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The Efficiency of the Single and Multivariate Binomial

Technique

ABSTRACT

We discuss the theoretical efficiency of the binomial technique in its standard
and Breen accelerated forms for American style options. The choice of the early
exercise opportunity set for the Breen method is considered. Firstly we consider
the case of a single underlying instrument, demonstrating the theoretical improve-
ment in efficiency it yields. We then consider the application of Breen’s accelera-
tion technique to the multiple asset case and show that here it only more efficient

if the early exercise test is relatively computationally costly.

I Introduction

The Binomial option valuation procedure was introduced by Sharpe (1978), Cox,
Ross and Rubinstein (1979) and Rendleman and Bartter (1979). It can be used
to value options where no analytical solution exists, in particular American put
options. It can also be used where the underlying instrument pays continuous

or discrete dividends. Geske and Johnson (1984) introduced a method for pricing
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American put options.based on the compound option model of Geske (1979) which
is more efficient t-han the standard binomial technique. Breen (1991) has recently
described a more efficient binomial procedure for American options based on the
Geske and Johnson (1984) model.

In this paper we firstly consider the theoretical efficiency of these techniques
for a single underlying instrument. In this case we can demonstrate the theoretical
improvement in efficiency. We then consider the application of Breen’s acceleration
technique to the multiple asset case and show how the efficiency depends on the
computational cost of the early exercise test.

In section 2 we briefly review the Binomial procedure. Section 3 contains an
analysis of the efficiency of the standard Binomial procedure. In section 4 we
restate the Binomial acceleration technique of Breen (1991) for American style
options and analyse its efficiency. Section 5 considers the application of Breen’s
acceleration technique and its efficiency in the multivariate case. Finally, a sum-

mary and conclusions are in section 6.

II The Binomial Option Pricing Model

In order to help our exposition, we will briefly review the Binomial procedure

in its basic form. The idea is simply to replace the random process followed by



the underlying instrument by a Binomial random walk in which the steps have
the same expectations and standard deviations as the instrument itself. It is
appropriate to work with risk-neutral probabilities, and to assume that the price

S, of the underlying instrument obeys the stochastic equation

dSt = TStdt + O'StdBt (1)

.

in which r is the interest rate and o is the volatility of the instrument (both
assumed to be constant), and dB; is the increment of the Standard Brownian
Motion. To implement the procedure, one must then imagine a Binomial lattice
or ‘tree’, over which the Binomial random walk is to move. Then the underlying
process is replaced with a Binomial random walk on the lattice, in which the time
steps have length dt. Equation (1) implies that the proportional increments of
the underlying over each time step are iid, and so it is possible either to think of
the lattice as referring to proportional changes in the underlying, or to work with
logarithms of the underlying; and we prefer the latter. So, put log(S;) = s;. Then

the stochastic equation for s; is

dsy = (r — -;—az)dt + odB; (2)

From each node on the lattice, the random walk can either step up by a distance



ht with probability pt , or it can step down by a distance A~ with probability p~.
These pa,rameter-s must be chosen so that the expectation and standard deviation
of the movement of the random walk over each time step match those of the
logarithm of the underlying, i.e. the coefficients in Equation (2). There is a .
degree of freedom in making this choice, because this subjects these 4 parameters
to 2 constraints, and there is also the constraint p* 4+ p~ = 1 . Two convenient
choices are those of Cox, Ross, and Rubinstein (CRR) (1979), which also imposes
h* = —h~ , and Jarrow and Rudd (JR) (1983), which imposes pt =p~ =1 . In

full, these choices are as follows:

CRR:
hE = +0V/dt
1
t= -+ LV
p 2 = 20\/—
JR:

hE = ,udtiam

To implement the procedure, one must develop the lattice until the maturity
time of the option. At the lattice nodes corresponding to this maturity time, the

option values are then known. From these values, one can then develop the option
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values backwards through the lattice, by using the rule that at each node, the
option value is the discounted expectation of its value after the next time step, i.e.
(if ¢; ; represents the option value after : time steps, if there have been j up-steps

by time ¢)

$i—1,; = exp(—rdt)(p~ i; + T bijt1) (3)

To value American options, just test for early exercise at each time step, by
comparing the value given by Equation (3) with the value the option would yield
if it were exercised at that time. If exercising makes the option worth more, then
do so, and to proceed further with the calculation, replace the result of Equation
(3) with the exercise value. We will call this the ‘step- back’ method.

