assign all the weight in each column to the nearest-the-money
option, as in Stein (1989) and other recent studies, for reasons given at the end of Section IV.

Other weighting methods are discussed by Latane and Rendleman (1976), Chiras and



Manaster (1978), Whaley (1982), Day and Lewis (1988), Turvey (1990) and Franks and
Schwartz (1991).

Only a few studies have investigated implied volatility behaviour over varying horizons
T, i.e. the term structure of expected volatility. Patell and Wolfson (1979) used two maturities
after an earnings announcement to help show that there is more expected price variability in
the days surrounding an announcement. Poterba and Summers (1986) obtained regression
estimates from implied volatilities for three and six-month maturities, calculated from weekly
Value Line indices. They concluded that when three-month volatility expectations change,
the expected volatility three to six months hence also changes, but by much less than the
change in expected short-term volatility. They also concluded that volatility shocks are
short-lived after analyzing the volatility implied by CBOE indices.

Stein (1989) directly examined the term structure of implied volatilities, using two daily
time series on implied volatilities for S&P 100 index options over the period December 1983
to September 1987. The values of T were less than one month for the first series and between
one and two months for the second series. Based on the assumption thét the volatility is mean
reverting, as supported by his data, Stein found that the elasticity of volatility changes is
larger than suggested by rational expectations theory : long-maturity options tend to
"overreact" to changes in the implied volatility of short-maturity options. However, Heynen,
Kemna and Vorst (1991) found that their conclusion about overreaction depended on the
model used to represent changes in asset price volatility. They considered one year of
European Options Exchange data and two values of T, one varying between zero and three
months, the other between six and nine months.

Franks and Schwartz (1991) have tested possible explanations for stock volatility
changes using weekly implied volatilities for the U.K. FTSE index from May 1984 to
December 1989. Results for a capital structure hypothesis are compared in their Table 2 for
shortest-maturity implieds and all-maturity implieds.

Engle and Mustafa (1992) infer volatility expectations for varying T without calculating

implied volatilities. Their method seeks the GARCH(1,1) model which best explains



observed options prices.

In this paper we model the term structure of expected volatility and the time series
characteristics of the term structure. Section II describes a simple specification for the term
structure at one moment in time. The specification involves two "factors" representing
short-term expected volatility and long-term expected volatility and is more general than the
approach of Stein (1989). The term structure specification is particularly appropriate when a
satisfactory model for asset prices is GARCH(1,1), reviewed by Bollerslev, Chou and Kroner
(1992) and Taylor (1992). Asset prices then follow a random walk with conditionally
heteroscedastic steps. Section III describes estimation methods. A Kalman filter formulation
has many advantages and allows estimation of time series models for the long-term expectcd
volatility and the spread between short and long-term expected volatility; examples are given
for AR(1) models.

Our empirical examples are for spot currency options on the British Pound, German
Mark, Japanese Yen and Swiss Franc quoted against the U.S. dollar. Daily implied volatilities
are modelled for the five-year period from January 1985 to November 1989. Section IV
describes the Philadelphia Stock Exchange options data. Section V presents the empirical
estimates of the term structure. Quasi-maximum likelihood methods are employed. We find
that volatility expectations revert from their short-term level towards their long-term level
with a half-life of approximately four weeks. We find considerable time-variation in the
spread between short-term and long-term expectations and frequent changes in the slope of
the term structure. We also document significant time-variation in the long-term volatility
expectation, which can be modelled either by an AR(1) process or a random walk. Finally,

Section VI presents conclusions and suggestions for further research.



II. A model for the term structure

Volatility is defined in our term structure model in the usual way and is always
expressed in annual terms. Thus the volatility for some time period is the annualised standard
deviation of the change in the price logarithm during the same period of time. We suppose
that each year is divided into n smaller intervals of time. These intervals might be calendar
days or they might be trading days and so commence when a market closes on one day and
end when the market next closes; alternatively the durations of the intervals might be one
week.

Market agents will have expectations at time ¢ about the volatility during future time

periods. Suppose they use information M, to form expectations of the quantities
var(InP,, . —InP,,._)), t=12,.... (1)
where P refers to the price of the asset upon which options are traded. These expectations can

be annualised by multiplying them by ». After doing this, let o, , . denote the volatility

expectation at time ¢ for time interval 7 + T, soO

Oprre=n E[var(n(P, /P, ,._)) I M,] )
where E[...]|...] denotes an expectation based upon specific information; any dividends are
assumed to be paid continuously at a constant rate.

Our term structure model is intended to be as simple as is reasonably possible. The
model supposes that the expectations o, , . are functions of at most three parameters. The
first is the short-term expectation o, for the next time interval :

=0, (3)
The second parameter is the long-term expectation |, given by assuming that the expectations

converge for distant intervals :

p,=limo,,,.. 4)

T



Expectations are assumed to revert towards the time-dependent level |y, as 1 increases. The
third parameter, ¢, controls the rate of reversion towards L, and ¢ is assumed to be the same
for all z. It is more practical to suppose that reversion applies to variances than to standard

deviations, as follows :

Cpre =Wy =0(07 ey —H0), T>1. (5)
It then follows that the expectation for time interval ¢ + T depends upon o, lt,, ¢ and 1, thus :

Crrae =M+ (O ), >0, ©6)

Market agents have mean-reverting expectations when 0 < ¢ < 1. Stein (1989) used an
equation similar to the special case of (6) given by constant J,. Constant expectations as T
varies, consistent with the Black-Scholes paradigm, are only obtained when ¢ =0 or ¢ =1.
Our preference for a simple model only permits three shapes for a graph of o, , . . against 1.
The expectations are either monotonic increasing or monotonic decreasing as T increases, or
they are the same for all 7. Graphs of the expectations cannot contain spikes, perhaps aligned
with the anticipated release of particularly important information.

