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A Generalization of the Sharpe Ratio
and its Applications to Valuation Bounds and Risk Measures

Stewart Hodges

The Sharpe Ratio is a commonly used measure of the reward for risk given by
investments. It has also been used recently by Cochrane and Sai Requejo to obtain
"no good deal" bounds for derivative instruments in incomplete markets.
Unfortunately, because it is based on the mean and variance alone, the Sharpe Ratio is

incapable of providing satisfactory rankings of non-Gaussian distributions.

The paper describes these problems and develops a modified measure which
overcomes them. It demonstrates how the new measure provides a more robust
criterion for obtaining valuation bounds in incomplete markets, and that this approach
can be employed in a wide variety of situations. The Generalized Sharpe Ratio can
also be used to derive risk measures (e.g. for Value at Risk purposes) which are

coherent in the sense described by Artzner, Delbaen, Eber and Heath.



A Generalization of the Sharpe Ratio and its Applications to
Valuation Bounds and Risk Measures

1 Introduction

The Sharpe Ratio of the expected (or realized average) excess return divided by
standard deviation of return is a convenient measure for assessing reward relative to
risk. It was first introduced in 1965 and has been more recently discussed in Sharpe,
1994. Not surprisingly, it is commonly used in the financial community, particularly
in the context of investment management. However, as is well known, the Sharpe
Ratio (and indeed any measure based solely on the mean and variance) is incapable of
providing satisfactory rankings of opportunities in the presence of arbitrary non-
normal distributions. This disadvantage has become an increasingly awkward
problem as the acceptance of derivatives has made it possible to engineer virtually any
distribution at all.

The purpose of this paper is threefold. First it provides a generalization of the Sharpe
Ratio which solves these problems. Second, it shows how this new measure provides
an appropriate framework for deriving valuation bounds for derivatives in incomplete
markets. Finally, it provides some further characterizations of these bounds and
discusses their possible role as measures of risk (i.e. related to Value at Risk
concepts).

The structure of the paper is as follows. First, an example is provided to remind the
reader of the nature of the problems which arise with the conventional Sharpe Ratio.
Next, the generalized measure is developed. In section 4, this is then applied to show
how in an incomplete market the values of options (or other derivatives) can be
bounded relative to the attractiveness of the market opportunities which would exist at
various prices. This part of the paper relates to and extends existing work by
Cochrane and Saa Requejo, 1996. The computation of these valuation bounds is
discussed and an example is provided. Bounds can be developed in dynamic and
static frameworks, including where the incompleteness arises from trading costs or
jumps. Further, heuristics can also be used to obtain conservative bounds where exact
computation of the embedded optimal control problem is too onerous. Section 5,
develops further properties of our bounds. It is shown that they are closely related to
the class of "coherent measures of risk" described by Artzner, Delbaen, Eber and
Heath, 1997. In particular, used as risk measures, our bounds have all but one of the

attractive properties advocated in that paper. Finally, the paper concludes with a



general discussion of the nature of this measure and its advantages and shortcomings
applied to performance measurement.

2 A Sharpe Ratio Paradox

It is well known that for general distributions the Sharpe Ratio leads to unsatisfactory
"paradoxes" which make it unsuitable for ranking investment opportunities. The
following simple example illustrates the nature of the problem. Table 1 provides two

probability distributions, A and B, of percentage excess return over some horizon.

Table 1
Sharpe Ratio Paradox

Distribution A
X -25 -15 -5 5 15 25 35
Pr 0.01 0.04 0.25 0.40 0.25 0.04 0.01

Mean: 5.00 SD: 10.00 SR: 0.500 GSR: 0.498
Distribution B
X -25 -15 -5 5 15 25 45
Pr 0.01 0.04 0.25 0.40 0.25 0.04 0.01

Mean: 5.10 SD: 10.34 SR: 0.493 GSR: 0.500

Clearly distribution B should be preferred to distribution A: the outcome of +35 has
been shifted to +45 which is a clear improvement under the weak assumption of non-
satiation. Unfortunately, for our calculations, this shift increases the standard
deviation by a larger percentage than it increases the mean of the distribution, so their
ratio, the Sharpe Ratio, actually falls. Distribution B has a Sharpe Ratio of only
0.493, as against 0.500 for the original and inferior distribution A.



