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Abstract

Affine yield models of the term structure (e.g. as described by Duffie & Kan, 1995)
form an important general class which encompasses many popular models. However,
it also includes models with the unfortunate property that interest rates can go
negative. In practice, it would be difficult to estimate the coefficients 'of this form of
model to preclude negative rates occurring. In this paper we show that those affine
yield models which guarantee only positive interest rates are equivalent to generalised

versions of the Cox, Ingersoll and Ross (1985) model. Working with the model in this

framework provides an easier way to guarantee that all yields remain non-negative.



1 INTRODUCTION

Duffie & Kan (1995), DK, presents a consistent and arbitrage-free affine multi-
factor model of the term structure of interest rates in which the factors can be chosen
to be bond yields at selected maturities that follow a parametric multi-variate Markov
diffusion process with stochastic volatility. We refer to their model with arbitrary
factors as the Duffie and Kan Affine Model and their model with the factors specified
as yields as the Duffie and Kan Affine Yield Model. The Duffie and Kan Affine Model
generalises several other published affine models, which we call the simple affine
models. The models are affine in the sense that bond yields are affine functions of the
factors. Examples of simple affine models in the literature include Vasicek (1977),
Langetieg (1980), Coi, Ingersoll & Ross (1985) , Longstaff & Schwartz (1992), Fong
& Vasicek (1992) and Chen & Scott (1992). |

For any model to be popular with practitioners, it must be both mathematically
tractable and easy to calibrate to market data. Duffie and Kan argue that their affine
yield models are more attractive than simple affine models. There are a number of
reasons why this may be the case. Firstly, since the factors are yields which are
observable and whose covariance structure can easily be measured or implied from
market data, the calibration of the Duffie and Kan Affine Yield Models should be more
transparent and easier than of the simple affine yield models. The simple affine models
of Longstaff & Schwartz and Fong & Vasicek, for example, have yields and their

volatilities as functions of the short rate and volatility of the short rate which cannot be



observed'. Secondly, yields are direct inputs to the Duffie and Kan Affine Yield
Model, so changing model parameters only changes the covariance structure. This
property again aids calibration as changing some parameters of the simple affine
models changes both the yields and their covariance structure making the numerical
search for the optimal parameters more difficult. Thirdly, yields and their covariance
structure are the natural variables to consider when pricing many derivatives such as
caps and swaptions. Having yields as the factors not only makes the calibration
simpler but also provides more intuition and insight into the valuation and hedging of
interest rate derivatives.

The advantages of the Duffie and Kan Affine Yield Model are counterbalanced
by the fact that the parameters of the Duffie and Kan yields process must satisfy more
constraints than those of the simple affine models. Some of those constraints are
interior and terminal conditions on a system of Ricatti equations. In general we have
to employ numerical techniques to find suitable parameters that satisfy those
conditions. This is a serious problem and finding appropriate parameter values may be
even more demanding than the calibration issues of the simple affine factor models
highlighted earlier. Finding parameters consistent with non-negative yields is even
more difficult.

The difficulties just described for obtaining a Duffie and Kan Non-Negative
Affine Yield Model lead us to believe that we may still therefore wish to work with the

simple affine models as it is far easier to generate non-negative yields from them.

' Clewlow & Strickland (1994) examines the practical difficulties of estimating the Longstaff &

Schwartz interest rate model from financial data.



Some practitioners may use models that allow negative yields when they offer
compensating advantages of analytical fractability and computational speed. They
sometimes argue they can choose model parameters to allow only a small probability of
yields going negative. However Rogérs (1993) shows that in the basic Vasicek (1977)
interest rate model, even a small probability of negative spot rates can have a much
larger effect on bond prices and hence on more complicated derivatives, especially
when the maturities are distant. We would expect the same consequence for a Duffie
and Kan Affine Yield Model that permits negative interest rates. We therefore focus
our attention specifically on the Duffie and Kan Non-Negative Affine Yield Model.

The Duffie and Kan Non-Negative Affine Yield Model offers a large number of
degrees of freedom and at first sight that flexibility appears to allow for models beyond
that currently in the literature. However, this paper establishes that the Duffie and Kan
Non-Negative Affine Yield Models are equivalent to a subset of the Duffie and Kan
Affine Models, the Generalised Cox Ingersoll and Ross (CIR) Interest Rate Models,
for which parameters can be easily chosen to ensure non-negative yields. This
equivalence result provides an alternative method for calibrating Duffie and Kan Affine
Yield Models consistent with non-negative yields.