The preceding equations summarise expectations made at time ¢ for unit time intervals
commencing at later times. The expected volatility at time # for an interval of general length
T, from time ¢ to time ¢ + T, is the square root of :

1-¢"
T(1-9)
here assuming that subsequent asset prices, {P, ., T> 0}, follow a random walk. The numbers

v, T=1,2,3, ... define the term structure of expected average volatility at time #; note the

units for T are time intervals in (7), not years. We are interested in using implied volatilities

1 T
Tz-f § 0121+1_u: s (0 —LL,) @)

from options prices to estimate the time series {,} and {},} and also the mean-reversion

parameter ¢. This can be achieved because (7) shows that v7 is a linear function of o2 and p2.
A typical example for the term structure is a 10% expected volatility for the very

short-term, a 12% expected volatility 37 calendar days after the current time and a 14%

expected volatility for very distant months. These figures use equation (6) and a



representative ¢ value equal to 0.972, similar to the estimates documented in Section V. The
expected average volatilities which might be used to value near-the-money options for a

selection of maturities are then as follows, using equation (7) :

Maturity T Volatility for pricing
30 days 11.4%
60 days 12.2%
90 days 12.7%
180 days 13.3%
360 days 13.7%

Changes in asset price volatility have been modelled using ARCH and other models by
many researchers in recent years. The GARCH(1,1) model has provided a satisfactory
description of many asset return series (Bollerslev, Chou and Kroner (1992)). Engle and
Mustafa (1992) have used this model to infer volatility expectations from options prices. It is
shown in the Appendix that the term structure we are proposing here would be rational for
market agents if they believe that future asset returns are generated by the GARCH(1,1)
model; n'IOL,2 is then the conditional variance of the asset return from time ¢ to time ¢+ and

n~'y? is the limiting conditional variance of the return from 7 +Tt0 # + T+ 1 as T — oo,
II1. Estimation methods

Two methods have been developed for estimating thé term structure model. The first
method seeks the best match between the model and a dataset of implied volatilities. This
method makes few assumptions about the time series properties of the series {o,} and {L,}.
The method is also very quick. The second method supposes that {o,} and {y,} follow
autoregressive processes (possibly with unit roots) and then uses the Kalman filter to provide
estimates of both the term structure and the parameters of the models assumed for {c,} and

{1, }. This method requires substantially more computer resources.



A. Notation

The time 7 is now supposed to count trading days. On day ¢ there will be implied
volatility information for N, expiry dates, supposed to be represented by a single number for
each expiry date. It is a feature of our datasets that N, varies from day to day. Let y, , denote
the implied volatility for option expiry date j on day ¢ and suppose the times to expiry are T} ,,

measured in calendar days, with T, , <T,, < ....<Ty ,.
B. A quick method

Forward implied variances f; , can be calculated from the implied volatilities. At time ¢,
the forward figure for the time interval from 1 +7;_, ,to t +T; , is :

Tj,xy_;%t'—Tj,t—lyjz,:—l (8)
T',x —Tj—l,x )

J

fiw=

This is an annualised figure. When j =1, T, =0 in (8).
The forward implied variance can be compared with the expected value for the
appropriate part of the term structure. The forward expected variance g; , is
1 T
8= m(ﬁ&%:“ oé(x),cu)uj ) ©)
where C(¢) is the calendar day count corresponding to the passage of ¢ trading days and 7 is
measured in calendar days. From (6) it can be seen that the forward expected variance is a

linear combination of o and p?. The combination is

g =M +x; (0F —p2), (10)
T. T.
. (b ]—l.l_q) it
th . =
i 5 = U Ty =T, ) b

assuming ¢ < 1.

Let n now denote the number of days for which there are implied volatilities. We wish

to find estimates of
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giving small values for the differences

ej"=f}y'_gj,f’ ]‘SjSNp 1St$n.

Our estimates are given by minimising sums of terms e f,, for various ¢ followed by choosing
¢ to be the value giving the smallest sum across all times z. We could estimate o, and L, using
the implied volatilities for period ¢ alone, providing N, > 2. These estimates are rather erratic
because the differences e; , are non-trivial. There are many possible explanations for
non-trivial differences including bid/ask spreads, incorrectly pﬁced options, mis-specification
of the term structure model and non-synchronous implied volatilities. Less erratic eétimates
for period ¢ can be obtained by using the implied volatilities for a time window ¢z —k to r +k.
This will be a reasonable method when it can be assumed that the volatility term structure is
approximately constant within the timé window.

The estimation method can be summarised by three steps, supposing & has already been

selected; the choice of a sensible value for & is discussed in Section V.B for our data. Step 1

involves selecting a set of plausible values for ¢, say ¢y, ....,d,. Step 2 involves finding the
best estimates &i,,,ﬁi,, when ¢ =¢;, i =1,....,m. As g; , is a linear function of x; ,, from (10),

these estimates are given for period ¢ by regressing f; , on x; ,, with 1 < j <N, and

t—k <s <t+k. From (10), the estimated intercept is ﬁ,z, and the sum of the estimated slope
and the estimated intercept is &?,,. These estimates are obtained fort =k +1,....,n —k and the
sum of the squared regression errors calculated, summing over the three variables j, s and ¢.
Call the sum S (¢;) when ¢ = ¢;. Step 3 givés ¢ as the value which minimises § (¢;) and the

time series of estimates {a,) and {1} as the regression estimates when ¢ = §.

