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Javier Llanos
and
Chris Strickland

Abstract

In this paper we present derivations of pricing formulae for Collars, Break Forwards,
Range Forwards, Forward Start Options, Compound Options, Chooser Options, Asian
Options, Lookback Options, Barrier Options, Binary Options, Asset Exchange Options,
and Quanto Options. The purpose of this paper is to provide a set of tools with which to
value exotic options. The formulae are made as general as possible and are derived in the
Black-Scholes world (Black and Scholes (1973)). The results unify and generalise many
published and unpublished results and provide a general notational structure.



1 Introduction

The purpose of this paper is to provide a set of tools with which to value exotic options. We do
this by presenting derivations of exact and approximate analytical formulae for a range of exotic
options'. We work throughout in the Black-Scholes wosld (Black and Scholes (1973)). That is we
make the following assumptions; all assets follow correlated geometric Brownian motion
processes with constant volatilities?, assets pay only continuous dividends, costless trading takes
place in continuous time, no restrictions on short selling, no restrictions on borrowing and lending

at the riskless rate which is constant.

We also unify and generalise many published results and provide a general notational structure.

Our basic notation is as follows:

S is a current asset price (S, the value at time T in the future).

o is the volatility of S.

r is the riskless rate.

d is a continuous yield on an asset.

T and 7 are times to maturity of options (or to decision events).

F is a forward price.

K and £ are strike prices of options.

Crype (S,K,T) is a call option of type TYPE, similarly with P for a put (where TYPE is missing it
is a standard option).

E[] denotes the risk neutral expectation.

¢ is 1 for a call and -1 for a put.

! We class any option which has a contract specification different from that of a standard European or American
call or put as exotic.

2 In most cases we can allow the volatility to be a deterministic function of time.



N(.) is the standard normal distribution function.

N, (.) is the standard bivariate normal distribution function.

For example the Black-Scholes formula is

C(S,K,T)

— —dT —rT ¢ =1
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Other notation will be introduced as it is used.

1 Portfolios of Standard Options

The simplest extension of standard options is to instruments which can be broken down into
portfolios of standard options. These can be categorised as instruments which have general
piecewise linear payoffs at a discrete set of future dates. Simple examples are collars, break

forwards, and range forwards.
1.1  Collars

The payoff from a collar is equivalent to

min(max(Sy.K;),K,), 0<K, <K,



which can be rewritten as
K, +max(0,8; — K, )—max(0,S, — K,)
So, a collar is equivalent a portfolio of:

lending the present value of K.
long a call option with strike price K;.

short a call option with strike price X, .
1.2 Break forward
The payoff from a break forward is equivalent to
(F-K)+max(0,S,—F), 0<F<K
So, a break forward is equivalent to a portfolio of

lending the present value of (F —K).

long a call option with strike price equal to the forward price (at T) F.
1.3  Range forward
The payoff from a range forward is equivalent to
(S; — F)+max(0,K, —S;)-max(0,S; - K,), 0<K,<F<K,

So, a range forward is equivalent to



buying a forward contract with forward price F.
buying a put option at striking price K; < F .
selling a call option at striking price K, > F .

2 Forward Start Options

A forward start option is a standard European option whose strike price is set equal to the current
asset price at some prespecified future date (the grant date) (Rubinstein (1991a)). Employee

incentive stock options are basically forward start options.

The value of the forward-starting at the money call with time to expiration T on the grant date ¢

can be written as
C(s,.S,,t)=S,C(L.LT)
Therefore the current value of the forward-start option is therefore

Se#C(LL,T)=e*C(S,S,T)

3 Compound Options

A compound option is a standard option whose underlying asset is a standard option (Geske

(1979), Rubinstein (1991d)). The payoff of a compound ontion can be summarised by



max(0,yC(S, . K, T —t)—yk)
where the overlying option has strike price £ and time to expiration T (y is 1/-1 for call/put) and
the underlying option has striking price K, time-to-expiration T >t and S, is the value of the

asset underlying the underlying option after time 7.