We begin in Section 2 by showing how the Duffie and Kan class of models is
related to models in the current literature, providing an introduction to fhe Duffie and
Kan Affine Models and defining the Generalised CIR Interest Rate Models. Section 3
derives a number of results finishing with the equivalence between Duffie and Kan
Non-Negative Affine Yield Models and Generalised CIR Interest Rate Models.

Section 4 compares two approaches to calibrating a Duffie and Kan Non-Negative

Affine Yield Model: An indirect method that calibrates a Generalised CIR Interest



Rate Model before converting it to its Duffie and Kan Non-Negative Affine Yield
Model equivalent and a direct approach that works with the yields process and short

rate specification. Section 5 summarises. We adopt the notation of DK throughout.



2 THE DUFFIE & KAN AFFINE MODELS AND THE GENERALISED

COX INGERSOLL AND ROSS INTEREST RATE MODEL

In this section we first relate the class of Duffie & Kan Affine Models to the
current literature before proceeding to describe the equations which characterise them.
We also define a strict subset of the Duffie & Kan Affine Model we call the
Generalised CIR Interest Rate Model. Readers are referred to DK for more details.

The Duffie and Kan Affine class of models offer some tractability and is a
generalisation of many models in the literature. The Duffie and Kan Affine class
includes as special cases the well known models of Vasicek (1977), Langetieg (1980),
Cox, Ingersoll & Ross (1985), Fong & Vasicek (1991), Longstaff & Schwartz (1992)
and Chen & Scott (1992). In fact, nearly all interest rate models with analytic bond
pricing formulae belong to the Duffie and Kan Affine class. The Duffie and Kan
parameters can also be allowed to be time dependent so that the Duffie and Kan Affine
class also includes extended versions of the above models. Allowing the parameters to
be time-dependent enables all of the above models to fit the entire term structure of
interest rates. This practice of allowing for time dependence is sometimes called
recalibration. The popular lognormal interest rate models of Black, Derman & Toy
(1990) and Black & Karasinski (1991) however do not belong to the Duffie and Kan
Affine class and do not have analytic bond pricing formulae. The three factor
stochastic mean and stochastic volatility interest rate model of Chen (1994) and the
lognormal model of Brace, Gaterek and Musiela (1995) are rare examples of non-
Duffie and Kan Affine Models with analytic bond pricing formulae. All Duffie and Kan
Models are special cases of Heath, Jarrow and Morton (1992): The evolution of the

entire instantaneous forward rate curve is completely characterised by a finite number



of Markovian factors. Karoui, Geman and Lacoste (1995) provide conditions for
those factors to be yields when yield volatilities are deterministic in the Gaussian Heath

Jarrow and Morton framework.

2A Duffie & Kan Affine Model

For the n factors X, Duffie and Kan show that to achieve a bond pricing
formula of the form
P(X,7) = exp[A(T) + B(1)" X] (1)
where A(7) is a function, B(7) is a column vector of n functions, 7 is the bond maturity

and P the bond price then the risk-neutral process for X takes the form?

W@ 0 @

dX=(aX+b)dt+% dW

with
vi=o,+f"X (3a)

where a and X are (n x n) matrices, b and Bi are (n x 1) column vectors, dWisa(nx1)
column vector of independent Brownian increments, parameters are chosen to give X a
unique solution® and the superscript 7 denotes matrix transpose. DK show that ¥ has
to be non-singular when none of the factors are scalings of each other. We assume this
throughout. We define the matrix B as the matrix with vector Bi as its ith column so

that we can write

v=o+p'X. (3b)

? Note condition given in proposition of page 9, DK, for this to be the case.

* Duffie & Kan, pp. 10-12.



Specifying the short rate, r, as an affine function of the factors X,
r=f+G'X 4)
completes the specification of the Duffie and Kan Affine Model. To provide a more

compact notation we use

2 0 \/W 0
° and \/—E—D_E
0 v, 0 N

henceforth. We use y; to denote an unit column vector with zeros for all its elements

<
]

except for the ith element which has the entry 1. DK show that for all i the conditions

T T T
C1) For all z such that w(@) =0, & " (ax+b)>2L > 7;2 Pu .