C. The Kalman filter method

The expected squared volatility over any period of time is a linear function of the
current values of of — > and 2, from (7). This suggests a Kalman filter method is ideal for

estimating the term structure, day by day, if a set of squared implied volatilities is considered
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to be the expected squared volatility (from the term structure model) plus a set of
measurement errors which can be attributed to option mispricing, non-synchronous
observations and other issues. The Kalman filter formulation has several attractive properties
: (1) it permits comparisons of models for the time series behaviour of the state variables, (ii)
all the parameters can be obtained by maximising a quasi-likelihood function, (iii) the
number of observations N, can vary from day to day and (iv) it can be extended to give results
for several assets simultaneously thus permitting the identification of common factors in the
term structures of similar assets.

There are many ways to define the state variables and to model their time series
characteristics. One credible example is presented here and further examples are evaluated in
Section V.C. We suppose {0} and {’} are stationary processes and have the same mean
value 1. The state variables are taken to be o — i and pu? — [, which both have zero mean and
are unlikely to be highly correlated with each other. This choice is preferred to o — 1 and
u? — 1 because these variables will probably have substantial covariation. The simplest
plausible model for each of the chosen staté variables is an AR(1) process. Independence

between the state variables will be assumed. This gives the following state equations :

az_uz
S,=( ‘2___‘} a 2x 1 vector, (12)

M — i

o, O

S,:(Ol ¢2]S,_1+e,, (13)
E[e]=0, El[ee’] o 0 14)

= 5 811 = .

. 0 & (

The observation equation for the Kalman filter is written as :
' Y,=ZS,+E, (15)
Here Y, is a N, x 1 vector of squared implied volatilities minus W, S, is the 2x 1 vector of state

variables which summarise the term structure of expected volatility, Z, is a N, x2 matrix of

state coefficients and &, is a N, x 1 vector of measurement errors. We have
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Vi —H 21, 1
Y= | and z=| |, (16)
yN,,I—H' ZN[ t 1
z
; 1-¢
with Z, = a7
T (1-0)

from (7). The measurement errors are assumed to have zero means. Specification of their
covariance matrix H, is far from straightforward. Our preliminary results were based on the
assumption that this matrix is diagonal with all N, diagonal terms equal to the same number :
H,=E[E£,’] = diag(c, ...., 52). (18)

Assuming uncorrelated measurement errors, so E[§.£,’] =0 when s # ¢, concludes the
specification of this particular model.

Sequential application of the Kalman filter to increasing information sets
I,={Y,,Y,,....,Y,} yields the minimum mean square linear estimators (MMSLE) of the state
variables, E[S, |],], using standard updating equations; these can be found in Harvey (1989,

Ch. 3). The MMSLE are 2x 1 vectors from which can be calculated the N, x 1 prediction error

VECtors :

0
& JE[S,_, 11,_,] (19)

v,=Y -2,
o

and the term structure estimates :

o~
[Z} = [’—:H(l, ijE[S,II,]. (20)

Equations (12)-(18) specify a model having seven parameters, summarised by the vector
6= (0, 91,2 0c, O3, O, ).

A quasi-maximum likelihood estimate of 6 can be obtained because the likelihood function is
the product of conditional densities (Y, | /,_,) and these densities depend, through 6, upon the

prediction errors v, and their covariance matrices F, =E[v,v,’ | I,_,]. Following the arguments
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of Harvey (1989, p. 126) the quasi-log-likelihood function is as follows, given by assuming

the prediction errors are multivariate normal :

%):1 (NIn(m)+In(detF) +v, Flv). (1)

InL(Y,Y,, ....,Y,,)=§,1 InfY,|,_)=—
This function can be maximised using standard subroutines. We used the NAG subroutine
EO4JAF for our optimisations.

The autoregressive models for the term structure defined by (12)-(14) include two
innovation terms per trading day, given by the 2x 1 vector €,. The possibility of creating an
options portfolio at time #- whose value at time ¢ does not depend on €, and the change in the
price of the underlying asset is relevant for any appraisal of the economic plausibility of
(12)-(14). The construction of a portfolio which generates arbitrage profits appears to be
impossible even if transaction costs are ignored, because options prices are non-linear

functions of volatility and (12)-(14) are defined in discrete time. Continuous time extensions

and analysis may provide more definite conclusions.
IV. Data and computation of implied volatility

A. The market

The Philadelphia currency options market is the world’s leading exchange in European
and American-style options on spot currencies, with markets in the Deutsche Mark, Japanese
Yen, Swiss Franc, British Pound, French Franc, Australian Dollar, Canadian Dollar and
European Currency Unit. Total volume in these contracts represented approximately $2
billion in underlying value each trading day in 1990. The expiry months always include
March, June, September and December. Two nearby months are also traded so that N, =6

when trade occurs for all the expiry months.
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B. Datasets

The primary source database for this study is the transaction report compiled daily by
the Philadelphia Stock Exchange (PHLX). This report contains the following information for
each option traded during a day: date of trade (before February 1987; for February 1987
onwards the date on which the report was compiled, usually one day later), the style (call or
put, European or American) and currency, expiration month, exercise price, number of trades,
number of contracts traded, and the opening, closing, lowest, and highest option prices and
the simultaneous spot exchange rate quotes. Only the closing option prices have been used.
The database contains options prices for the seven currencies mentioned above and the ECU
from November 5, 1984 to November 21, 1989. However, the transaction report is not
available for some trading days during the above period; for some others, the report is not
complete or in a few cases is in some way clearly erroneous.

