Computing the Fong and Vasicek Pure Discount Bond Price
Formula

Michael J P Selby

Financial Options Research Centre
University of Warwick and Caius College Cambridge

and
Chris Strickland

Financial Options Research Centre
University of Warwick

October 1993

The authors are very grateful to Stewart Hodges and Les Clewlow for helpful comments and
discussions.

Funding for this work was provided by the funding members of the Financial Options Research
Centre and the Economic and Social Research Council under award number R000232339.

Financial Options Research Centre
Warwick Business School
University of Warwick

Coventry

CV4 7AL

Phone: 0203 523606

FORC Preprint: 93/42



Computing the Fong and Vasicek Pure Discount Bond Price
Formula

Michael J P Selby

and

Chris Strickland

Abstract

Fong and Vasicek [1992] developed a model of the term structure which results in closed-form
expressions for pure discount bond prices, and which reflects both the current level of interest rates
as well as the level of interest rate volatility.

Although a number of articles have appeared detailing the Fong-Vasicek model (Fong and Vasicek
[1991], Fong and Vasicek [1992a], Fong and Vasicek [1992b]), there appears to be very little
reported practitioner interest. One of the reasons for this relatively minor practitioner approval, we
feel, is the computational difficulty in obtaining prices from their formula. Two of the three
functions of time involved in the model's solution require computation of the confluent
hypergeometric function. As described by Fong and Vasicek, this involves complex (as opposed
to real) algebra.

In this article we propose an alternative solution to the ordinary differential equations which lead
to the need to solve the confluent hypergeometric function. Our method involves a series solution
which is both computationally efficient and can be easily implemented in a programming language
or spreadsheet.
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1/ Introduction

There are essentially two main approaches to modeling the term structure. The
traditional approach involves starting with a plausible process, or processes, for
the sources of uncertainty that drive the evolution of the yield curve. Prices of
pure discount bonds and discount bond yields are then determined as functions of
the state variables and the risk-adjusted parameters of the assumed processes. This
approach is represented in the single factor case by the papers of Vasicek [1977]
and Cox, Ingersoll, and Ross [1985]. Models that assume that the term structure is
driven by more than one state variable are represented by the papers of Brennan
and Schwartz [1979], Schaefer and Schwartz [1984], Longstaff and Schwartz
[1992] and Fong and Vasicek [1991]. In the alternative approach, models seek to
describe the dynamics of the entire term structure in a way that is automatically
consistent with the initial (observed) yield curve, and is represented by the papers
Ho and Lee [1986], Hull and White [1990], and Heath, Jarrow, and Morton
[1992].

Two of the traditional two factor models of the first approach are of particular

interest, especially to practitioners. Both Longstaff-Schwartz and Fong-Vasicek



develop models of the term structure which result in closed-form expressions for
pure discount bond prices, and which reflect both the current level of interest rates
as well as the level of interest rate volatility. Much has been written about the
Longstaff-Schwartz model (see for example Longstaff and Schwartz [1992a],
Longstaff and Schwartz [1992b]) with anecdotal evidence suggesting that it is
becoming popular amongst practitioners. In contrast, although a number of
articles have appeared detailing the Fong-Vasicek model (see for example Fong
and Vasicek [1991], Fong and Vasicek [1992a], Fong and Vasicek [1992b]), there
appears to be very little reported practitioner interest. One of the reasons for this
relatively minor practitioner approval, we feel, is the computational difficulty in
obtaining prices from their formula. Two of the three functions of time involved
in the model's solution require computation of the confluent hypergeometric
function. As described by Fong and Vasicek, this involves complex (as opposed to
real) algebra. In this article we propose an alternative solution to the ordinary
differential equations which avoids the need to solve the confluent hypergeometric
function. Our method involves a series solution which is both computationally
efficient and can be easily implemented in a programming language or

spreadsheet.