C2) For all j, if (B"Z);; # 0, then v; = v;
ensure that v > 0. Intuitively, condition (C1) provides for a sufficiently large drift for
dvi(x) when v;(x) approaches zero and condition (C2) prevents the correlation between
vi(x) and v;(x) from taking vi(x) across zero.

Given the process for X and the specification of the short rate we can solve for
the functions A(7) and Bi(7) for i = 1 to n, perhaps numerically, subject to the initial
conditions

A(0) =0 and B;(0) = 0. (5)
For example, in a two factor model with r = f + G, X, + G.X, the functions A(t) and

B(7) are the solutions to the Ricatti equations

dljil:[) =-G, +a,,B,(1) + a,,B,(1) ©

+%[ZnB|(T) + Zlez(T)]z + %[leBl (T) + z:ZZBZ(T)]Z



*dBZ 4, =-G, +a,B/(7) + a,,B,(7) (6b)
art
+%[21131(T) +2,B, (O + '3222 [2,B,(7) + 2B, @F
d/;(:) =—f +b,B,(T) + b,B,(T) 0

+%[Z”B, (0)+ %, B,(0)] + %[Z,ZB, (T) + 2, B, (1)

subject to the initial conditions A(0) = B,(0) = B,(0) = 0. Note that the specification of
the short rate directly affects the solution to the Ricatti equations. That is fand G are
parameters of the model. The system of ordinary differential equations is a standard
initial value problem which can be solved numerically using the fourth-order Runge-

Kutta method as described in Press et al (1988).

2B The Duffie & Kan Affine Yield Model

When the underlying factors X are yields, in addition to providing a unique
solution for the stochastic differential equation for X, we must also choose parameters
such that when we price a bond with a maturity 7 that is the same as for one of the
chosen yields, the bond pricing formula is given by P(X, ;) =exp[-7,X;]. The
parameters must therefore be chosen such that the bond pricing formula meets the
following constraints:

A(T;)=Bi(t;)=0, j#i, B,(t,)=—1, fori=1to n. (7



The general bond pricing formula, equation (1), will then reduce to the required form
when pricing a bond with a maturity that is the same as one of the chosen reference
yields. As the functions A(7) and B;(7) for i = 1 to n are solutions to Ricatti equations
with interior and terminal conditions, 'ﬁnding suitable parameters to satisfy these
conditions may be difficult. We may attempt to solve the system of ordinary

differential equations by the shooting method as described in Press et al (1988).

2C Duffie & Kan Non-Negative Affine Yield Model

For bond yields to remain non-negative®, we require the short rate be non-
negative. Given that A(T) and B(7) satisfy equations (5) and (7), Section 3B shows

that the short rate is given by

_|9B@| e 3A@| | 9B@T| o ®)
r—[ Em r=0(ﬁ) @-—- . Em r:0([3) v
so that sufficient conditions for non-negative yields are
IBO)|  aria, A@| |, (%a)
|: aT r=0(ﬁ) g aT =0 =0
and
_IB@®"| gy b)
o | (B 20

4 Yields in both the DK Non-Negative Affine Yield Model and the Generalised CIR Interest Rate

Model can be made strictly positive by changing some of the conditions given for non-negative yields.
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2D  Converting a Duffie & Kan Affine Model to a Yield Model

DK show that we can transform the Duffie and Kan Affine Model
P(X,7) =exp[A(T) + B(t)" X] where X are general factors (which may or may not be
yields) to the Duffie and Kan Affine X.(ield Model with yields of maturities 7, j= 1 to n

Bi(7;)
T

by the substitution Y=g + h"X whenever the matrix 4 = —l: } is non-singular.
ij

J

. A(T;)
The vector g is given by — :
T
j

i

PROPOSITION 1: We can always find a set of distinct T, j = I to n such that
h is non-singular when the model is non-degenerate.

By non-degenerate we mean that no variables are redundant in the sense that it
is not possible to find a change of variables that allows the bond pricing formula to be
specified with fewer factors. We show that if 4 is singular then the bond pricing
formula has at least one redundancy.

PROOF: Suppose # is singular for distinct non-zero choices of 7, j = 1 to n.