The formula for the present value after time 7 of the underlying option is

C(S:. K. T =)= ¢S, “"N(¢z) - 0Ke ™" N(¢z - 66 VT 1)

S e—d(T—’t)
ln T—T
Ke™T™
Z=———t 4 oJT -1

ovT-7 2

This is just the Black-Scholes formula. Therefore the current value of the compound option is

Ceon =€ E[max(0,yC(S, . K, T~ )~ k)]

Coon =€ [ max(0,yC(Se*, K, T — )~k )f (u)du

where

1 (S j U—NT o’
u)= e ,u=ln|=|, v= ,and u=(r—d)———.
f( ) o271t S o«/? h=( ) 2

To evaluate the integral we have



e Jl:%)ew (2)f (du=ydSe™™ N, (. oy;yp)
\yKe"‘J (%) N(z— 0T =t )f (u)du = yoKe™ N, (yox —ydo 7 ¢y -9 VT; T;yp)

ke ™ Hz%)f () =yke™ N (yox —ypo vz )
where

In(Se™* / Xe"") 1 In(Se™™ /ke™) 1
= : oVt +§G‘E’ 7= : ovT )+56ﬁ’ p=\/%:

and X solves the equation
0Xe "N (9z') - 0Ke " "IN (97 —po VT -7 ) -
where

ln(Xe"d(T'T) / ke"(T%))
7=
cJT -1

—0T -7

That is we integrate the value of the underlying option over the probability density of the asset
price at ¢ from its value (X), which makes the underlying option equal to the overlying strike price,
up to infinity.

4 Chooser Options

These are options which allow the holder to choose at some predetermined date whether the

option is a standard call or put (Rubinstein (1991b)).



4.1  Standard Chooser
A standard chooser option allows the holder to choose at some predetermined date (T in the

future) whether the option is a standard call or put with the predetermined strike price (K). The

payoff from a standard chooser option at the choice date can be written as
max(C(S,K,T —t),P(S,K,T 1))
Using put-call parity this can be written as

max(C,(C =S¢+ Ke™0)) = O(8,K.T ~ 1)+ max(0, Ke ") - 5¢74 )

Therefore the payoff from a standard chooser option today will be the same as the payoff from,
buying a call with underlying asset price S, striking price K and time-to-expiration 7.

—-d(T—)

buying a put with underlying asset price Se » striking price Ke" "™ and time-to-

expiration T.
Therefore the value of the standard chooser is
Se™™N(x)—Ke™'N (x —oT ) —-Se""N(~y)+Ke™ N (—y +6T )
where

In(Se™™ /Ke™) 1 In(Se™ /Ke™) 1
= +—0 T, = +—04/T
e e T At




4.2  Complex chooser option

The complex chooser generalises the standard chooser by allowing the standard call and put
which are chosen between to have different strikes and times to maturity. The payoff from a

complex chooser option can be written as,
max(C(S,K,,T, -t ), P(S,K,,T, -))

where the chosen call (put) has striking price K, (K, ) and time-to-expiration 7, —t (7, —T ) on

the choice date.

The current value of a complex chooser option is therefore

Cxoosm = € E[max(C(S,K,,T, =), P(S,K,,T, — )]

Coroosir =€ j_*:max(c(s,Kl,J; —T)P(S,K,,T, —7))f (u)du

where

1 vy (ST ) U— Ut o’
= , U= 1 — |, V= d =(r—d)——
f) OV U=8 s )" g and = (r—d)

This can be evaluated in a similar way to the compound option to give

Cenooser = S€™ N, (x,3,3p1)— K1e_rT'Nz(x_0\['Es)’1 “o'w/f;pl)

=Se" N, (2732302) + Kot PN, (-2 + 0T -y, + 04Ty 3p, )

where



ln(Se"“ /Xe'") 1 ln(Se_dT" /K‘-e_rT") 1 ,
- = L= — J . = [T

and X solves the following equation

Xe 5 IN(z, ) - K,e " IN(z —0 T, =1 )+

Xe EIN(=z,)- Kze_'(T’—c)N(—Z_; +04I, -1 ) =0

where
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5 Asian Options
Asian options are standard calls or puts on an arithmetic average of the asset price over

the life of the option (Kemna and Vorst (1990), Levy (1992), Levy and Turnbull (1992)).