Prices have been collected manually from the Wall Street Journal (WSJ) whenever
necessary. Approximately 10% of our implied volatilities are calculated from WSJ prices.
The WSJ options prices and the associated spot prices are not simultaneous; we discuss the
consequences of this non-simultaneity in detail in Section V.

All the results presented in this paper are for the period commencing January 2, 1985.
The prices for November and December 1984 are only used to commence the Kalman filter
calculations. |

The interest rates used are London euro-currency rates, collected from Datastream. This
source provides overnight, seven days, one month, three months, six months and one year
interest rates. For intermediate times, we simply use linear interpolation. There is unlikely to
be a simultaneity problem with the option data as the trading times are similar.

The London euro-currency interest rates were chosen because they consist of the
maximum number of different maturities that we could use to make the interest rates used in
calculating implied volatility as accurate as possible. Furthermore, they ensure the foreign

and domestic interest rates are contemporaneous and are offered by the same institutions.
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C. Data selection and revisions

Results have been obtained for American style options on four currencies--British
Pound, Deutsche Mark, Japanese Yen and Swiss Franc. Results for the other three currencies
have not been sought because trading was thin, in particular during the early part of the
period studied.

Two essential changes have been made to the original data. First, we changed all the
report compilation dates to the appropriate trading dates. Second, as the options expire on the
Saturday before the third Wednesday of the expiration month but settle on the third

Wednesday of that month, we have multiplied each option premium by S

with R, the
relevant domestic (i.e. dollar) interest rate. Several exclusion criteria were used to remove
uninformative options records from the database. Five criteria are first listed and then
explained. We use standard notation, with S the spot rate, X the exercise price, T the time to
expiry measured in years and R, the foreign interest rate.

i) Options with time to expiration less than ten calendar days.

ii) Options violating European boundary conditions:

-R.T -R,T -R,T -R.T
c<Se " -Xe ?, p<Xe?-Se .

iii) Options violating American boundary conditions:
C<S§S-X, P<X-S.
iv) Options with premia less than or equal to 0.01 cents.
v) Options that are far in- or out-of-the-money: X < 0.8S or X > 1.25.

Criterion (i) was used to eliminate options with small times to maturity as the implied
volatilities then behave erratically.

Criteria (ii) and (iii) eliminate options violating the boundary conditions for European
and American options. As the American options could be exercised at any time up to
expiration, both boundary conditions must be satisfied, otherwise a riskless arbitrage could
arise. Where an option price violates a rational pricing bound there are good reasons for

suspecting that trades could not be made at this price.
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Criterion (iv) is used to exclude options for which the necessarily discrete market prices
are particularly likely to distort calculations of implied volatility.

Criterion (v) is used to eliminate those options that are either deep in-the-money or
deep out-of-the-money. As their implied volatilities are extremely sensitive to a small change
in the option price, they could distort calculations of implied volatility. Furthermore these
options trade without much volume and are thus unrepresentative.

Table 1 provides summary information about the distribution of the number of distinct
maturities N, after applying the above exclusion criteria. These figures show that N, > 3 for

approximately 80% of the days studied.

D. Computation of implied volatility

Implied volatilities have been calculated from American model prices. The model
prices are approximated by the very accurate functions derived in Barone-Adesi and Whaley
(1987). The calculations of implied volatility used an interval subdivision method, which
always converged to an unique solution.

It was decided to calculate the implied volatilities only from the closing prices of the
nearest-the-money options; the nearest-the-money option on some day for a specific T is the
option whose exercise price minimises | § —X |. Nearest-the-money options were chosen
because: (1) given the widely reported ’strike bias’ (or so-called ’smile effect’), including
out-of-the-money and in-the-money options would introduce further noise into the term
structure estimates; (2) the approximation that the implied volatility of a rationally priced
option will equal the mean expected volatility over the time to expiry is considered better for

an at-the-money option than for all other options (Stein (1989), Heynen, Kemna and Vorst

(1991)).
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V. Results

A. Further comments on data selection

The results from some preliminary calculations made it clear that a few extreme outliers
had an excessive influence on the model estimates. Consequently, further exclusion criteria
were applied.

For each currency and separately for calls and puts we calculated the sample mean and
standard deviation of all the implied volatilities during the five year period. As both the quick
and Kalman filter methods are sensitive to extreme outliers, we removed all implied
volatilities more than five standard deviations distant from the sample mean. Only 13
observations in total were removed; 5 for Yen calls, 4 for Mark calls, 2 for Franc calls and 1
each for Pound and Yen puts. On a few occasions the forward implied variance, used by the
quick method, was negative and then we excluded all the observations on that date; on
average, seven days were removed from each dataset.

The majority of the outliers can be explained by one of four facts. First, the
nearest-the-money option is occasionally rather in or out-of-the-money when only one
exercise price is traded for a particular 7. Second, non-simultaneity between option prices
and the underlying spot prices for the Wall Street Journal data can be serious. Third, although
we remove options with time to expiry less than ten days there are still some very large
observations for small times to maturity. Fourth, the market may not have been operationally
efficient during the first six months we have studied. As noted by Sutton (1988, p. 3), "A
genuinely efficient options market in terms of large size and competitive spreads did not

develop until the second half of 1985.".
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B. Results from the quick method

The quick method described in Section III.B produces an estimate of ¢, the

mean-reversion parameter for volatility expectations, by fitting term structures to implied
volatilities over windows of 2k + 1 trading days. Values of £ between 0 and 10 have been
considered. The estimates of ¢ change by 0.01 at most moving from £ =0 to k£ = 1 and then
change little as & increases. The maximum variation in the estimates of ¢ over 1 <k <10 is
for Pound puts with a range from 0.970 to 0.976. As the results are insensitive to the choice
of k, the choice £ =5 has been made for all the subsequent results.