Define
B/(t,) - B(t,)
B= : : )
Bn(Tl) ot Bn(Tn)
Then equation (1) implies
[dP(t))] (10)
P(t))
: =(dt+B"dX
dP(t,)
P(t,)

11



where B is singular if and only if % is singular’ when none of the chosen maturities is
zero. As B is singular there exists a A with at least two non-zero elements such that
BA = 0 since none of the columns of B is 0 when all the chosen reference yields are
greater than zero. Define C to be idehtity matrix with a column replaced by A such
that C is non-singular. Then defining E = B'C, Y = C "X + D and substituting in
equation (10) gives

[dP(t,) ] (11)

: |=(0dt+Eay.
dpP(t,)

P(z,)

The columns of the matrix E in equation (11) are the same as those of B except one
which is O by construction. We have provided a change of variable such that the bond
prices are now only driven by n-1 factors or less and therefore that the original
formulation must have had at least one redundancy. QED.

We therefore assume there are no redundancies in the bond-pricing formula
throughout this paper and that 4 therefore is always non-singular for distinct choices of
maturities. We have shown that can transform any Duffie and Kan Affine Model to a
Duffie and Kan Affine Yield Model where the maturities are non-zero and distinct. We
can also therefore convert to a set of distinct yields that includes the short rate as the

short rate is an affine function of the other yields.

. Bl (Ty) -~ Bl(rn) 1/'L'l 0
 Wehaveh= - : : .
Bn(rl) o By(ty) 0 l/rn



2E The Generalized CIR Interest Rate Model

The Generalized CIR Interest Rate Model is the model that is obtained when
we specify the short rate as an affine function of Y that follows the process of DK with
the restriction that the matrix X be thé identity matrix and v;(Y) = ¥;. That is

dY=(aY+b)dt + JY° dW and r=f+G"Y . (12)
We say the process dY has the CIR property. This is a generalisation of the 2-factor
CIR models of Longstaff and Schwartz (1992) and Chen and Scott (1992). It allows
for an arbitrary n factors with interactions between their drifts. To obtain the bond
pricing formula we solve for the functions A(7) and B;(7) for i = 1 to n as before. It is
simple to guarantee that the yields are non-negative and we consider non-negative
yields a defining property of the Generalised CIR Interest Rate Model. That is, all
Generalised CIR Interest Rate Model have non-negative yields.

PROPOSITION 2: The short rate is non-negative if

i) Sfor all Y with y; = 0, (aY+b); >0 fori =1 to n;

it) G20 and f20.

PROOF: Condition (i) ensures non-negative Y and condition (ii) ensures. that
the short rate is a non-negative sum Y and a non-negative elements. QED.

Condition (i) is satisfied when the off-diagonals of a are non-negative and the
elements of b are greater than zero. Zero is a reflecting barrier for the short rate and
implies bond yields are strictly positive. Y mean reverts to -a”'b when a is negative
definite.

The Generalised CIR Interest Rate Model is clearly a special case of the Duffie
and Kan Affine Yield Model. We will go on to show that Generalised CIR Interest

Rate Models are equivalent to Duffie and Kan Non-Negative Affine Yield Models.

13



3 EQUIVALENCE BETWEEN GENERALIZED CIR INTEREST RATE

AND DUFFIE & KAN NON-NEGATIVE AFFINE YIELD MODELS

As a preliminary step, we show that in the Duffie and Kan Non-Negative Affine
Yield Model the matrix 3 must be non-singular. This allows us to count the degrees of
freedom present in the Duffie and Kan Non-Negative Yield Model and observe that it
is the same as that in the Generalised CIR Interest Rate Model suggesting the two may
be equivalent. The non-singularity of B allows us to transform uniquely from the
Duffie and Kan reference yields to variables with the CIR property to establish the
equivalence.

PROPOSITION 3: In the Duffie and Kan Non-Negative Affine Yield Model,
the matrix B is non-singular.

The intuition of the proof is as follows: The state space for the stochastic
differential equations (2) and (3) is contained by the intersection of half spaces defined
by vi 20 for i = 1 to n. For the state space to contain only non-negative X, it must be
the case that the state space is bounded by a number of non-parallel boundaries equal
to or greater than the dimension of the hyperspace and this implies § must be non-

singular.