Average strike options are standard calls or puts with the strike price set equal an

arithmetic average of the asset price.

They are typically used to reduce the sensitivity of an option to underlying price

manipulation at expiration or hedge regular cash flows.

Definitions

If the average A(z,) at time ¢, of the asset prices S(z;) at times ¢, is given by

A, =2 Y56

i=0
the pay-off of an Asian call at expiration date z, is
max(A(ty)—K,0)

Put-Call Parity
At the maturity date we know that

C(T)-P(T)=A(ty)-K

11



Therefore at any earlier date we have

N
C(t) - P(t) = 7vl+-1' 2 F(ti ) = Ke—r(T—x)

i=0
Valuation

The difficulty with pricing Asian options arises because the sum of lognormally distributed
variables has no simple closed form expression. However, the geometric average is itself
lognormally distributed and therefore the valuation of geometric Asian options is
straightforward leading to formulae very similar to Black-Scholes.

One approach for arithmetic Asian options is to approximate the distribution of the
arithmetic average as lognormal. The first two moments of the lognormal distribution are
set equal to the first two moments of the arithmetic average (which are straightforward to
calculate). This again results in a Black-Scholes formula.

Consider an Asian call option. The pay-off at maturity is

max(M(t)—K",0)

where,

M) =A(ty)—A,, K‘:'K—Ak’ Ak=($ﬂ)A(fm)

here we have separated out the known part of the average and adjusted the strike by this
amount. This makes the following algebra slightly easier since we don’t have to carry

around the known part.

Now we assume that M(¢) is lognormally distributed, In(M(#)) ~ N(o,B)

12



Now for a lognormally distributed asset we have

Elmax(M(1) - K ") =e*** N(d,) - K*N(d,)
d, =E:IH(JI§_H5 N =d1_\/3
this is the basis of the Black-Scholes formula. In order to obtain the option value we
simply discount this by the riskless rate. Now, the moments of a lognormal variable are

given by E[M"]= exp(no. + n*B4) . So for the first two moments we have

In(E[M]) =0 +% P }oc = 2In(E[M]) -} In(B[M?])
In(E[M?*]) =200 + 28] B =In(E[M?*])—-2In(E[M])

Now, we need the true moments of M(#) which is made up of the unknown, future

fixings
M=55(S,q+S, .5+ +Sy)
This can be rewritten as
M =75(S, X et +SpXms1 X ezt FSmXms1 Xmazees Xy)
where
x; =exp((r —d) - $62)At, +6.[AtZ,

and are independent. Taking expectations we obtain

13



N
E[M]=+% > Elx,.]...Elx,]

k=m+1

N k
EM]l=32 Y, exp(r—d) Y At;)

k=m+1 j=m+l
For the second moment we have
M2 — Sm 2 2 1 )
- -I-V_-I-T ('xm+1) ( +xm+2+.-.+xm+2...xN)

taking expectations we obtain
2
BIM*]= (#51) BI(Xp1) B+ Xy (e 42 e Xy )]

2
= (1) BI(Xpa1)* 14+ 2E[x,,,, JBL(L+.... X )]+ E[(X,p,0 ) JE[(LH... Xy )*])
This can be evaluated recursively or by fully expanding and summing the terms.
If the known average becomes large then K~ = K — A, can become negative and the
Black-Scholes formula breaks down. However, this corresponds to the case of a negative
strike price for a standard option. For a call this guarantees it will finish in the money and

for a put that it will finish out of the money. So there is no longer any option and the value

is simply
e TEM@#)-K 1= E[M@)]-K")

Alternatively we can assume A(t, ) = M(#) + A, is lognormally distributed so we have

14



E[A(ty)]=E[M )]+ A,
E[A(ty)*1=EIM(0)*]1+2A,E[M()] + A,

and we simply replace E[M] and E[M?*] with E[A] and E[A?] in the expressions for o
and B.