There is no mystery as to why this arises. For general distributions, quadratic utility is
the only utility function consistent with making decisions based on mean and variance
alone. Unfortunately, of course, quadratic utility functions display negative marginal
utility for sufficiently high wealth levels. The rankings provided by the Sharpe Ratios
are supported implicitly by a quadratic utility function which gives negative marginal
utility to the higher outcomes.

Our generalization will avoid this problem. For normal distributions the conventional
definition will be retained. Neither of the above distributions are normal: their
Generalized Sharpe Ratios (GSR's) are 0.498 for distribution A and 0.500 for
distribution B, providing a ranking which is consistent with decision making based on
maximizing expected utility (and with first order stochastic dominance
considerations). For the example shown above, the adjustment is fairly minor,
however this consistency is absolutely essential for the applications we have in mind
for valuing derivatives, calculating risk measures and measuring performance. The
Generalized Sharpe ratio is developed and defined in the next section.

3 The Generalized Sharpe Ratio (GSR)

The generalization is based on two principles. First, we preserve the usual Sharpe
Ratio for normal distributions, but for other distributions we provide a generalization
which is free of the paradoxes associated with the Sharpe Ratio. Second, the
generalization is based on the expected utility to investors with constant absolute risk
aversion. Other generalizations are possible, but this one has certain advantages. In
particular, the measure obtained (like the original Sharpe Ratio) does not depend on
any particular assumption of risk aversion or wealth level, but instead, simply

describes a measure of the extent of market opportunities (or realizations).

Consider an investor who maximises E[U(W)] with particular 7 =—¢~M, (for

some A >0 which governs the absolute risk aversion). For simplicity let us assume
that the investor starts with initial wealth, w, =0, so no investment givesU = —1.
However, favourable investment opportunities can lead to an optimal expected utility
U* anywhere within [-1, 0). We will examine first the well known case where the
investor faces a single opportunity whose outcomes after time T are normally
distributed with (forward annualized) mean excess return | and standard deviation ©.



In this situation the Sharpe Ratio is of course SR = p/c. We will redefine it in terms
of the optimal expected utility so that it gives the usual measure for this case of

Normal distributions, and something more consistent for other distributions.

Our investor's forward investment opportunity for date T has future outcomes
distributed as N(uT, 62T). To maximize E[U (w)] with U=—e™" the choice

problem is:

Max E[U]=—exp{-A (WxT —¥:Ac 2Tx2)}
X

The first order condition is U7 —Ac 2Tx =0, sox B

G2

Substituting into the expression for E[U], we find

2
U*=Max E[U]=-exp{~Y2'— T}
X (o)

From this equation we can down write an expression for the Sharpe Ratio |1/ in terms
of the optimal utility U* and use this to define a Generalized Sharpe Ratio, to be used

instead of the usual measure whenever distributions are non-normal.

The Sharpe Ratio - is obtained as. /_—]?zn(—U *).
(0

We are now in a position to define the generalized measure:

Definition = Generalized Sharpe Ratio

We define the Generalised Sharpe Ratio (GSR) as a measure of market opportunities

as:
;)
GSR= ‘/———ln(—U *)
T

where U* is the optimal expected utility obtainable by an investor with [J = —¢~", and
initial wealth, w, =0. T is the length of the investment horizon in years.



Discussion

It is worth noting that the optimal utility U* is independent of the original investor's
risk aversion A, so we may as well define A = 1 as in the above definition. The level of
risk aversion is irrelevant since the investor is considered free to choose an desired level
of investment (or sale). We have already proved that in the case of an investment
opportunity with a Normal distribution of outcomes, the Generalized Sharpe Ratio
(GSR) equates to the usual definition of the Sharpe Ratio (SR) as p/c.

The new measure provides rankings which are always consistent with stochastic
dominance considerations (since the utility function has derivatives which alternate in
sign). For the definition of the Sharpe Ratio we know that the equity premium is of the
order of 0.5 (e.g. 8% risk premium over 16% standard deviation). With Normal
distributions a Sharpe Ratio of 3 is almost a pure arbitrage with virtually no probability
of loss. The following simple example demonstrates some behaviour of the GSR
measure.