T
PROOF: Consider the equation [ﬁ : B "] Ax =0 which only has non-

degenerate solutions Ax # 0 when J is singular. Ax is a vector that is parallel to all the
boundaries. Suppose f is singular and X is a feasible point, y( X ) > 0. It follows that

X + kA x is also a feasible point since dy = kB'Ax = 0. However X + kA x 20

cannot hold for all £, that is not all yields can be non-negative when B is singular.

14



Hence B must be non-singular in the Duffie and Kan Non-Negative Affine Yield

Model®. QED.

3A Degrees of Freedom

We first introduce a restriction to Duffie and Kan Affine Yield Model
specification to remove some redundant parameters and then show that a Duffie and

Kan Affine Yield Model has the same number of degrees of freedom as a Generalised

CIR Interest Rate Model.
Consider equarions (2) and (3b) where both  and X are non-singular. DK
shows that B"Z must be a diagonal matrix as v; # v; for i # j when B is non-singular.

The restriction is necessary for non-negative v and follows immediately from an

examination of the process for v’.
PROPOSITION 4: We can scale uniquely the matrices B and X such that

BTE = I without making any difference to the stochastic process.

PROOF: Define 2=3D, v=D?a+D?B X =o+ B  X. Then
dX=(aX+b)dt +f\/;—0 dW with Fsz I and the covariance structure of dX is
given by -Z_\/E—E\/E_DET =% =2Dv"D"E" = £y°%7 which is the same as

before. Thus the stochastic process for dX is the same and we can always choose [3

S Alternatively, one can argue that none of the boundaries can be parallel for there to exist solutions

to the SDE.

7

av=[p"as™y " v e 8 08T asTy @)+ 575 P
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and X such that 7% =1 in the Duffie and Kan Affine Non-Negative Yield Model.

QED.

PROPOSITION 5: The Duffie and Kan Non-Negative Affine Yield Model has
the same degrees of freedom as the Generalised Cox Ingersoll and Ross Interest Rate
Model.

PROOF: Assume the chosen yields do not include the short rate. There are
2n” + 2n parameters in the yields process. There are n+1 parameters for the

-specification of the short rate. The bond pricing formula, equation (1), must satisfy the

following restrictions:

T
T, T; T,
A(T) A(t)=0 A(T)=0 A(T) =0
Bi(1) Bi(t) =-Ty . Bi(t) =0 e By(t) =0
Bj(r) : Bi(T) ~0if j#i '
Bi(t) = -1;
B() | Biw)=0 -~  By=0 -  Bay=-g

These give a total of n(n + 1) terminal boundary conditions on the set of Ricatti
equations for A(T) and Bj(T) so that the number of independent parameters in the
Duffie and Kan Affine Yield Model is (n+1)°.

The generalized CIR Interest Rate Model, equation (12) also has (n+1)*

parameters, although we usually restrict f to be zero. Thus the Duffie and Kan Affine

16



Yield Model has the same degrees of freedom as the Generalised CIR Interest Rate
Model®. QED.

To show that the Generalized CIR Interest Rate Model and the Duffie and Kan
Non-Negative Affine Yield Model are equivalent we only need to show a Duffie and
Kan Non-Negative Affine Yield Model can be transformed uniquely to a Generalised
CIR Interest Rate Model since Section 2C has already shown that we can convert
uniquely from an Duffie and Kan Affine Model to a Duffie and Kan Affine Yield

Model.

3B Equivalence

PROPOSITION 6:- The Duffie and Kan Non-Negative Affine Yield Model and
the Generalised Cox Inge;&oll and Ross Interest Rate Models are equivalent.

PROOF: Starting from a Duffie and Kan Non-Negative Affine Yield Model,
we can express the short rate as a sum of CIR variables using the transformation
defined by equation (3b). Eliminating X from the bond pricing formula, equation (1),

gives equation (8) of section 2C

B 0A(T)
oT

ot

[ag(r)f
r _—
ot

B ' :I_aE(T)T

By
=0

T T

with

¥ For the case when the short rate is included as one of the reference yields, indicated by T, say, the
restrictions on A(t;) and B(t,) are redundant because these restrictions are now the same as the initial
conditions for maturity equal to zero and so there are n+1 fewer restrictions. There are also n+1 fewer

degrees of freedom as r = f+ G"X becomes r = X, so the total degrees of freedom is unaltered.
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dv = (BTaX + B bydt + BTEv° dW