S,, can be viewed as the asset price at any time before the first fixing or between fixings
with Ar,,,, the time to the first or next fixing. There can be non-uniform fixing intervals

and also weighting factors on each of the fixings. Also, there can be different volatilities

and interest rates between fixings.

The payoff of an average strike call option is max(S, — A(ty),0).

This is just the payoff of an option to exchange the average for the asset at maturity and

therefore we can use Margrabes formula to exchange one asset for another.

The covariance between these two assets can be computed in the same way as the first

two moments of the average
A(ty)=A, +M@)
Aity)=A, + Ws_';—l(xm+1 £ TS RPL W o JE, SN
Sy =S X1 Xmene Xy

E[A(ty)Sy1= AS, E[x, X ... Xy ]+

Sn_( BT x2 Elx? 52 2
T (Bl X 1 X g e X I AE[X 1 X 5 Xy ])
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6 Lookback Options

Lookback options are standard calls or puts except that the strike price is set to the minimum
price (for a call) or the maximum price (for a put) observed over the life of the option
(Goldman, Sosin and Gatto (1979), Garman (1989)). The dates and times at which the price is
observed are specified in advance and are called fixings. These options thus allow the holder to
buy or sell the option for the best of the observed prices. If the maturity date is a fixing date
then they are not really options since they will always be exercised. That is the worst payoff
that can occur is zero if the price at maturity is the maximum or minimum of the observed
prices. Simple analytical formulae exist for European style lookbacks which are fixed
continuously. In reality these options are fixed at most on a daily basis and often much less
frequently. This can substantially affect the value of the option since the more infrequently the

price is observed the less extreme the maximum or minimum will be.
We consider first the continuously fixed lookback call. The pay-off of this option is

Sy —min(M, M)
where M is the current minimum or prespecified strike and M, is the minimum over the
remaining time to expiry. The value of the option is given by the discounted expectation of this
payoff

Cpp =€ (E[S;]- E[min(M, M,)])

This can be written as

Cp =8~ Me [ fmdn—Se [ & f (m)dn

In(M/S) o

where

16



2 N,(n—

_ uT
s == )+

2 2 (n+p.T -
—e° N , W=r—-d—-—o
oNT ) 0% ¢ RETEETS

(¢

The first term is the discounted expectation of the terminal asset price (Se” 7). The second
term is the discounted current strike (minimum) conditional on the minimum over the
remaining time not setting a lower value. Finally the third term is the minimum over the
remaining time conditional on this being lower than the current value. Evaluating the integrals

leads to

Cpp =82

oT

B Me"’T{l—[ N(ln(M /8)- uT)_i_ei—t‘h(%JN(ln(M /8)+ uT)]}

(2542 yruger (M /) +pT+0°T) |
|32+l oT
—Se™" < >

o T

oT

. e(%"‘)‘“(%) N(ln(M /S)+ uT)

2
|

This can be simplified and re-arranged to give the price of the continuously fixed lookback call

as a standard call struck at the current minimum plus an adjustment

Cz=Se™™N (x+cﬁ )— Me™ N(x)
G N+ 5T 0)
where

___2(r—-d)

c? ’

L)+ (- -§oN)T
_ L ,

_ =@~ (r=d)+ 30T

B =
o T

For the continuously fixed lookback put we simply reverse the signs of the arguments to N(.)

and reverse the sign of the formula

Py =—S¢"" N(~x—0T )+ Me " N(-x)

5 Ny—BNT ) TN ()

17



M is now interpreted as the current maximum.