Table 2 shows that the estimates of ¢ are very similar across currencies, ranging from
0.968 to 0.980. The median of the eight ¢ estimates is 0.975 corresponding to a ’half-life’ of
27 calendar days by solving the equation 0.975" = 0.5. The call and put estimates can be seen
to be very similar : the two smallest estimates are for the Yen, the third and fourth in
magnitude are for the Pound, the fifth and sixth are for the Mark and the two largest are for
the Swiss Franc.

Table 2 also provides estimates of the parameter ¢ for two sub-periods, the first from
January 1985 to June 1987 and the second from July 1987 to November 1989. Again the
differences between the estimates from call and put options are very similar except for the
Yen in the first period. Most of the estimates of ¢ in the second period are higher than their
counterparts in the first period although the differences are fairly small. The range is much
greater for the first period, from 0.939 to 0.979, than for the second period, from 0.976 to
0.981. The median values are 0.967 and 0.981, respectively for the first and second period,
corresponding to *half-lives’ equal to 21 and 36 calendar days. These estimates of the
“half-life’ provide the important result that the market does not expect short-term volatility
shocks to persist for long, i.e. their effect is expected to disappear quickly.

Figure 1 summarises the term structure of volatility expectations for Mark calls. Very
similar numbers are obtained for Mark puts as expected. Figure 1 shows the time series

estimates of the 15-day expectations (from eq. (6) with ©=15) and the long-term expectations
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1. The 15-day expectations (eq. 6) are very similar to the 30-day expected average
volatilities (eq. 7). We chose to plot estimates for 15-day expectations rather than
expectations estimates for the next day to avoid extrapolation beyond the limits implied by
our data; recall T = 10 calendar days in all the calculations.

Five. conclusions are suggested by the plots of the time series. First, the difference
between 15-day and long-term expectations is often several percent so the implied volatilities
reveal a significant term structure. Second, the estimates of the 15-day and long-term
expectations frequently crossover, so the slope of the term structure often changes.
Crossovers occur, very approximately, at an average rate of once every two to three months.
Third, the long-term expected volatility varies significantly. This will become more clear
when the results from the Kalman filter are analysed. Fourth, as might be expected, the
estimated 15-day volatility expectation is much more variable over time than the estimated
long-term expectation. Finally, the implied volatility process may not have been stationary in
the sense that the average level appears to have been higher in 1985 than in the later years
1986 to 1989 although historic estimates of volatility are also high in 1985.

In Figures 2 and 3 we plot together for all four currencies the estimated 15-day and
long-term expected volatilities, from call options. It is clear that volatility expectations for the
three European currencies have been extremely similar and the Yen has come closer to the

common trend as time has progressed.
C. Results from the Kalman filter

There are seven parameters in the time-varying term structure model described in
Section III.C. The parameter ¢ continues to measure the rate of reversion in volatility
expectations towards the long-term level. The spread between short and long-term expected
squared volatility is assumed to follow an AR(1) process with AR parameter ¢,, mean zero
and residual variance o}. The long-term expected squared volatility is assumed to

independently follow an AR(1) process with AR parameter ¢,, mean [ and residual variance



19

0%.

The final parameter in III.C is the variance of the measurement errors when the model
is fitted to squared implied volatilities. One parameter for the measurement error variances
has been found to be insufficient to give a satisfactory model for our implied volatilities data.
The magnitude of the measurement errors is larger on average for the WSJ observations
because of non-simultaneous spot and options prices. Furthermore, we have noted that the
magnitude of the measurement errors increases on average as T decreases, for both data
sources. Our preferred model has nine parameters with three parameters (65, 6= and 6%,) used
to define the dispersion matrix for the measurement errors &,. The following diagonal matrix

is preferred :

H =E[EL] =diag[0§ +i, 6§+—), 22)
Tl,t TN t

o;=0, for PHLX prices,

=0y for WSJ prices.

Results are discussed in some detail for this nine-parameter model and then for

simplifications (e.g. ¢, = 1) and finally for more general models (e.g. H, is not diagonal).

1. The preferred model

Table 3 gives the parameter estimates obtained by maximising the quasi-log-likelihood
function (eq. 21) defined by the Kalman filter. Panel A presents the estimates and
approximate standard errors for the complete five-year period from 1985 to 1989. The
standard errors have been calculated from the information matrix using numerical second
derivatives, although the reliability of the usual likelihood theory in this context is unknown
to us because the matrices of state coefficients, Z,, are time-dependent. Panel B presents the
estimates for the two sub-periods, from January 1985 to June 1987 and from July 1987 to
November 1989.

The square root of an estimate |L is an estimate of the median level of volatility
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expectations. These median estimates are smaller for the Yen than for the European
currencies and they decrease from the first sub-period to the second sub-period for all
currencies.

The Kalman filter estimates of ¢ are very similar to the estimates for the quick method.
The average of the Kalman estimate minus the quick estimate. is almost zero and the
differences only vary from -0.006 to 0.004. The Kalman filter estimates of ¢ range from
0.967 to 0.980 for the full samples, with median 0.974 and ’half-life’ equal to 27 calendar
days. The Kalman filter estimates of ¢, like those for the quick method, are generally larger
for the second sub-period. The median and "half-life’ for the first sub-period are 0.966 and 20
days, with a range from 0.947 to 0.981. The corresponding figures are 0.980, 35 days, 0.975
and 0.983 for the second sub-period.