=[B7a(B™)" v+ (B b—BTa(BT)" )ldr + BTEv" aW

= (Ev+ F)dt +/v"dW
and obvious substitutions. Section 315 has already shown that  and X can be scaled to
make B'S equal to the identity matrix. The two equations define a Generalised CIR
Interest Rate Model. Furthermore, this transformation must be unique up to a
permutation of the indices. Any other affine transformation would not maintain the
CIR property. We can therefore conclude that the two models are equivalent as

Section 2D has already shown that we can transform uniquely in the opposite

direction. QED.
We are now at the stage where we know the models are equivalent. We next

look at the difficulties encountered in empirical work when working with the two

different forms.
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4 IMPLEMENTATION AND CALIBRATION ISSUES

We distinguish between implementation and calibration issues. Implementation
problems are the problems of how to get a model to value instruments and calibration
problems are those we face when we want the model prices to match market data.

Suppose we want a Duffie and Kan Non-Negative Affine Yield Model. In this
section we consider two approaches for obtaining suitable parameters: an indirect
method that first estimates a Generalised CIR Interest Rate Model and then transforms
to its Duffie and Kan equivalent and a direct approach that estimates the parameters
for the yields process. We first examine an indirect approach and find that the
implementation is simple but the calibration is difficult because it is necessary to search
over a large number of variables. We then look at a direct approach and find
considerable implementatiyon problems. It is difficult to choose parameters that are
consistent with the factors being yields. Calibration would be relatively simple if there
were a quick way to choose suitable consistent parameters. In both cases we assume
we only have accurate estimates of the covariance structure between yields. We are
estimating the risk-neutral processes and cannot therefore expect to have good
estimates of the drift parameters from examining the objective behaviour of the yields.

We do not use options prices as this is only a preliminary investigation.

4A  The Indirect Approach

We first illustrate the ideas with the Longstaff & Schwartz two factor affine
model before explaining how we may proceed when we do not have an explicit bond

pricing formula. Both cases can be easily implemented to be consistent with non-
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negative yields for the constraints guaranteeing non-negativity are simple non-
negativity and strict positivity constraints on model parameters made clear in
Proposition 2 of Section 2E. Calibrating the models in both cases is more difficult.

Starting essentially from a spéciﬁcation of 2 CIR variables in their general

equilibrium model

dx = (y —8x)dt +xdW, and dy = ( — Ey)dt +[ydW,
Longstaff and Schwartz show that r, the short rate, and V, the instantaneous variance
of the short rate, are given by

r=ox+fyandV=a’x+ 2y

where o and 3 are positive parameters of their model. They solve initially for a bond
pricing formula in terms of x and y which they then through a change of variables
express in terms of r and V. Longstaff & Schwartz have performed a change of
factors rather like DK. Expressing the formula as a function of two different yields
instead would give a Duffie and Kan Non-Negative Affine Yield Model.

Suppose we wish to establish a model with the instantaneous rate and the one
year yield as the factors and we want to fit the model to the market yields and
covariance structure between the two chosen yields. Transforming from the factors (r,
V) to the short rate, ¥(0), and the 1 year rate, ¥(1), gives

P(Y,7)=exp[E(7)+ F(t)"Y] where

[Fy(t)]
, YO0)=r, E(T)=|_F(1)J

v [Y(O)
Y(1)

E(t)=2yIn A(t)+2nln B(T)+ KT — %%[K‘ +2yIn A(1) +2nln B(1)]

D 1
Fo(fc):cm—%, F;(r)=—%.
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where A(T), B(t), C(t) and D(t) are the functions of Longstaff and Schwartz
reproduced in Appendix 7A and A(1), B(1), C(1) and D(1) are the respective evaluated

at T= 1. The yields process can be shown to be

0
dY = (RY + S)dt + T(J(:—o )dv_v with

S

R= g’o g‘“} where Roo, Roi, Rio and R, are defined in Appendix 7B.
L“10 11
S, . .
S= s where S and S, are defined in Appendix 7B.
L*~1
[ o
T= p } and
| —o[C(1)+aD(D)] —BLC()+ BD(1)]