The plan of this paper is as follows. Section 2 looks at the volatility of interest
rates and the ability of single factor traditional models, described in the first
approach of the introduction, to represent that uncertainty. In section 3 we present
a necessary and brief description of the Fong and Vasicek term structure model
and the solution as proposed by the authors. Section 4 contains the major part of
the paper. In it we develop a series solution to the ordinary differential equations
to which the partial differential equation, governing the evolution of bond prices in
the Fong-Vasicek formulation, reduces. Finally, section 5 contains our summary

and conclusions.



2/  Interest Rate Volatility

Interest rate volatility is a key element when valuing fixed income securities which
have options or any kind of contingent payoff attached (for example puttable,
callable, or convertible bonds). These option features can significantly affect the
price of the bond to which they are attached. Many investors are also aware that
the uncertainty affecting interest rate moves, as well as the level of rates, affects
the relative attractiveness of bonds which differ in their time to maturity and the
level of their coupon payments. Fixed income academics and practitioners have
long noted that the volatility of interest rates changes over time. A casual analysis
of some of the empirical evidence illustrates their intuition. Figure 1 shows the
implied volatility calculated from LIFFE short sterling futures options using the
Black [1976] formula over the period November 1987 to February 1990. It is
obvious that volatility is changing through time, with periods of high volatility,
periods of low volatility and sudden changes between the two.

The traditional approach to modelling the term structure has a number of
advantages. Early, single factor models of the term structure can be characterised
by their tractability and ease of use! - they are computationally cheap and there
exist relatively few parameters to estimate. Closed form solutions are also
desirable since they provide greater insight than numerical techniques and are
usually much faster to evaluate. Although single factor models that allow for the
volatility of the short rate to depend, in some way, on the level of the rate itself are
consistent with the empirical evidence that rates are typically more volatile when

their level is high, and less volatile when their level is low, the assumed stochastic

A Vasicek [1977] and Cox, Ingersoll, and Ross [1985] are regarded as the benchmark
models of this approach.



processes of these models are unrealistic2. A further disadvantage of one factor
models is the limited family of possible term structures that are permissible under
the assumption of a single source of uncertainty. Typically these are monotonic
increasing, monotonic decreasing, or slightly humped. Models in which bond
prices depend on two sources of uncertainty lead to families of yield curves that
can take a greater variety of shapes and can better represent reality. Dybvig
[1989] provides evidence that the two most important variables in determining
interest rate derivative prices are the level of interest rates and the level of interest

rate volatility.

3/ The Fong and Vasicek Pure Discount Bond Price
Formula

Fong and Vasicek's two factor model of the term structure explicitly recognises
interest rate volatility as a stochastic factor, and derives the pure discount bond
price function under the equilibrium condition of no arbitrage. The diffusion
processes for the two sources of uncertainty, the short term interest rate 7, and the
instantaneous variance of the short rate v, are given as:

dr = (7 — r)dt +vdz, (.1)

dv ="Y(7 - v)dt +Efvdz, (32)
7 and v are the long-term mean of the short rate and the long-term mean of the

variance of the short rate respectively. The short rate has instantaneous volatility v

with the random component of the volatility process having a variance

2 See Strickland [1993]



proportional to the current level of the volatility. Both processes tend to revert to a
long term mean value, with the strength of the reversion being proportional to the
variables current deviation from the mean. The two Weiner processes, their

increments represented by dz, and dz,dy are assumed to be correlated with a

coefficient of p. The model also assumes that the prices of risk are proportional to

the risk level

g=M

p=m'v (3.3)

where A and 1 are constants.

Let the price at time 7 of a pure discount bond which matures with value 1 at time s
be given under this analysis by P = P(t,s,7,v). Under the equilibrium condition of
no arbitrage the partial differential equation governing the price of a pure discount

bond is given as

P, +(oF —or+ )P, +(W—(y+EN)V)P, +%vPrr + p&vP,, +%§2VPW -rP=0 (3.9

subject to the maturity boundary condition P(s,s,r,v)=1.
The solution to the partial differential equation has the form

P(t,s,r,v) = exp(—rD(1)+ vF(1) + G(7)) (3.5)
where T=s—¢. The functions of time D, F, and G are solutions to ordinary

differential equations to which the partial differential equation (3.4) reduces.