7 Barrier Options

Barriers options are also generically called knock-in or knock-out (or less commonly drop-in
or drop-out)(Cox and Rubinstein (1985), Rubinstein and Reiner (1991a)). Specifically they are
called down-and-in, down-and-out, up-and-in, and up-and-out. They are standard options
which appear (knock-in) or disappears (knock-out) if the asset price hits a pre-determined
barrier level from above or below. They may give a fixed pay-off (rebate) if the option
disappears or never appears. They are cheaper than standard options because of the possibility
of the option disappearing or never appearing. For example a down-and-out call option will
disappear if the asset price hits the barrier which is below the current asset price and usually
the strike price. As the asset price becomes very low relative to the strike price the chances of
it finishing in the money are very low. With a standard option the buyer pays for this chance.
The down-and-out option eliminates this allowing the buyer to only pay for higher probability
payoffs. The dates and times at which the crossing of the barrier by the asset price is checked
are specified in advance (the fixings). Analytical formulae can be derived for continuously
fixed European style barrier options. In reality these options are fixed at most on a daily basis
and often less frequently. This substantially affects the price of the option since the probability

of the price having crossed the barrier decreases with the frequency of fixing.

In order to price the continuously fixed barrier options we need three probability density

functions.

The density function of the natural logarithm of the risk-neutral underlying asset return

1 % u—purT 2
Uul= e 2 , = R = —d —o_
f( ) o2nT Y cﬁ h=(r=d 2
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The density function of the natural logarithm of the risk-neutral underlying asset return when
the underlying asset price starts above/below the barrier (H), crosses the barrier but ends up

above/below the barrier at expiration (Y =1/y =-1)

gu)=e e ﬁe_v%, = (u~2;|ﬂj/%WT) » = ln(%)

The density function of the first passage time (T ) for the underlying asset price to cross the

barrier

Yo (~yo —ypr)
W)=t = TRV
() ot/ 21T ¢ ’ ot

The value of any European knock-out option is simply the integral of the payoff over the

terminal probability density of the asset conditional on it not crossing the barrier.

The value of a European knock-in option is simply the integral of the payoff over the terminal

probability density conditional on the barrier being crossed.

The integrals can always be split into two, one with the terminal asset value and one with the
strike price where the integrals are over the region where the payoff is none zero. This is either
defined by the strike price or the barrier level whichever is the higher for a call or lower for a

put.

Finally barrier options often pay a rebate if they knock-out or never knock-in. Here we will
just consider a fixed rebate. Knock-in options are easier since the rebate is paid at the expiry
date if the option never knocks in. Thus to value this we simply integrate the rebate (which is

constant) over the probability density conditional on the barrier being crossed.

For knock-out options the date on which the rebate will be paid is unknown. Thus the time
over which we must discount the rebate is random and we must integrate over the probability

density of the first passage time through the barrier.

19



Using ¢ to indicate a call or put and y to indicate whether the asset price starts from above or

below the barrier we can represent every case with six integrals:

11 =e Tﬁ(ly) ( K)f(u)iu
=0Se™ N (ox)- ¢Ke-'TN(¢x_¢cﬁ)

I=¢ TI (’V) o(Se" —K)f (uyhu
=9Se™ N (¢, )— 9Ke "N (¢, 95T )

I=¢" :Zly)q)(Se" —K)g(u)u
=¢Se " (1!%.)Zx N(yy)-o¢Ke™ (%)ZH N (\yy ~yoT )

I =™ (1V) ( ) (w)du
= 0Se” (%) N(\yyl)—q)Ke"T(%)u—zN(wyl ~yoT)

I;=Re™ f::%)[f () (u)
=Re™” [N (\px1 —yo T )— (%)ZH N (\yy1 —yoT )]

Iy= RJOTe""h('c 7is

= K| (B4 )~ (B4) " N -2w00T)

where

In(S/K) _In(S/H)
O +AoT, x i +AoT
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In(H* / SK) _In(H/S)
y=—odF TAeVT. ==+ he T

7»=1+(%2),z 1n(()il//_S) boT

Y2 +20°
= z,b=¥

(0) 02

The first is the standard Black-Scholes integral, the second is identical except the non-zero

payoff region is defined by H (this is the same as for a gap option, (see section 8)).