Some models for asset returns imply estimates of ¢ and ¢, should be similar if
expectations are formed rationally. A GARCH(1,1) model for returns (with constant
long-term expectations) is one example, as noted in the Appendix. The estimates of ¢, are
non-trivially smaller than the estimates of ¢ but the former estimates are associated with
trading days and the latter estimates with calendar days. The median estimate of ¢, for the
full samples is 0.966 and the associated *half-life’ is 20 trading days or approximately 29
calendar days, compared with 27 calendar days for ¢. The sub-period median estimates of ¢,
are very similar : 0.964 and 0.972.

All the estimates of ¢, exceed 0.975 for the complete datasets and half of these
estimates exceed 0.99. The "half-lives’ for the median estimates are 66 trading days for the
complete period, 51 trading days for the first sub-period and 36 trading days for the second
sub-period.

The penultimate column of Table 3 shows estimates of 6%/(1 — ¢?) which is the variance
of the spread term. The variation in the spread term is similar across the sub-periods for three
currencies but not for the Pound which has smaller values in the later sub-period. The final
column gives estimates of 63/(1 —$2) which is the variance of long-term expectations. The

numbers document a substantial fall over the five years in the variability through time of
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these expectations. An approximate 95% probability interval for the long-term volatility
expectation can be obtained from 6%/(1 — ¢2) and . An example is an interval from 10.4% to
13.3% for the Mark, using the call estimates for the later sub-period. A corresponding
interval for 15-day volatility expectations can be calculated by additionally using 3/(1 — ¢?)
and ¢. This gives 6% to 16% for the same Mark source.

The small estimated values of o5 and 67 indicate that the time-varying term structure
model fits the PHLX data reasonably well. A very approximate standard deviation for the
difference between an observed implied volatility (y; ,) and the correct term structure value
(v, €q. 7) is given by the square root of (65 + T;,07)/(41) for PHLX observations. Typical
values are 0.8% for a 15-day option and 0.4% for a 180-day option (from Mark calls, full
sample). The relative inaccuracy of the WSJ source is confirmed by the higher estimates for
oy than for 63. The illustrative approximate standard deviations for WSJ observations
increase to 1.0% and 0.8%, respectively for 15- and 180-day options.

Figure 4 compares the Kalman filter estimates of volatility expectations with the quick
method estimates. It can be seen that the estimates of 60-day expected average volatilities
(from eq. 7) are very similar and this is also true for 15-day and long-term expectations.
Further figures, not presented here, indicate that the plotted series are less smooth for the
filter method, particularly for the 15-day expectations, because the quick method uses
overlapping eleven-day windows. Also, the differences between the expectations obtained

from call and put options are more variable for the Kalman filter.

2. Simpler models

To help evaluate certain simplifications of the preferred specification of the
time-varying term structure model, we present comparisons of the maximum
quasi-log-likelihoods for the nine parameter model with the corresponding figures for special
cases requiring less parameters. The usual likelihood-ratio tests provide some insight.
Cautious interpretations of log-likelihood differences are necessary, however, not least

because several model parameters may have varied during the five-year period. The results
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for seven simplifications are summarised in Table 4, panel A.

To emphasise that term structure effects exist the model has been fitted with the
restriction that the spread term is always zero (6, = ¢ = ¢, = 03 — 2 = 0). The maximum
log-likelihood then falls by more than 700 for each of the eight datasets. The possibility of
constant long-term expectations through time (G, = ¢, = 0) is also not credible as the
maximum log-likelihood always falls by more than 500 for this model. Likewise, we can
confidently disregard the idea that the two sources provide implied volatilities of equal
accuracy (Gp = Oy) and can reject the assumption that the model fits with the same accuracy
for all times to expiry (o =0).

The joint hypothesis that both the spread between short and long-term expectations and
the long-term expectation follow random walks (¢, = ¢, = 1, it undefined) gives
likelihood-ratio test values ranging from 20.52 to 39.02 which could be compared with 2 if
we trust the usual asymptotic theory. The test values strongly suggest that the joint hypothesis
is doubtful. The more plausible hypothesis that the long-term expectation alone follows a
random walk (¢, = 1, it undefined) can be accepted for the Pound and the Mark using
standard theory and a 5% significance level.

The hypothesis that the spread term reverts towards zero through trading time
(weekdays less holidays) at the same rate as the term structure displays reversion in calendar
time towards long-term expectations (¢7° = ¢”) is supported by all the datasets with the

maximum value of the likelihood-ratio test statistic equal to 1.50.

3. More general models

There are many ways to add a tenth parameter to the preferred model. The results for
five generalisations are summarised in Table 4, panel B, although none of them give
substantial improvements for a majority of the datasets. The generalisations nearly always
change the estimates of ¢ and ¢, by negligible amounts. A few estimates of ¢, change
non-trivially, especially for the Franc data.

A variation which deserves evaluation is to remove the assumption that {0} and {1}
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have the same mean value, i.e. on average the term structure is flat. Figure 1 at first sight
suggests that on average the term structure slopes upwards. Defining different means for {o?}
and {Y’} gives a ten-parameter model. The difference between the square root of the
estimated long-term mean and the square root of the estimated short-term mean ranges from a
minimum of 0.002 for Yen calls to a maximum of 0.011 for Pound calls, implying a positive
average slope. However, the increases in the maximum quasi-log-likelihoods are all small
and insignificant.