For European options, it is possible to jump in one action over all the steps
of the Binomial lattice. Suppose the random walk has N steps in all before the
maturity of the option. Then to do this, note that the lattice has just N + 1
nodes corresponding to the option maturity time, and that all paths leading to
say the kth node (which corresponds to k ‘ups’) have the same probability, namely
(p*)*(p~)N-k. Therefore the probability of the Binomial walk ending up at say
the kth node at maturity is (kN ) (p*)¥(p~)N~*. The present value of the option is

therefore,



N

so0=3 (1) "V ()" Foms (4)

k=0

We will call this the ‘jump-back’ method.

IIT The Computational Efficiency of the Bino-

mial Technique

We can calculate the relative efficiency of the jump-back and step- back methods
by computing the number of basic computational operations involved. For both
methods we must compute the N 41 node values of the option at maturity (termi-
nal nodes), so we may ignore this in the comparison. For the jump-back method
we must sum over the N + 1 terminal nodes the product of the probability of that

node and the value of the option at that node,

N

doo=2 (V) ")) *énp (5)

k=0

Now this can be reduced to three multiplications and an addition for each term
in the summation (assume the binomial coefficients are pre-computed and stored,
pre-compute P, = (p*)*(p~")N %,k = 0 then for each subsequent term simply

multiply P by p*/p~). So the computation time is given by,



(N +1)(37Tm + 72) (6)

where T,, is the time required for a floating point multiplication and 7, is the
time required for a floating point addition.

The step-back method requires two multiplications and an addition for each
non-terminal node (see equation 3, the discount factor can be combined with the
up and down probabilities). At each step ¢,1 <= i <= N there are ¢ nodes to

evaluate, therefore the computation time is,

S (2 + 1) = SN(N +1)(2rm +72) (7)

=1

Therefore for N > 3 the jump-back method becomes more efficient relative to

the step-back method as N increases.

IV The Breen Acceleration Technique

In a recent paper Breen (1991) shows how to use this idea of jumping over the steps
of the lattice together with ‘Richardson Extrapolation’ to speed up the Binomial
procedure when valuing American options. The Breen acceleration technique is

as follows:

First, calculate the European option value ¢;, i.e. assume there is just 1



exercise opportunity, at the maturity time T of the option, by jumping over all the
steps, as described above. Then, assurﬁe that there are 2 exercise opportunities, at
times T'/2 and T, and calculate the value ¢; of the option by jumping first over the
time interval [T'/2, T, and then over [0, T'/2]. Last, calculate the value ¢3, using 3
exercise opportunities, at times 7'/3,2T/3,T. Now, the sequence of option values
{d1, P2, P3, ..., $n } converges to the American option value ¢; the Breen technique

is to ‘accelerate’ the convergence to this limit by using Richardson Extrapolation,

b= bt L(ds - $2) = 5(da - ) ®)

The acceleration of Equation (8) can be justified by adapting the approach of
Geske and Johnson (1984).

However, there is a problem with this choice of exercise opportunities. The
option values will not necessarily be monotonically increasing since the exercise
opportunity sets are not nested (Omberg (1987)). An alternative choice is {T},
{T, T/2}, {T, 3T/4, T/2, T/4}, but this increases the computational cost of the
technique. One choice which solves the problem and also increases the efficiency
slightly over Breen’s choice is {T}, {T, 2T/3}, {T, 2T/3, T/3}.

We can calculate the computation time required to value an American Option

by both the step-back and Breen acceleration methods in a similar way as before.



For the step-back method we simply need to add the time taken to perform the
early exercise tes't at each node. We assume that the computational cost of the
early exercise test (CCEET) can be reduced to simply a floating point comparison
and assignment and is therefore at leas't as fast as a floating point multiplication.

The computation time is therefore approximately,

SNV + 1) (37 +72) ' (9)

For the Breen method we must jump-back firstly over N nodes for the final
node. Secondly over N/2 for each of the N/2 mid-point nodes and the final node.
Finally over N/3 nodes for the 2N /3 2/3-point nodes, the N/3 1/3-point nodes
and the final node. The most efficient way to perform these multiple jump- backs is
to pre-compute the 1-dimensional array of probabilities which multiply the option
values. This requires two multiplications (one for the binomial coefficient and one

for the probability factor) for each probability. The computational time for a size

(M + 1) array is therefore,

2AM + )7, (10)

