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Parallel Processing for Financial Valuation Problems

ABSTRACT

The major disadvantage of serial computers is that the set of computations or
tasks required to solve a given problem must be performed sequentially. Some or all
of these may be computationally independent and could therefore be performed si-
multaneously. Performing the computations sequentially is obviously sub-optimal.
The solution is a computer which can perform many computations simultaneously.
This is the recent and rapidly developing field of parallel processing.

In this paper we introduce parallel processing terminology and concepts and
examine some examples of applying these techniques to financial valuation prob-
lems with particular emphasis on contingent claim related problems.
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1 Introduction

The implementation of parallel processing has been achieved in various ways.
Probably the most obvious is to have a multiplicity of functional units. If we
‘have more than one processing unit (PU) or processing element (PE) then any
subset of tasks which can be performed simultaneously can each be assigned a
separate PE and thus processed simultaneously.

Pipelining \;vas the first technique to be used commercially to improve the per-
formance of computers. Figure 1 depicts one type of pipelining, called instruction
pipelining, which has been used. The idea is that individual operations, in this
case instruction execution, can be further divided into a set of simpler sequen-
tial opgrations. Thus instruction execution can be divided into ins’pruction fetch,
instruction decode, operand fetch and execution. Each of these operations is per-
formed by a separate sub-unit of the processing unit. In a standard processing
unit, once a sub-unit has completed its task, it will be idle until execution of the
next instruction. With pipelining the sub-units operate continuously, after com-
pleting its task for one instruction it can immediately begin its task for the next
instruction. This leads to a reduction in total execution time as depicted in Figure

1

We can overlap processing and input/output operations. We want to avoid



using the processing units for simple tasks such as input and output of data to and
from storage devices. These devices are likely to be very slow in comparison with
the processing units which would therefore waste large amounts of time waiting,.
The answer is to provide simple input/output (I/O) processors with direct memory
access (DMA) channels. The I/O processors can then perform any I/O operations
at the same time as the main processors are operating.

Another approach to easing the I/O bottle-neck caused by the relative slowness
of mass storage devices is hierarchical memory systems. Figure 2 shows a typi;:al
system. Firstly there is a high speed cache between the processor and main mem-
ory. The contents of the cache will depend on the cache management policy, but
will typically be a copy of a block of main memory which has a high probability of
being accessed next. For example the most i‘écéntly accessed block of main mem-
ory. The main memory will be organised on a virtual memory basis in which the
most recently accessed blocks of data are kept in main memory. If access to a block
not in main memory is requested the requesting process is blocked or suspended.
A ready-to-run process is then started while the requested block is fetched from
the next level of the memory system. This arrangement is duplicated through all
levels of the hierarchy. When a block of memory is modified the update policy

determines when this is copied through to the higher levels which can be done



concurrently with the running processes. This system allows the processes to read
and write at the speed of the cache as often as possible.

Finally we have multiprogramming and time-sharing. These are essentially
methods of using ﬁn.iprocessor resources more efficiently. Figure 3 illustrates the
processing structure for normal sequential, multiprogrammed and time-shared ex-
ecution of three programs, P1, P2 and P3. With multiprogramming we simply
allow the uniprocessor to service the next program while the current program is
involved in non-processor I/O operations. With time-sharing we allocate ﬁxedA or
variable (in Figure 3 it is fixed) time slices to each program. The processor then
services each program in turn. This allows even more efficient computation and
I/O concurrency. This approach is most effective for multiuser systems. Since the
time between time slices allocated to a given progra.rh is small compared to hu-
man response time, individual users do not notice the pha.ées when their program

is waiting for processor service.

2 Architectural Schemes

There is a very wide range of different architectures both in commercial systems
and research systems. Many classification schemes have been proposed in an

attempt to unify the various approaches, facilitate comparison between them and



matching of the appropriate architecture to a given problem.
In 1966 Michael Flynn [Flynn,1966] proposed a scheme based on the multiplic-
ity of instruction streams and data streams. Here a stream refers to a sequence of

related items. The four categories are,

SISD - Single instruction stream, single data stream

SIMD - Single instruction stream, multiple data streams
e MISD - Multiple instruction streams, single data stream

e MIMD - Multiple instruction streams, multiple data streams

These are depicted diagrammatically in Figure 4. The standard uniprocessor
falls into the SISD category. SIMD architectures are also called array computers
or array processors, the multiple processors all execute the same set of instruc-
tions but on different sets of data. This approach is applicable to finite difference
algorithms for example. The MIMD category represents the most general form
of parallel architecture. Here each processor can perform different operations on
different items of data.