r
g= L 5 J where A", go and g, are defined in Appendix 7B.
- 1

In this case, all model properties are explicit functions of the model parameters.
We calibrate the model to best fit five targets, the short rate, one year rate, and their
covariance structure, using six variables o, B, v, 8, 1, and v where v = E+A and A is a
risk parameter. We could minimise a weighted sum of squared differences between
model and market values using a numerical search routine. Note that it may not be
possible to obtain an exact fit with the five target values even though we are searching
over six parameters. For instance, it is difficult to obtain a small correlation between
yields in Longstaff and Schwartz’s model. Note also that we do not need to be able to
observe x and y, the two CIR variables. Their values are implicitly defined by the

yields we are fitting the model to.
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For Generalised CIR Interest Rate Models where we do not have analytic bond
pricing formulae we can easily solve numerically equation (6) which in this case

simplifies to

dB ' 1 13
%pq +a,B,(1)+ ay B,(0) + - B, (1)’ (130
9By") _ _G, +a,B,(v)+ayB,(x)+ B, (x)* (13b)
drt 2
d’ji(f) =—f+b,B,(7) +b,B,(T) (13¢c)
T

subject to A(0) = 0 and B(0) = 0 and the conditions of Proposition 2. Solving the
ODE (13) gives equation (1), where X are unobserved CIR variables, which can be

transformed to a formula in terms of bond yields Y giving
P(Y,7) =exp[C(7)+ D(1)" Y]

where

X=g+hTX, h=—l:§f—j)J and g = —I:A(Tj)} .

T

The unobserved CIR variables are given by X = (hT)'l( Y-g). We re-iterate the search
routine, with each iteration solving the ordinary differential equations once, until we
have a good fit to observed yields and their covariance structure. Note that changing
the model parameters changes only the covariance structure and not the reference
yields. The reference yields are inputs and changing the model parameters changes the
A(7) and B(7) functions: The unobserved variables are constrained to take on different
values that give the same observed reference yields which may include the short rate.
This property can make it easier to search for the best parameters.

We have shown that it is in principle possible to calibrate whether we have or

have not got closed form solutions to the Ricatti equations. There is, however, a
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practical problem in that it is necessary to search over a large number of parameters
which increases rapidly with the number of factors. There are (1 + 1)* parameters in a
n-factor model.

We have explained how we can calibrate all Duffie and Kan Non-Negative
Affine Yield Models indirectly by our equivalence result. The next section shows that
it is much harder to implement Duffie and Kan Non-Negative Affine Yield Models

directly.

4B The Direct Approach

In this section we explain how we might calibrate Duffie and Kan Non-
Negative Affine Yield Models directly. It is far more difficult to implement Duffie and
Kan Affine Yield Models directly than by the indirect method just explained. We
illustrate the difficulties with a two factor example. More factors will increase the
difficulties still further.

Suppose we are given two yields of different maturities, their volatilities and
correlation that we wish to calibrate the model to. We need to determine the
parameters for equations (2), (3) and (4) such that v > 0 and that the functions A7),
B, (7) and B(7) of equation (1) satisfy equations (5) and (7). The difficulties arise
almost entirely from having to solve equation (6) subject to equation (7), the interior
and terminal conditions of equation (6). Unless there are analytic solutions to this
system of Ricatti equations, we shoot the functions forward, that is, we integrate the
equations from T equal to zero to the longest chosen reference maturity. Having

completed the numerical integration we measure the discrepancies between the
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boundary conditions and the solution values. The discrepancy measure can be a
weighted sum of squared differences. We must iterate the shooting to reduce the
discrepancy measure to zero and only after the measure has been reduced to an
acceptably small value do we calculate the covariance structure. Otherwise the bond
pricing formula would not be consistent with having yields as the factors. However,
the covariance structure produced may not match the observed structure well enough
and we must then resolve the Ricatti equations for different parameters until we
produce a close match to the observed covariance structure. A simple calibration
procedure may consists of two nested iterations. The inner loop ensures that the
functions satisfy the boundary conditions. The outer loop minimizes the discrepancy
between the model and target covariance structures. The procedure is clearly difficult.
Imposing the constraints of equation (9) to preclude negative yields makes the
numerical search for consistent parameters even more demanding. We cannot neglect
the extra constraints as the following example illustrates. The following parameters for

the joint process followed by the 1 year and 12 year yields

_[-131193 3553317 | -020058
7| -0.088328 —0.138073 "~ |0.024806 |’
-0.038705 0.372175]  [23.0104
= , o= :
~0.008299 0.043145|" = | 227766