The duration measure is the same as in Vasicek [1977]



D(7)= é(l - e"“‘)

(3.6)
The function determining the sensitivity of the bonds price to the level of the
short rate volatility is shown to be:
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The constants K; and K, of equation (3.7) are chosen to satisfy the boundary

condition

F(0)=0

The function M is the confluent hypergeometric function with

= d(d+1)...(d+n) z"

M(d,e,z)=1+ 3.8
(@,¢,2) Z’le(e+1)...(e+n) n! (3-8)
The expression for G is found as the solution to
G(t) =—oF | D(u)du+ | F(u)du (3.9)
t t

and is closed-form, involving the solution to the confluent hypergeometric

function, once D and F are determined.

In order to use the formula, the difficult part is the calculation of the functions
F and G. One possibility is the use of a computer algebra package such as
Mathematica or Maple, but it is not easy to incorporate such packages into the
usual investment house trading systems. The next section proposes a series
solution, to these functions, that can be easily implemented in a programming

language and which the authors have also implemented in an Excel spreadsheet.



4/ A Series Solution to Fong and Vasicek's Ordinary
Differential Equations.

The numerical complications to computing the pure discount bond price formula
(3.5) under Fong and Vasicek involve the computation of the confluent

hypergeometric function M, which occurs in the time-dependent functions F and
G. In this section we propose an alternative, series solution, which by-passes the

need for the complex algebra that Fong and Vasicek's M involves.

The ordinary differential equation that is satisfied by F'is a Riccati equation
involving the square of the function. Making the substitution

H(s)= exp[—%éz j' F (u)du]

reduces the equation to a linear second order equation for Z. Under this

substitution we have

__2H®
F(1)= & HD (4.1)
G(t) = F(D(1) - 1) - 2 In H(7) (4.2)

§2

Therefore the solution to the bond pricing formula reduces to evaluating H(t) and
H'(t). A further substitution

1:=—llogx 0<x<1
o (4.3)

H(t)=xPQ(x)



reduces the equation, for /', to a homogeneous linear differential equation of

second order for Q.
2 2
xQ"(x)+ ((ZB -0+1) +2—i’x)Q (x)+ (F,p[i & ==—(1-0\) +—xJQ(x) =0 (4.4)
where B and 0 are defined in section 3.
The point x = 0 is a regular singular point. We shall develop a Frobenius

solution for Q(x) and substitute back into expression (4.3) for H, allowing us to
calculate F"and G via equations (4.1) and (4.2) respectively. Put

0(x)=x°Y ax" (4.5)
n=0
therefore,
O'(x)= 3. (n+c)ax"e! (4.6)
n=0
and  Q"(x)= 3(n+c)(n+c—1ax"2 4.7)
n=0
Let
a=2-0+1
- é_ _ i
Y==2 7(1-o))
s B
9= 40’

Substituting the expressions for QO and its derivatives into (4.4) we obtain
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i ((n +c)(n+c-1+ G)a,,x”“‘l) + i (E(n +c)+ V)a,,x'”c + iga,,x"“” =0 (4.8

n=0 n=0 n=0

The coefficients of x°™*, n=-1, 0, 1, ..., must be identically equal to zero. Thus

c-1

x c@+c-1)=0 ifay,#0

This is the incidial equation. Thus
or

When a is not an integer and also not equal to 1, we have two independent

solutions directly. We shall assume that this is the case, therefore

x°: (1+c) O +c)a +(Be+¥)a, =0
implying
_(BC L] 7)“0
T 7

where g, is the seed value. Equating coefficients for n> 0,
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x°* Q2+c)O+c+1)a, +(B+Pc+¥)a +08a, =0

x°*2; B+c)(T+c+2)a; + (2B +Be+¥)a, +0a, =0
" (4+c)@+c+3)a, +(3B+Bc+Y)a; +8a, =0
x° (n+1)+c)(@+c+3n)a,,, +(Bn+Bc+¥)a, +08a, =0