A scheme, introduced by Tse-yun Feng in 1972 [Feng,1972], classifies architec-
tures by their maximum parallelism or the maximum number of bits which can

be processed in a single clock cycle. This is represented by the product of the
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word length and the bit slice length. The word length is the number of bits used
to represent a single word of data and the bit slice length is the number of bits
from different words being processed simultaneously. For example an architecture
with 64 bit words, four pipelines and eight stages in each pipe would be repre-
sented as (64,32). Figure 5 shows a graph of some existing computer systems
under Feng’s scheme. Although this scheme allows comparison of the parallelism
of various architectures, any inferences on their relative speeds would in general
be misleading.

Wolfgang Héndler developed a classification in 1977 [Handler,1977] which cap-
tures certain details of the architecture which the previous two schemes do not.
The scheme is based on three architectural levels, the processor control unit (PCU),
the arithmetic logic unit (ALU) and the bit level circuit (BLC). At the PCU level
we consider the number of processors and the number that are pipelined. At the
ALU level we the number of ALU’s per PCU and the number that are pipelined.
At the BLC level we consider the word length and the number of pipeline stages.
An architecture is thus classified by six parameters. Figure 6 presents this graph-
ically.

The contents of conventional computer memory is accessed by specifying the

unique address of the data item. An alternative, associative array memories, are



content- addressable. In order to retrieve data a pattern is specified, the memory
then returns all data items matching the pattern. The hardware to achieve this
is considerably more complicated and expensive than for standard memory. This
type of architecture is mainly used where very fast storage and retrieval of large
amounts of data is required. For example in image processing, computer vision
and artificial intelligence.

In a conventional computer computations are performed in the strict order
they are specified in the list of instructions or program. In dataflow compbut-
ers computation ordering is data-driven, that is it is based on data or operand

availability.

3 Network structures

One of the most crucial factors in the design of parallel processing machines is the
interconnection network between the processors and the memory modules. The
topology of the network can be characterised by the routing functions. Let each
of the N PE’s in the network have a unique address in the set A = {0,..., N —1}.
Then the routing functions are bijections from A to A. The network may be static
or dynamic. Figure 7 shows some typical static networks. Dynamic networks

may be single-stage or multi-stage. A single-stage network has N input selectors



(IS) and N output selectors (OS) (Figure 8). The IS are 1 to D demultiplexers
and the OS are M to 1 multiplexers where 1 < D < Nand1 < M < N. A
single-stage network is also called a recirculating network because data may have
to recirculate through the single stage in order to reach their destinations. The
ﬁumber of recirculations needed depends on the connectivity of the single-stage,
the higher the connectivity the lower the number of recirculations. The limit
is the crossbar network in which D = M = N which only requires one pass
through the stage. Its cost however is O(N?). Multi-stage networks are capablé of
connecting an arbitrary input terminal to an arbitrary output terminal. They are
either blocking, rearrangeable or nonblocking. In blocking networks, simultaneous
connection of more than one input/output pair may result in conflicting use of
network links. Exémples of this class are the ddia-manipulator, Omega, flip, n-
cube and baseline. A network is rearrangeable if existing connections can always
be rearranged so that a new input/output pair can be connected. The Benes
network is an example of this class. The nonblocking network can connect all
possible input /output pairs without blocking. The Clos and crossbar networks are

examples of this class.