The total computation time for the Breen method is therefore,

(N +1)(Tm + 7o) + 2(N + 1)1+
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(N/24+1)(Tm +7a) + Tm)(N/2 4 1) + 1) + 2(N/2 + 1)1+ (11)
(N/B34+1)(Tm + Ta) + T )(2N/3 + 1)+ (N/3+ 1)+ 1)+ 2(N/3 4+ 1)1y

which simplifies to,

(17—2N2 - 23—9N + 107 + (1—72N2 + %N +6)7, (12)

In this case N must be greater than approximately 10 before the Breen method
becomes more efficient than the standard method. However N will normally be
much greater than 10 in order to give reasonable accuracy. Asymptotically, as
N — oo the Breen method is 55% faster than the standard method for a CCEET

of one floating point multiplication and becomes increasingly more efficient as the

CCEET increases (see Table 1).

V The Multivariate Case

Boyle, Evnine and Gibbs (1989) (BEG) show how the Binomial technique can be
generalised to the case of n underlying assets involved in the option valuation.
BEG and Stultz (1982) describe examples of options to which this technique will
apply, these include instruments in the EuroMarkets such as option bonds.(which
are corporate bonds with a choice of payoff currencies) and multi- currency op-

tions such as the option to convert the ECU into any one of its constituents, at
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predetermined rates.

The Breen acceleration idea can be applied in a straightforward way to the
multivariate case by usiné the step-back method. We can analyse the efficiency of
the standard BEG and Breen accelerated BEG methods in a similar way to the
one dimensional case. For the standard method each node depends on 2" previous

nodes and at step ¢ there are " nodes. The computation time is therefore,

N
32 (T + 7o) + Tm) (13)

1=1

For the Breen method we must step-back over N steps, N/2 steps and 2N/3
steps and perform the early exercise test at each exercise opportunity. The total

computation time is therefore,

N
22N (4 7a) + )+
N/2 .
2 (2 (Tm + 7) + 7o)+ (N/2) it (14)

2N/3
Y 2N (Tm 4 Ta) + Tm) + ((2N/3)* + (N/3)")7m

=1

The efficiency of the Breen method depends on the trade-off between the re-
duction in the number of early exercise tests and the increase in the number of

nodes which must be computed.
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We can obtain a quantitative comparison of the computational times in units
of 7, if we ignore the computation time for floating point additions (floating point
additions are typically much faster than floating point multiplications). Table 1
gives the ratio of the computational times for the Breen and standard methods for
one, two and three underlying assets, for a typical range of values of N and for a
CCEET of one and five floating point multiplications.

As we can see from Table 1 the Breen method is in fact less efficient than
the step-back method for a CCEET of one floating point multiplication. This
is because although the Breenv method considerably reduces the number of early
exercise tests we must perform their computational cost is small compared with
the computational cost of the extra nodes that must be computed in more than one
dimension. It is possible to obtain Breen’s results in the two dimensional case by

assuming the early exercise test requires around 20 floating point multiplications.

VI Conclusions

We have considered the theoretical efficiency of the Binomial procedure for a single
underlying instrument and the increase in efficiency obtained by applying Breen'’s
(1991) acceleration technique for American style options. We have noted that

there is a better choice of the exercise opportunity set than that proposed by
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Breen. We then considered the application of Breen’s acceleration technique to
the multiple asset case and showed that the increase in efficiency depends critically

on the computational cost of the early exercise test.
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Table 1
Ratio of Computational Times for

Breen and Standard Binomial Methods

Early Exercise Computational Cost
1 floating point multiplication 5 floating point multiplications
N n=1l n=1* n=2" n=3 n=11 n=1" n=2" n=3
10 1.048 1.279 1.223 1.168 0.668 0.756 0.801  0.868
20 0.706 1.208 1.182 1.146 0.400 0.627 0.722 0.826
30 0597 1.183 1.168 1.138 0.319 0.581 0.693 0.810
40 0.544 1.170 1.160 1.133 0.279 0.557 0.679  0.802
50 0.512 1.162 1.156 1.131 0.256 0.543 0.669 0.797
60 0.491 1.157 1.153 1.129 0.241 0.533 0.663 0.793
70 0477 1153 1.151 1.128 0.230 0.526 0.659 0.791
80 0.465 1.150 1.149 1.127 0.222 0.521 0.656 0.789
90 0.457 1.148 1.148 1.126 0.215 0.517 0.653 0.787

100 0.450 1.146 1.147 1.125 0.211 0.514 0.651 0.786

N is the number of time steps
n is the dimensionality of the lattice
t Breen method with jump-back

* Breen method with step-back
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