Rearranging the coefficients of the powers of x, and defining € = Bc+7¥ we

obtain:

(B+E)E-d(1+ )T +c)

LT o ro@ro)@rerD) ® (4.10)
_ —E(B+E)2B+E)-[(2B+E)A+ )T+ ) +EQR + )@ +c+1)IS . @.11)
& (1+6)2+)B+c) O + )@ +c+1) (T +c+2) 0 '
For values of n> 3, we obtain the recursive relationship
= _((n - I)B + E)an—l - gan—2 (4 12)

(n+c)(a@+c+(n-1)

The full equation for (4.5) corresponding to the two independent solutions

¢=0 and c=1-a is given by
Q(x) =aQ(x,c=0)+b0(x,c=1-Q)

where a and b are constants. [NB. QO(x,c =0) means Q(x) evaluated at c =0].

Substituting back into expression (4.3) for H we obtain
H(t)= e[ aQ(e™,0)+ bQ(e™™,1-T)]

Differentiating with respect to T gives
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H'(t) = —aBH(T) - ae'“(f’*‘”*[ag'(e-m, 0)+bQ’(e™",1— a)]

We now have the elements needed to calculate F(t) and G(7) once we have
determined the values for the constants a and b. In order to do this we need to

solve for two boundary conditions. We choose to solve for the conditions:

H(0)=1
H'(0)=0

from which we obtain

. 0'(1,0)+0(, 0B
0(L1-BQ'(1,0)- (1L 0)Z'(L1-)

_1-0(L1-®b
0(1,0)

The authors have implemented this series solution in both a programming
language (Turbo Pascal) and a spreadsheet (Excel). To create a term structure
going out to 30 years maturity at six-monthly intervals takes about 9 seconds
for the former and 15 seconds for the latter on a 386 notebook with a maths co-

Processor.

Fong and Vasicek do not discuss the issue of the valuation of contingent claims
on their term structures. In their related series of papers Longstaff and
Schwartz develop a pricing formula for discount bond options. Their formula
has the familiar 'Black-Scholes' format i.e. the weighted difference between the
underlying instrument and the present value of the exercise price. The weights
are dictated by a cumulative bivariate distribution, which is a lot harder to

13



evaluate than the cumulative normal of Black-Scholes. Longstaff and Schwartz
[1992a] admit that "...computation of the cumulative distribution functions can
be cumbersome.....we have found that numerically solving the partial
differential equation for the discount bond option price is as easy as evaluating

(the formula) directly"s.

Given the lack of computational efficiency of (directly) solving the option
pricing formula, it does not seem unreasonable to calculate term structure
derivative values, under Fong and Vasicek, by monte-carlo simulation. For
example to calculate European discount bond options, firstly the risk-adjusted
processes (3.1) and (3.2) are simulated until the end of the life of the option.
Secondly, pure discount bond prices are calculated using the results of section
4, and the option maturity condition evaluated. Finally, the maturity payoff is
discounted to the present time using the 'realised' time series for the short rate.

5/ Summary and Conclusions

Interest rate volatility is an important determinant in the pricing of bonds which
differ in their time to maturity with or without imbedded options. Motivated by
evidence that the two most important variables in determining interest rate
derivative prices are the level of interest rates and the level of interest rate
volatility, Fong and Vasicek develop a two-factor model of the term strcuture with

these as their state variables.

We develop an easily implementable, and computationally efficient, series solution

to their discount bond pricing formula avoiding the need for complex algebra, and

3 Footnote 15, page 1271.
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hence computer algebra packages of the Fong and Vasicek solution. We show that

our algorithm can be computed in real-time.
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