4 Parallel language features

There are two approaches to producing programs for parallel machines. The algo-
rithm can be coded for a standard sequential computer and the compiler can be
constructed to search for potential parallelism within the sequential code. This
approach is normally adopted for sequential code which already exists. The design
of compilers which can perform this task is extremely complicated and they will
typically compile orders of magnitude slower than standard sequential compilers.
The second approach is to add parallel constructs to the high- level language so
that the parallelism within the algorithm can be made explicit. The compiler
then has only to convert these to the machine dependent instruction streams. The
Bernstein cqndition [Bernstei_n,1966] determings whether sequentially organised

processes can be executed in parallel. It can be stated as follows,

Let I; be the set of all variables which task T; reads.
Let O; be the set of all variables which task T} writes.

Then for the sequential tasks T} and T} to be executable in parallel we

require,
LHNO; =0
I2 n O]_ = (0
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These are general conditions which essentially state that the sets of variables
used in the two tasks must not intersect in anyway. This is sufficient but not
necessary since in certain cases it may be possible for the tasks to be performed
in parallel even thoﬁgh the variable sets do intersect.

Parallel languages are generally block structured languages with extensions
to the block and loop structures to allow specific reference to the parallelism

[Dijkstra,1968]. Some examples are,

begin
So ;
PARbegin S, ; S, ; ... ; S, ; PARend
Snt1 ;

end

Here the S, are statements and the PARbegin, PARend block indicates
that the statements within can be assigned to different processors to be executed

in parallel.

s=n/p;
PARfor : =1 to p do

forj=(i—1)s+1 to si do

11



begin
C()=0;
for k=1tondo
C(j) = C(4) + A, k)B(k) ;
end
This algorithm is performing the matrix multiplication C = A % B where A
isn*n and B is n * 1 and the number of processors p is less than n such that
s =n/p.
There may be cases where one task requires temporary use of a variable which

is used by another task. This is called a critical section and the variable must be

declared as shared,

var v : shared V ;
var w : shared W ;
PARbegin

csect vdo P ;

csect w do @ ;

PARend

V and W are variable types and we have stated that the block P is a critical

section for v and similarly @) for w. The critical sections will have exclusive use

12



of the critical variable and any other processes attempting to use it will be forced

into a wait state until the critical section is completed.

5 Parallel algorithms for SIMD machines

In this section we give examples of finance probléms suitable for solution on SIMD

machines.

5.1 Term structure estimation

The term structure of interest rates is defined by the discount factors on a collection
of default-free pure discount bonds with different times to maturity. The term
structure is required to value interest rate dependent @qd derivative securities.
Steeley [1991] has shown how the term structure can be estimated as a linear
combination of B-splines by least squares regression. Assume we have m default
free bonds of price P;, paying a coupon C;; at time ¢;,7 = 1,...,n;n > m. Then

we have

Pi=)_ Cidy (1)

i=1

If replace the discount factors d;; with a continuous approximation
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L
d(t) =3 aufi(t) (2)

=1

we obtain

L N
P.=)Y ) Ciifi(t) (3)

=1 7=1

In matrix notation we have a linear regression problem

P = Da (4)

where P is the vector of gross price observations, « is the vector of approxi-
mation coefficients and D is the matrix of summed products of cash flows (C; ;)

and evaluated B-splines (f;(t)). . The solution to this is -

a=(D'D)'D'P (5)

This requires matrix multiplication and inversion. Matrix inversion can be
achieved by LU-decomposition and back substitution which can be decomposed
into parallel operations on sub-matrices. Matrix multiplication can be decom-

posed extremely efficiently into parallel operations. Consider the multiplication

D'D, this requires L*m cumulative multiplications so on a SISD machine requires
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O(L?*m) time. A parallel algorithm for L processing elements for this matrix

multiplication can be specified as follows,

fori=1to L
begin
PARfor j=1toLc;;=0;
fork=1tom

PARfor j=1to L

end

This algorithm requires O(mL) time. If we have mL processors then the outer-

most for loop can be parallelised also and we obtain an O(m log, L) time algorithm.

