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A Note on the Efficiency of the Binomial Option Pricing Model

ABSTRACT

We discuss the efficiency of the binomial option pricing model for single and multivariate
American style options. We demonstrate how the efficiency of lattice techniques such as
the binomial model can be analysed in terms of their computational cost. For the case of a
single underlying asset the most efficient implementation is the extrapolated jump-back
method. That is to value a series of options with nested discrete sets of early exercise
opportunities by jumping across the lattice between the early exercise times and then
extrapolating from these values to the limit of a continuous exercise opportunity set. For
the multivariate case, the most efficient method depends on the computational cost of the
early exercise test. But, for typical problems, the most efficient method is the standard

step-back method. That is performing the early exercise test at each time step.



1 Introduction

The binomial option valuation procedure was introduced by Sharpe (1978), Cox, Ross and
Rubinstein (1979) and Rendleman and Bartter (1979). It can be used to value options
where no analytical solution exists, in particular American put options. It can also be used
where the underlying asset pays continuous or discrete dividends. Geske and Johnson
(1984) introduced a method for pricing American put options based on the compound
option model of Geske (1979). Breen (1991) has described an alternative implementation
of the binomial procedure for American options based on the Geske and Johnson (1984)
model. Previous authors have compared the efficiency of lattice methods for option
pricing problems (see Smith (1976), Geske and Shastri (1985)) by timing the various
methods for a range of inputs. This approach has the disadvantage that the results depend

on the implementation of the method and on the characteristics of the computer used.

In this paper we demonstrate how the efficiency of lattice techniques such as the binomial
procedure can be analysed and quantified independently of the implementation software
and hardware. A similar technique was used by Kamrad and Ritchken (1991) to compare
the efficiency of binomial and trinomial models. In this paper we generalise and formalise
the procedure. Firstly, we consider the efficiency of the binomial procedure for American
options on a single underlying asset. In this case we show that the most efficient method is
the extrapolated jump-back method. This involves valuing a series of options with nested
discrete sets of early exercise opportunities by jumping across the lattice between the early

exercise times and then extrapolating from these values to the limit of a continuous



exercise opportunity set. We then consider the efficiency of the binomial method for
American options on multiple underlying assets. The most efficient method depends on
the computational cost of the early exercise test. But, for typical problems, the most
efficient method is the standard step-back method in which the early exercise test is

performed at each time step to obtain the American option value directly.

In section 2 we briefly review the binomial procedure. Section 3 shows how the efficiency
of lattice methods can be analysed using the standard binomial procedure as an example.
In section 4 we analyse the efficiency of the binomial method for American options on a
single underlying asset. Section 5 analyses the efficiency of the binomial method in the

multivariate case. The summary and conclusions are in section 6.

2 The Binomial Option Pricing Model

In order to help our exposition, we briefly review the binomial procedure in its basic form.
The idea is to replace the random process followed by the underlying asset by a binomial
random walk in which the steps have the same mean and variance as the original process.
We take the usual approach (Cox and Ross (1976)) and work with risk-neutral

probabilities that is the price S, -of the underlying asset obeys the stochastic equation

ds, = rS,dt +6S,dB, ¢))



in which r is the riskless interest rate and o is the volatility of the asset (both assumed to
be constant), and dB, is the increment of a Standard Brownian Motion. The underlying
process is replaced with a binomial random walk on the lattice, in which the time steps
have length dt. Equation (1) implies that the proportional increments of the underlying
over each time step are iid, and so it is possible either to think of the lattice as referring to
proportional changes in the underlying, or to work with logarithms of the underlying; we

prefer the latter. So, put log(S,) =s,. Then the stochastic equation for s, is

ds, = (r— $6%)dt + 6dB, 2)

From each node on the lattice, the random walk can either step up by a distance As, with
probability p,, or it can step down by a distance As, with probability p,. These

parameters must be chosen so that the mean and variance of the random walk over each
time step match those of the process in equation (2). There is a degree of freedom in
making this choice, because this subjects these 4 parameters to 2 constraints, together with

the constraint p, + p, =1. Two convenient choices are those of Cox, Ross, and
Rubinstein (CRR) (1979), which imposes As, = —As, , and Jarrow and Rudd (JR) (1983),

which imposes p, =p, =4%.

At the lattice nodes corresponding to the maturity date of the option its value is known.
From these values, one can then compute the option values backwards through the lattice
by using the rule that at each node, the option value is the discounted expectation of its

value at the next time step, i.e.



¢,'_1,j = eXP(—”dt)(P_q);_j + p+¢i,j+1) 3)

where ¢, ; represents the option value after i time steps, if there have been j up-steps by

time i .

To value American options, we test for early exercise at each node by comparing the value
given by equation (3) with the value the option would yield if it were exercised at that
time. If exercising makes the option worth more, we replace the result of equation (3) with

the exercise value. We call this the step-back method.