The spread innovation is assumed to be uncorrelated with the long-term innovation in
(14) which implies that there is no‘correlation between the spread and long-term variables.
Adding a parameter for correlation between the innovation terms gives small correlation
estimates; they vary from 0.03 to 0.28.

The covariance matrix H, for the measurement errors is assumed to be diagonal in the
preferred model. An extra parameter can be added by assuming that all the off-diagonal
elements in the associated correlation matrix are equal. Except for the Swiss Franc, the
estimated common correlation term is very small (range -0.05 to 0.04) and the changes in the
log-likelihood are unimportant. There is far more correlation between the measurement errors
for the exceptional currency, 0.28 for the calls and 0.13 for the puts with large changes in the
log-likelihood. Three parameters define the diagonal terms of H, in (22). Increasing this to
four, by allowing o7 to differ for the PHLX and WSJ sources improves some of the model
fits but has no discernible effect upon the six parameters which do not appear in H,.

Figures 1 and 3 and the sub-period estimates of W suggest that the mean of the process
for long-term expectations may have declined as time progressed. Replacing W by po+ i,z

leads to negative estimates of |, as expected but the reductions in the log-likelihood are not

large.
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VI. Concluding remarks

Two ways to estimate the time-varying term structure of volatility expectations have
been illustrated. The quick method is easy to apply and produces similar conclusions to the
technicall}./ more demanding Kalman filter method. The filter method, however, also provides
information about satisfactory time series models for short and long-term volatility
expectations.

Our study of volatility expectations for four currencies provides five conclusions. First,
there are significant term structure effects. Fifteen-day and long-term volatility expectations
often differ by several percent which causes implied volatilities to vary significantly across
maturities, as illustrated in Section II. Second, the term structure sometimes slopes upwards,
sometimes downwards and its direction frequently changes. The direction changes, on
average, approximately once every two or three months. Third, there are significant
variations in long-term volatility expectations, although these expectations change more
slowly than both short-term expectations and the spread between short and long-term
expectations. Fourth, the term structures of the Pound, Mark, Swiss Franc and Yen at any
moment in time are all very similar. Finally, there are non-stationary elements in the term
structure in the sense that some of the parameters of the recommended model changed during
the five years investigated. This can be seen in the sub-period estimates presented in Table 3.

Further research can appraise the rationality of observed options prices and implied
volatilities since the estimates of the term structure can be used to seek mispriced options.
Also, rational implied volatilities should convey more information about future short-term
volatility than can be gleaned from the prices of the underlying asset. Estimation of an ARCH
model for asset returns based upon historic returns and the short and long-term volatility
expectations would be interesting. The conditional variance should then depend primarily on
short-term expectations if the options market is efficient. Research into the common element
of volatility expectations and individual currency effects should also be informative. It is

noted in the Appendix that the changes in long-term expectations are inconsistent with a
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stationary ARCH model whilst the changes in the spread between short and long-term
expectations are inconsistent with an integrated ARCH model. Thus we conjecture that either
the expectations are irrational or something more accurate than state-of-the-art ARCH models
is needed to describe asset returns. Research into the validity of these conjectures should be

interesting.

Appendix : Some implications of GARCH(1,1) models for volatility expectations

First, it is shown that the volatility expectations summarised by (6) in Section II are
rational if market agents believe prices and returns are generated by an extension of the
stationary GARCH(1,1) model, specified in (A-1) and (A-2) below. At time # suppose itis
believed that subsequent prices P, , ., logarithmic price differences R, , . and their conditional

variances H,, . will be given by

lnPt+t-—1nP1+‘r—l=R1+t=d+Htl~/l-2-:Zr+-: . (A'l)
and H,.=¢+0R,,..,—d)’+(0—-0)H,,._, (A-2)

for T> 0 with

(1) H,,, and ¢, given by the current information M,,

(ii) d, ¢ and O constants, 0 <0 < ¢ < 1, and

(iii) the Z, i.i.d. with mean O and variance 1.
Condition (i) is not standard. The standard stationary model has c, equal to some constant ¢
and H, ., given by the information in the returns history I, = {R,_;,i = 0}. It is reasonable to
assume that M, is /, plus additional information. From (A-1) and then (A-2) :

var(R,,.|M)=E[H

t+T

IM,]
= Cr + ¢E[Ht+1—l IMI]
=c,(1-¢6""Y(1-0)+0¢"'H,,,. (A-3)

As T increases the conditional variance converges to ¢,/(1—¢). Suppose one year equals 7

time intervals, so time r+# is one year hence, and let
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nH,, =, nc/(1-9)=. (A-4)
Then (A-3) is the same as (6) since
nvarR, , .| M) = (1—-¢" Hul +¢° "o, (A-5)

Second, to illustrate the potential for similar estimates of ¢ and ¢, suppose P2 is a
constant L so ¢, is some constant c. Also suppose M, is simply the returns history /,. Then
(A-1) and (A-2), with t= 1, imply

H,, =c+0H,+6H/Z>-1). (A-6)
From (A-4), this is the same as
of =1 =0(0f_, — ) +60;_ (22, —1). (A-7)
This AR(1) model can be compared with (13), which has AR parameter ¢,, except the
innovation variance in (13) does not depend on o, _, as it does in (A-7).