5.2 Asian options by fast Fourier transform

Asian call options pay the difference if positive between the arithmetic average of
the price over a specified period and the previously agreed strike price. Carverhill
and Clewlow (1990) showed how Asian options could be valued by fast Fourier

transforms. Consider the formula for the average A,

A= %[X1 bt X ©6)
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where the X; are the values of the underlying asset at times ¢;. Now if the

underlying asset is lognormally distributed then we can write

X;=exp(Yo+Z2+...+ Zi,) (7)

where Y, and the increments Z;*! are all independent and normal, with mean
((r — s) — 26*)(Z) and variance 0%(Z), where T is the time to maturity of the

option. Thus,

1
A= ;[exp(Yo + 7Z3) +exp(Yo+ Zg + Z2) +...exp(Yo + Za + Z2 + ...+ Z™_,)] (8)

1
A= —exp Yolexp Zg(1 +exp ZZ (1 + exp Z3(1 +...(1 + exp Z7_,)...)]  (9)

We can obtain the probability &ehsity of the a\}er-age from the densities of the

normal distributions Z3, ..., Z* ; by the following inductive procedure,

Ay =27, (10)

Aii=2Z ,+In(1+exp(4i), i=n—1,..,1, (11)
Ao =Y, —In(n) + 4 (12)

A =exp Ay (13)

The density fi,g qexp ;) is Obtained from the density fz, by the transformation
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exp(z)

Fosasen () = oy T

log(exp(z) — 1) (14)

We can obtain the density for the sum of this and the normal density Z}_,
by convolution of the two densities. The convolution can be performed efficiently
by fast Fourier transforming the densities, multiplying the results and then fast
Fourier transforming the result back again.

When performing the Fourier transform numerically we strictly perform the
discrete Fourier transform (DFT). Consider s(k), k = 0, ..., M —1 to be M samples
of a time series, the DFT z(j), j =0, ..., M — 1 is defined as,

M-1

z(j) =Y s(k)e2™i M . =0,..,M -1 (15)
k=0 .

Now let f(m) = s(m) and g(m) = 3(m+M/2) form =0,..., M/2—1. The DFT
of the M-point sequence s(k), k = 0,..., M —1 can be computed in terms of the two
M /2-point sequences { f(m)+g(m)} and {(f(m)—g(m)).e>"™/M} 'm =0,..., M/2.
Now consider a SIMD machine with N = M/2 processing elements arranged as an
log,(M/2)-dimensional unit cube. If PE; initially contains s(k) and s(k + M/2)
then the M/2 butterfly operations at each of log, M stages computes the DFT
as shown in Figure 9. (Hertz (1990) describes an efficient fast Fourier transform

algorithm for the popular Connection Machine).
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6 Parallel algorithms for MIMD machines

A parallel algorithm for a MIMD machine is a set of concurrent processes or tasks
which must interact to synchronise and exchange data. If the processes synchronise
at specific interaction points the algorithm is called synchronous. These interac-
tion points divide the algorithm into stages. Processes may have to wait at the
interaction points for slower processes. The speed of the algorithm is therefore
determined by the slowest process or task. Another method of synchronisation
is for the processes to communicate via dynamically updated global variables in
shared memory. These algorithms are called asynchronous because processes do
not necessarily have to wait for other processes. We now describe some finance

problems suitable for solution on MIMD machines.

6.1 Stochastic volatility or interest rate models

The framework for developing a continuous time model with multiple state vari-
ables is well established (Garman (1976), Cox, Ingersoll and Ross (1985)). For
stochastic volatility or interest rate models we have two state variables, the un-
derlying asset and the volatility /interest rate. Consider a model where the state

variables follow the random processes,
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ds,- = u,-dt + a,-dz,-,z' = 1,2 (16)

The general pricing equation for a contingent claim which depends on the s; is

ocC oCc 1 a2C
E = rC —_ Z‘:(T‘ - a;)s,'g;: - 5 Z’:; U;,jm (17)

where a; is the convenience yield for the asset ¢ which is related to its price of

risk \; by

Aio; = pi — (1 — ;) (18)

This partial differential equation must typical be solved by finite difference
techniques as there will not be analytical solution.
We approximate the partial differentials by finite differences on a grid of space

mesh size h and time mesh size k,

B_C _ C(S,‘,Sj,t + k) - C(S,‘,Sj,t)

o k (19)
ocC . C(s; + h, 85,t) — C(s; — h,s;,t)
55 5 (20)

C(si+ h,s; + h,t) — C(s; — h,s; + h,t)