For European options, it is possible to jump in one action over all the steps of the binomial
lattice. Suppose the random walk has N steps in all up to the maturity date of the option.
Then note that the lattice has N +1 nodes at the option maturity date, and that all paths

leading to say the k th node (which corresponds to k up-steps) have the same probability,

namely (p,)*(p,)"™*. Thus the probability of the binomial walk ending up at say the k th
u d y

N
node at maturity is (k j(P,, )¥(p,)"*. The present value of the option is therefore,

N(N
Do = e"TZ( k)(pnk ()" O )
k=0

where T is the time to maturity of the option'. We call this the jump-back method.



3 The Computational Efficiency of the Binomial Technique

We can calculate the relative efficiency of the jump-back and step-back methods by
computing the number of basic computational operations involved. For both methods we
must compute the N + 1 node values of the option at maturity (terminal nodes), so we may

ignore this in the comparison.

For the jump-back method we must sum over the N +1 terminal nodes the product of the
probability of that node and the value of the option at that node (equation (4)). Now this
can be reduced to three multiplications and an addition for each term in the summation® So

the computation time is given by
(N+D(37, +1,) (5)

where 7, is the time required for a floating point multiplication and 7, is the time

required for a floating point addition.

The step-back method requires two multiplications and an addition for each non-terminal
node (see equation (3), the discount factor can be combined with the up and down
probabilities). At each step i,1<i < N, there are i nodes to evaluate, and therefore the

computation time is

N
Y1, +1,) =L NN +D2t, +7,)
i=1

(6



Thus for N > 3 the jump-back method becomes progressively more efficient than the step-

back method as N increases.

4 The Univariate Case for American Options

The standard implementation of the binomial option pricing model for American options is
the step-back method since the early exercise test must be performed at each node.
However, an alternative is to value options which are exercisable at a small number of
dates (exercise opportunities) and to extrapolate from these to the American option value.
This is similar to the approach adopted by Geske and Johnson (1984) and is also used by
Breen (1991). As Omberg (1987) points out the sequences of exercise opportunities
should be nested so that the option values are monotonically increasing. An example of a
suitable nested sequence is {T}, {T,274}, {T,274,74}. Therefore, we first calculate the
European option value ¢;, i.e. assume there is just one exercise opportunity, at the
maturity date T of the option, by jumping over all the steps, as described in the previous
section. Next, we assume that there are two exercise opportunities, at times 2% and T,
and calculate the value ¢, of the option by jumping first over the time interval [274,T],
and then over [0, 2%].. Last, we calculate the value ¢5, using three exercise opportunities,
at times T,274,74. Now, the sequence of option values {¢;,¢,,¢3,...}. obtained by
adding further exercise opportunities at the midpoints of the current intervals for example,
converges to the American option value ¢. We can extrapolate from {¢;,¢,,¢3} to ¢ by

using Richardson Extrapolation (see Geske and Johnson (1984)) to obtain



¢:¢3+%(¢3—¢2)_%(¢2—¢1) Q)

We will call this the extrapolated jump-back method. A third approach is to use the step-
back method to obtain the values ¢;, ¢,, and ¢5 instead of the jump-back method. We
will deal with this extrapolated step-back method in section 5. We can calculate the
computation time required to value an American option by both the step-back and
extrapolated jump-back methods in the way we described in section 3. For the step-back
method we simply need to add the time taken to perform the early exercise test at each
node. We assume here that the computational cost of the early exercise test (CCEET) can
be reduced to simply a floating point comparison and assignment and is therefore at least
as fast as a floating point multiplication. If the CCEET is more computationally costly
then the extrapolated jump-back method will be even more efficient relative to the step-

back method. The computation time under our assumption is therefore

IN(N+1)(31, +1,) ®)

For the extrapolated jump-back method we must jump-back firstly over N nodes to reach
the final node. Secondly over %4 nodes for each of the ¥4 mid-point nodes and the final
node to reach the final node.. Finally we must jump over ¥4 nodes for the 2V4 two-third-
point nodes, the N4 one third-point nodes and the final node. The most efficient way to
perform these multiple jump-backs is to pre-compute the one-dimensional array of

probabilities which multiply the option values. This requires two multiplications (one for



the binomial coefficient and one for the probability factor) for each probability.

computational time for a size (M +1) array is therefore
2(M+1)t,
The total computation time for the extrapolated jump-back method is therefore

(N+1)(t, +1,)+2(N+1)1, +
(N72+1)(t, +7,)+ T, (N/2+1)+1)+2(N /2 +1)t, +

m

(N73+1)(1, +7,)+ 7, (2N /3+1)+(N/3+1)+1)+2(N /3+ 1),

which simplifies to

(—7—N2 2N 17)1", +(lN2 +2N+6)’ta
12 3 12 2

10

The

®

(10)

(11)

In this case N must be greater than approximately 10 before the extrapolated jump-back

method becomes more efficient than the standard method. However N will normally be

much greater than 10 in order to give reasonable accuracy. Asymptotically, as N — oo the

extrapolated jump-back method is 55% faster than the standard method for a CCEET of

one floating point multiplication, and becomes increasingly more efficient as the CCEET

increases (see Table 1).
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5 The Multivariate Case

Boyle, Evnine and Gibbs (1989) (BEG) show how the binomial technique can be
generalised to the case of »n underlying assets involved in the option valuation. Examples
of options to which this technique will apply include multi-currency options such as the
option to convert the ECU into any one of its constituents at predetermined rates as well as

spread options, that is options on the difference in price between two related assets.