Third, to see that the conclusions about expectations derived from the implied
volatilities appear to be inconsistent with a standard GARCH(1,1) model (c, = ¢) separately
consider stationary and non-stationary models. In the stationary case, var(R, . | I,) converges
to ¢/(1—¢) as T — oo. If M, is I, plus information about the quantity of information expected
in the near future (cf. Taylor (1992, Sec. 3.5)) then var(R,, . | M,) also converges to c/(1 — 0),
contradicting the strong evidence for time-variation in long-term expectations. In the
non-stationary case, an integrated ARCH model is obtained by supposing c, is constant and
¢ =1 and then var(R,,.|I,) = c(t—1)+H,,. For large T it may be supposed that
var(R, .| M,) = c(t— 1)+ H,,,. The slope of the term structure then always has the same sign

as ¢ for sufficiently large . This contradicts the evidence that the slope varies significantly

around an average value close to zero.
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TABLE 1
The distribution of the number of maturities traded

The numbers tabulated are percentages frequencies

and the time to maturity is at least ten days

expectations.

2. BPC refers to British Pound calls, BPP to British Pound puts, etc.

TABLE 2
‘Quick method’ estimates
of the term structure parameter ¢ when k=5

N, BPC BPP DMC | DMP Yc JYP SFC SFP
1 3.8 3.1 0.1 1.0 1.0 6.8 1.8 42
2 17.1 20.6 9.0 14.0 15.0 17.1 16.9 21.8
3 274 31.1 21.2 224 249 19.9 27.6 31.0
4 30.6 249 30.2 274 29.1 249 27.3 26.1
5 15.6 16.0 28.2 27.5 234 21.8 20.1 13.7
6 54 2.3 11.2 73 6.6 9.5 6.4 32
Notes: 1. N, is the number of different expiry months used for estimating volatility

Options Full Sample Sub-Sample 1 Sub-Sample 2
(85.01-89.11) (85.01-87.06) (87.07-89.11)
BPC 0.973 0.967 0.980
BPP 0.973 0.965 0.983
DMC 0.976 0.967 0.986
DMP 0.977 0.972 0.983
IYC 0.968 0.939 0.979
IYP 0.972 0.964 0.976
SFC 0.978 0.979 0.978
SFP 0.980 0.978 0.981
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TABLE 4
Comparisons of the maximum quasi-log-likelihoods for the preferred time-varying term

structure model with the figures for alternative models

Parameters Changes in
log-likelihood"

Minimym Maximum Significant®

Panel A, Simplificati
Flat term structures § -1644.81 -72071 8
Constant long-term expectations 7 -1413.26 -579.41 8
Measurement error variance :
same for both sources 8 -466.56  -22.13 8
same for all T 8 -250.64  -52.05 8
Random walks for :
spread and long-term expectation 6 -19.51 -10.26 8
long-term expectation 7 -6.80 -0.90 4
Same reversion rate in the spread and 8 -0.75 -0.01 0
the term structure
Panel B. Generalisatio
Average spread not zero 10 0.05 1.21 0
State variables correlated 10 0.06 5.31 3
Correlated measurement errors 10 0.22 45.08 3
Mean long-term expectation varies 10 0.38 9.01 3

with time

o7 depends on data source 10 0.01 3633 4



(TABLE 4 continued)
Note : The simplifications and generalisations are defined completely in Section V.C.

* The change in the quasi-log-likelihood function is the maximum of the function for the
particular simplification or generalisation minus the maximum for the preferred
nine-parameter model. Each row of the table summarises eight changes, four for Pound,

Mark, Yen and Franc call options and four for put options.

® Number of significant test values out of eight at the 5% level. In panel A the test value is
minus twice the change and the null hypothesis is that the preferred model is no better than
the simplification. In panel B the test value is twice the change and the null hypothesis is that
the generalisation is no better than the preferred model. Test values are compared with a
chi-squared distribution with degrees-of-freedom given by the number of extra parameters in

the alternative hypothesis. The test values must be interpreted with caution.



(4poR) 2wy

0’06 G'68 0’68 G'es 0’88 G'L8 048 G'o8 098 Gg'e8 0's8
00 1 1 1 1 ] 1 1 1 ] 00
60’0 600
1o
a0
¢0
S0 T

(poyzepr yoInd — OMQ)
Suol}p}oadx3 AbjoA pajpwiys3 i a4nbi 4

suoyv1oadzg Arrrvi04



(4paRt) 2wy

0’06 G'68 0’68 S'88 o'es8 G'/(8 048 G'o8 098 G'e8 o'es8
00 ! | 1 1 1 1 1 1 1 00
S00 600
I'o
a'o
[4)
G20 TA

(poyzal yoInd)

suolpyoadx3 AypjoA Abp—G| pajbwisy g @inbi4

suoyvpoadzyg A311120704



(4v2R) 2w ]

006 c'68 o068 Gg'e8 o's8 G'/8 0’8 98 098 Gg'e8 (01°1°
00 ] ] 1 1 1 1 ] 1 L 00
0’0 c00
10
'
(4
G20 1A

(poyzap yond)
suol}p}oadx3 A}IIojoA wuey—buo pajpwiys3 :¢ aunbi 4

suonpoadzyg Ry11110104



006

G'6
1

(4paR) 2w

8 o'68 c'88 0’88 c'/8 048 98 098 G'G8 o'ss

1 1 1 [ 1 1 | |

UOWDY| -----
»InH ——

00

G600

(X0)

a1’

0

Ss20

(31120 M@ 483114 uDWIDY PUD pPoye yoImd)
sal}3ojoA @bousAy psyosdx3 Abq—Q9 payowiysy 4 @4nbi4

00

60’0

1o

Sl'0

[A¢

$31711130104 36v4sday pajoadzy

TAVE