52C —C(S;-I—h,sj—h,t)-I-C(s,'-—h,sj—-h,t)

63,-63,- - 4h? (21)
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We can rewrite this equation in terms of the mesh points,

C(l,m,n—1)=C(l,m,n)—

)

/ C(S,' + h, s; + h,t), C(S,‘, s; + h,t), C’(s; —h, s$; + h,t),

kfn C(si + h, 8j,1), C(si,85,t) + C(s; — b, 3j, 1), (22)

\ C(S,’ + h,Sj = h,t), C(S,‘, 8; — h,t), C(S,' - h, 8 — h,t) )

where (I, m) represents the position (s;, s;) and n represents the time step.

The solution is then obtained by repeatedly solving for the value of the option
on the space mesh at time step n — 1 from the values at time step n from the
known values at maturity back to the present.

We now assign a contiguous subset of the space mesh to each processor. Each
processor then computes the nth step for each space mesh point in its subset.
When all processors have completed this operation the mesh variables are updated
with the new values. This procedure is continued until the value of the option at
the present time is obtained.

In partitioning the algorithm into tasks for each of the processors we try to
obtain tasks whose execution times are similar. For example tasks of the same

complexity will have execution times which are independent and identically dis-

tributed.
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6.2 Risk management of large portfolios

Finally a more general application would be an investor with a large portfolio of
assets and derivative instruments which he wants to hedge. Computing the deltas
and gammas for the multiple constituents of the portfolio will be a time consuming
process. However the computations for each constituent will in general be inde-
pendent, we can therefore partition the computations as in the previous section
and assign each subset to a separate processor in a MIMD machine. Communi-
cation of intermediate results between processors where necessary is also possible
within the general MIMD architecture. With this approach we can obtain a speed-
up roughly equal to the number of processors. The speed-up and efficiency of a

parallel solution are considered in more detail in the next section.

7 Performance of parallel processing machines

The maximum theoretical speed increase achievable by a parallel computer with
N identical processor is at most N time faster than a computer with a single iden-
tical processor working on the same problem. But because of practical problems
such as inter-processor communications, shared memory access conflicts and syn-
chronisation of the multiple processors the maximum theoretical speed-up is never

achieved. The speed-up (S) is formally defined as the ratio of the time taken by
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a single processor over the time taken by NN identical processors. The efficiency
(n) is defined as the speed-up over the number of processors. Thus a machine
with N processors which achieves a speed-up of N will have a perfect efficiency
of 1, if its speed-up is less than NV its efficiency will be less than 1. Minsky’s con-
jecture states that the lower-bound on the speed-up is log, N. We can calculate
an expected speed-up with a simple computational model. Assume the problem
divides into n computational modes and the 7th mode can utilise ¢ processors, all
modes are equally probable (probability is then 1/n), take unit time on a siﬁgle
processor and we have at least n processors. The expected time required to solve

the problem is then

T,= 3 =2 < (la(n) + 1)/n - (@3)

=1

Therefore the speed-up is,

S > n/(In(n) + 1) (24)

For a more practical example, consider a pipeline with k stages processing n
tasks. If each stage takes unit time then a non-pipelined processor will take nk
time units. For a pipelined processor the first £ time units are required to fill the

pipeline and thereafter results emerge every time unit, therefore the time taken is
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k4 (n —1). The speed-up is thus,

S =nk/(k + (n — 1)) (25)

and the efficiency is therefore,

n=k/(k+(n—1)) (26)

8 Summary

In this paper we have introduced parallel processing concepts. We have shown how
they can be applied to a wide variety of financial valuation problems. Application
of these techniques results in significant impfovemen«ts in the speed of solution
of the problem. Implementation of the techniques described is straightforward.
Commercial parallel processing machines are provided with standard libraries for
matrix operation, fast Fourier transforms and partial differential equation solution.
For the more general problems characterised by portfolio risk management the
major task is to partition the problem into computationally independent subsets.
The system will then provide ways of assigning these subsets to the available
processors. With parallel processing machines now providing from hundreds to

thousands of processors the potential benefits cannot be denied.
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A pipelined processor
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Figure 1: Instruction pipelining
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