[ 304077  5.84922
"1 -262.299 —27.2783

with
r=0.21608 + 1.98915X, - 3.25205X,
give absolute one year and twelve year yield volatilities of 5.35% and 1.43%

respectively and a correlation of 0.975 when the one year yield and twelve year yields
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are 2.8% and 6.03% respectively. These parameters however permit negative yields
for when we convert to the Generalised CIR setup we obtain

r=0.6y - 0.05x with

dx = (0.05 — 0.55x)dt + /xdW,,
dy = (0.2 — 0.9y)dt + \[ydW, where dW, and dW, are independent

x=1.107692 and y =0.158974.
Since y can attain zero independently of x, the formula for the short rate shows clearly
that the short rate and hence all other yields can attain negative values. This example
demonstrates a drawback of the Duffie and Kan Affine Yield Model; it is difficult to
understand how the processes are behaving from a quick examination of the
parameters.

Our example has shown that it is usually rather difficult to implement a Duffie
and Kan Non-Negative Affine Yield Model directly. The previous section
demonstrated that we are in principle able to calibrate Generalised CIR Interest Rate
Models with non-negative interest rates readily but there is the difficulty of searching
over many parameters. Both the direct and indirect calibration methods are
challenging tasks. It may be possible to combine the two approaches to calibrate a
Duffie and Kan Non-negative Affine Yield Model. For example, if we could measure
parameters defining the yields covariance structure there would be fewer parameters to

search over. That possibility is left for a future paper.
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5 SUMMARY

We have shown that Duffie and Kan Non-Negative Affine Yield Models are
equivalent to the Generalised Cox-Ingersoll-Ross Interest Rate Model. We have
looked at the implementation and calibration issues and argued that, when we want
non-negative yield models, both the Generalised Cox Ingersoll and Ross Interest Rate
Model and the Duffie and Kan Non-Negative Affine Yield Models are difficult to work

with empirically.
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6 APPENDIX

6A  The Longstaff & Schwartz Bond Pricing Formula

Longstaff and Schwartz showl that bond prices within their model economy,
where r is the short rate and V is the instantaneous variance of the short rate, are given
by
P(r,V,7) = A (1)B” (t)exp[Kt + C(T)r + D(T)V]
where

20

A = T By exp(@7) D 12D

2¥

B(7) = ;
(V+Y¥)(exp(¥P1)-1)+2¥

oD (exp(¥'7)—1)B(7) — B¥(exp(PT) —1)A(T)

o= P¥(-a)

_ Y(exp(®7)—-1)A(T) — D(exp(¥T) — 1) B(T)

D(7) P¥(G—0) ;

and v=E+4, ©=20+6%, ¥=\28+0?, K=y +®)+nv+¥).
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6B Duffie and Kan Formulation Of Longstaff & Schwartz Using The

Short Rate And The One Year Yield As The Factors
We show here the joint process for short rate, ¥(0), and one year yield, ¥(1), within the
Longstaff & Schwartz model. The process is obtained by expressing Y(1) as a function

of V followed by substitution. We obtain

0
dY =(RY + S)dt + T(\/(‘;—O Jd}i’ with y=g+ h'y

oS
where

ROO=_D(1)(/35—av)—(v—5)C(1)’ R, = (v-9) ’

(B-o)D(1) (B—-a)D(1)

Béo-av (v-98)C() of(6-v) (Bv—-ad)C()
R, =—C()| - - D()| - :
. ()[ B-—a +</3—a)D(1)} ()[ B-a (ﬂ—a)D(l)}

__ (v=0)C(D) B Bv—od

" (B-a)D() B-a

(vV-90)(-x —2yInA(1)-2nln BQ)
s, = -

o+ pn (B - o)D)
(v—-8)(—k — 2y In A(1) - 2n1n B(1))
S =-C( -
( )[a7+/3n B—o)D(l) ]
, , (ﬂv—a6)(—1c—2ylnA(1)—2nlnB(1))}
-D(1 + -
(){a Y+B°n (B—a)D(D)

. _ K+2yInA(1)+2nln B(1)) . _ _K+2yln A1) +271n B(1))
° o —a)D(1) n B(B—)D(1)

{ Cc(1)+ BD(1) ] [ C(1)+aD(l) ]
a(ﬁ a)D(l) B(B - a)D(l)l

[a(ﬁ OC)D(I)J [ B(B - Ol)D(l)J
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