Richardson extrapolation together with the step-back method can be applied in a
straightforward way to the multivariate case. But jumping across nodes is not feasible.
Firstly, if the assets are correlated all paths which reach the same end-point from a given
starting point do not have the same probability. Secondly, even if the assets are
uncorrelated (or if we transform to an orthogonal set of variables) the cost of computing
the multinomial coefficients makes jumping back too inefficient. We can analyse the
efficiency of the standard (step-back) BEG and extrapolated step-back BEG methods in a

similar way to the one dimensional case. For the standard method each node depends on

2" previous nodes and at step i there are i" nodes. The computation time is therefore
N

N2 (r, +7,)-1,+7,)

i=1

(12)

For the extrapolation method we must step-back over N steps, V4 steps and 24 steps and

perform the early exercise test at each exercise opportunity. The total computation time is

therefore
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M=

i"(2"(t, +7,)-7T,)+

i

N -

N

i"(2"(t, +7,)-T,)+(N/2)"T, +

iM

N
=

/3

i"(2" (v, +7,)-7,)+(@2N/3)" +(N/3)")r, (13)

i=1

The efficiency of the extrapolated method depends on the trade-off between the reduction

in the number of early exercise tests and the increase in the number of nodes which must

be computed.

We can obtain a quantitative comparison of the computational times in units of 7,, if we
ignore the computation time for floating point additions (floating point additions are
typically much faster than floating point multiplications). Table 1 gives the ratio of the
computational times for the extrapolated and standard methods for one, two and three

underlying assets, for a typical range of values of N and for a CCEET of one and five

floating point multiplications.

As we can see from Table 1 the extrapolated method is in fact less efficient than the step-
back method for a CCEET of one floating point multiplication. This is because, although
the extrapolated method considerably reduces the number of early exercise tests we must
perform, their computational cost is small compared with the computational cost of the
extra nodes that must be computed in more than one dimension. The extrapolated method
only becomes more efficient if the computational cost of the early exercise test is very high

(for the two dimensional case around 20 floating point multiplications).
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6 Conclusions

In this paper we have considered the efficiency, in terms of the computational cost, of the
binomial pricing model for single and multiple underlying assets. We have shown how the
efficiency of lattice methods such as the binomial can be analysed and quantified
independently of the implementation software and hardware. For a single underlying
asset, we have demonstrated that the jump-back method is the most efficient method. In
the multi-variate case, the most efficient method depends on the computational cost of the
early exercise test. However, for typical problems, the step-back method is the most
efficient. In our analysis we have not considered the relative accuracy of the various
methods for a number of reasons. Our analysis is independent not only of the software and
hardware but also of the instrument we are pricing. However, the accuracy of the methods
will certainly depend on the nature of the instrument being priced. Using our analysis it
would be possible to compare the relative computational cost versus accuracy of these and

other methods. This is left for further work.
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Footnotes

"This can be written as Doo = Z Onx®n, Where O, is the state price of node N,k (i.e.
k=0
the price at time zero of a security that pays one unit at state N,k and zero in all other

states).

?Assume the binomial coefficients are pre-computed and stored, pre-compute

P, =(p,) (p,)"™*,k=0, then for each subsequent term simply multiply P, by %d . In
the case in which the probabilities vary through out the tree we can go back to the state
price representation (see footnote 1). That is we assume that the state prices are pre-
computed in which case we have one multiplication and one addition for each term in the

summation.
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Table 1
Ratio of Computational Times for Extrapolated Jump-back and Extrapolated Step-back

Binomial Methods

Computational Cost of the Early Exercise Test
1 floating point multiplication 5 floating point multiplications
N n=1# n=1% n=2" n=3"* n=1# n=1* n=2" n=3"*
10 1.048 1.279 1.223 1.168 0.668 0.756  0.801 0.868
20 0.706 1.208 1.182 1.146 0400  0.627 0.722  0.826
30 0.597 1.183 1.168 1.138 0319  0.581 0.693 0.810
40 0.544 1.170 1.160 1,133 0.279 0.557 0.679  0.802
50 0.512 1.162 1.156 1.131 0.256  0.543 0.669  0.797
60 0.491 1.157 1.153 1.129 0.241 0.533 0.663 0.793
70 0.477 1.153 1.151 1.128 0230 0526 0.659  0.791
80 0.465 1.150 1.149 1.127 0.222  0.521 0.656  0.789
90 0.457 1.148 1.148 1.126  0.215 0.517 0.653 0.787
100  0.450 1.146 1.147 1.125 0.211 0.514 0.651 0.786

N is the number of time steps
n is the dimensionality of the lattice
# Extrapolated jump-back method

* Extrapolated step-back method