The third and fourth is the integral of the payoff over the probability density when the barrier

is crossed, where K and H define the non-zero payoff region respectively.

Finally, integrals five and six are the value of the rebate for knock-in and knock-out options
respectively.

The In Barrier Option Family

We now give an example of constructing the price of knock-in barrier options from the six
integrals derived above.

Example: Down-and-in call.

Firstly there are two distinct cases, one with the strike price greater than the barrier and one

with the strike price less than the barrier.

21



The first case is the simplest since the barrier is below the strike price then the option will only
payoff if the barrier was crossed and so we only need the conditional density g(u). The value
of the option is the sum of the call pay-off integrated over the probability density of the

terminal asset price conditional on it crossing the barrier (1, ) and the rebate (7 ):

Corgomy =13 +1s v=10=1}

The second case is more complicated. If the terminal asset price is between the barrier and the
strike price then the option pays off with certainty and so we only need the unconditional
density f{u). But if the terminal asset price is above the strike price the option only pays off if
the barrier was crossed and so we need the conditional density g(u). The value of the option is

the sum of the call pay-off integrated over f{u) between K and H (I, —I,) and integrated over
g(u) from H to infinity (/,) plus the rebate (/5 ):

Corgeary =1 =1, +1, + 1 v=10=1}

Summary of the In Barrier Option Family

Down-and-in call ~ Cp . py = I3 +1; Coweamy=Li—Li+1, {y=1,0=1}
+1,
Down-and-input P,y =1, =13 +1,  Ppygoyy =1 +15 v =1,0=-1}
+I
Up-and-in call Corgory =11 +1s Cogeny =L~ +1, {y=-1,0=1}
41
Up-and-in put PU,(K>H) =I,-1,+1, PU,(K<H) =1, +1; {\y =-1,0 = -1}
+I

22



The Out Barrier Option Family

Here we give an example of constructing the price of knock-out barrier options from the six

integrals.
Example: The Down-and-out call.

Once again there are two distinct cases, one with the strike price greater than the barrier and

one with the strike price less than the barrier.

In first case, since the barrier is below the strike price then the option will only payoff if the
barrier was not crossed and so we only need the density conditional on the barrier not being
crossed which is simply (f(u)-g(u)) The value of the option is the sum of the call pay-off
integrated over the probability density of the terminal asset price conditional on it not crossing

the barrier (I, —1,) and the rebate (I;):

CDO(K>H) =l -I;+I {‘l’ =10 =1}

In the second case, if the terminal asset price is below the barrier then the option has
disappeared and the payoff is zero (we consider the rebate later) even though the asset price is
above the strike price. If the terminal asset price is above the barrier price the option only pays
off if the barrier was not crossed and so we need the conditional density f{u)-g(u). The value
of the option is the sum of the call pay-off integrated over f{u)-g(u) from H to infinity

(I, —1,) plus the rebate (/,):

Coowemy =1a =14 +1¢ v=10=1}

23



Down-and-out call

Down-and-out put

Up-and-out call

Up-and-out put

Summary of the Out Barrier Option Family

Coosry =11 =13 +1¢

P

DO(K>H)

=1,-1,+I,
—I, +1,

CUO(K>H) =l

PUO(K>H) =1, = I, +1g

Coowny =12 =14 +1¢

P, pox<t) = Le

¢ =I,-1,+1,

~F, #1,

UO(K<H)

PUO(K<H) =0 -1, +]

{W =1,0 = 1}
fv =1,0=-1}
fv=-10=1}
v =-10=-1}
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8 Binary Options

These are options which have discontinuous payoffs also called Digital options (Rubinstein
and Reiner (1991b)).

8.1  Cash or Nothing Options
The pay-off of these options can be written as
X if ¢S; >0¢K, 0 otherwise

The present value of the expectation of this pay-off is exactly like the second term in the

Black-Scholes equation. The value is therefore,
Xe'N (¢x —¢oT )
8.2  Asset or Nothing Options
The pay-off of these options can be written as
Sy if ¢S, >¢K, 0 otherwise

The present value of the expectation of this pay-off is exactly like the first term in the Black-

Scholes equation. The value is therefore,

Se” " N(¢x)

8.3  Gap Options

23



The pay-off of these options can be written as
0S; —0X if ¢S, >0¢K, 0 otherwise

These are slightly more general than standard options since we have separate 'strikes' for

determining whether exercise is optimal (K ) and the size of the pay-off (X ).

They can be valued by simply substituting X for K in the Black-Scholes equation where it

determines the size of the pay-off.

¢Se™ " N(¢x)— 0Xe™ N(¢x — 95T )

Se ™
M| 1
x=—0 24 G\T
T 2

9 Asset Exchange Options

These are options to exchange one asset for another (Margrabe (1978), Rubinstein (1991c)).

The payoff of these options can be written as
max(0, S, —S,)
which can be rewritten in units of asset 2's price
%, = max(0,, —1)

The value of a call option on asset 1(in units of asset 2) with a strike price of 1 is
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10 Quanto Options

These are standard options where the payoff depends on an exchange rate which is assumed to
be lognormally distributed (a prime indicates the value is in foreign currency units)(Reiner
(1992)).

10.1 A Foreign Equity Call Struck in Foreign Currency

These give the holder investment in foreign equity, protection against the downside risk of the

equity, but no protection against foreign exchange risk. The payoff is
X max(0,S-K")

An option writer in the foreign country is indifferent between this option which pays off in

your currency and a standard option paying off in the local currency.

The value is a standard call option in the foreign currency multiplied by the current exchange

rate.
10.2 A Foreign Equity Call Struck in Domestic Currency

These give the holder investment in foreign equity, protection against the downside risk of the

equity, and some protection against foreign exchange risk. The payoff is
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max(0,5'X —K)
An option writer in the foreign country would see it as
max(0,S'-KX'")

This is an option to exchange K units of our currency for one unit of stock. Therefore we can

use the Margrabe formula for an option to exchange one asset for another.
10.3 A Fixed Exchange Rate Foreign Equity Call

These give the holder investment in foreign equity, protection against the downside risk of the

equity, and some protection against foreign exchange risk. The payoff is
X, max(0,5'-K") = max(0,S' X, — K)
An option writer in the foreign country would see it as
X, X 'max(0,S-K") |

If the equity and the exchange rate are uncorrelated we can take expectations of the products

separately otherwise we have to adjust for the exchange rate.
104 An Equity Linked Foreign Exchange Call

These give the holder investment in foreign equity, no protection against the downside risk of

the equity, but protection against the downside risk of the exchange rate. The payoff is
S'max(0,X — K)

An option writer in the foreign country would see it as
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S'max(0,1 - KX') = KS"'max(0, % — X ')

This is exactly analogous to a fixed exchange rate foreign equity put with the roles of the

equity and exchange rate interchanged. So we can use the results from that example.

The value of these options can be described by the Black-Scholes formula but with adjusted

parameters. The adjustments are summarised in the following table.

Quanto Options Summary Table

Option Type Corresponding Parameters
Black-Scholes (domestic S K r d Lo
equity)

Garman-Kohlhagen (currency) X K r I Gy
Foreign equity/ K KX 1 d G
foreign strike

Foreign equity/ X K r d Lo
domestic strike

Fixed exchange rate foreign §X, KX, r r+d-r;+ Oy
equity PsxOs0x
Equity-linked foreign X K¢ r+d-r;+ d Oy
exchange Psx0s0x
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