An Example:

Consider the GSR provided by the forward gamble of +£1 with probability p and -£1
with probability g :

—X X

U=—-pe ™ —qe
s—=pe*—qge*=0

ln(ﬁj —X=X and x= lln(—EJ =In P
q q q

2
LU= —p\ﬁ—q\ﬁ =-2ypq
p q
GSR=.-2 ln(—U *) = 1[—2 ln(Z\/E ) (ignoring the time dimension of the

gamble).

In comparison the Sharpe Ratio for this situation is given as
P4

2pg

SR =



Figure 1 shows a graph of GSR against p. For p close to 0.5 this is a small bet and the
GSR tracks very closely to the usual SR. For p =0 and p = 1 the GSR curves upwards
asymptotically towards infinity, as a sure thing at the wrong price would be a pure
arbitrage. However, is notable how close to these extreme values most of the
curvature occurs. The GSR reaches 1 at p =0.90 and 0.10, it reaches 2 at p = 0.995
and 0.005, while for GSR = 3 we require p = 0.99997 or 0.00003. It should be

appreciated that these values are for a single gamble. A repeated gamble of this kind
would be much more attractive for p close to 0.5.

4 Valuation Bounds in Incomplete Markets

Cochrane and Saa Requejo, 1996, introduced the idea of using the Sharpe Ratio to
characterize valuation bounds on derivatives in incomplete markets. They used a
pricing function with linear marginal utility, which was subsequently constrained to take
zero values wherever it would otherwise have been negative, in order to avoid the
problems we have seen associated with the conventional Sharpe Ratio. Our approach
provides a neater solution to the same problem. First, the general philosophy is
described, and then the details of the method are developed, with an example.

Even where exact replication of derivatives is impossible, we may have an idea that one
price for a given contingent claim is “cheap” and that another is “dear”. We introduce
a formulation whereby bounds on option prices are established according to the reward
for risk opportunities which they introduce. Under exact replication there is a unique
market price, Co, for a given claim. Even at a price, C—¢, an infinite reward for risk
opportunity (theoretically) exists to buy the claim and hedge it for an exact profit of € .
Similarly at Cy+e an infinite reward for risk opportunity exists for selling the claim
and hedging it.

We propose a valuation approach in which optimal choices are made under the
standard expected utility of wealth paradigm. The enhancement of utility through being
able to buy or sell the claim leads to specific bounds for the option price relative to
various reward for risk levels.

In particular we may compute price levels which give particular values of the

Generalized Sharpe Ratio (such as %2 or 1) from either buying or selling the option, as



well as no-arbitrage bounds and a "no gain" level at which there is no incentive to
either buy or sell.

We describe the approach first in the context of a statically hedged position, and
where the analysis is done under a risk neutral measure. We then subsequently

describe extensions to dynamic hedging and to incorporate market risk premia for
assets other than the one of interest.

In general we proceed in two stages:

A: Find the best dynamic strategy with hedging securities alone. This
gives a benchmark GSR which will be bettered when the claim is
added.

If we model the hedging securities under any risk neutral measure this
benchmark GSR will be exactly zero and this whole stage can be
skipped.

B: For each possible price C for the claim, find the optimal strategy and
expected utility from either buying or selling a fixed fraction y of the
claim and dynamically hedging it using the available securities.
Interpret this as the GSR for that price C;;. Finally, invert to obtain
option valuation bounds as a function of the available Sharpe Ratio.

For simplicity, all prices can be taken as forward prices.

Valuation Bounds Under Static Hedging

We solve the choice problem for an investor who maximizes E[U(w)] with
U=—-e"

The investor buys y units of the contingent claim, and hedges with x units of the
underlying:

Maximize E[U]=— E[ ¢ *T~50)~2(Cr=Co)y
X,y

The value of the expected utility provides a measure of the "goodness" of any
particular C. We will generalize to dynamic hedging later. More specifically we can
define a lower bound, LB, and an upper bound, UB, as the prices at which we can
respectively buy and hedge or sell and hedge so as to achieve a specified GSR or U*
level. Thus LB and UB are defined by the following equations:



Maximize E[U]=— E[e *T~5%0)=Y(Cr=LB)| _ 17% defines LB.
y>0,x

Maximize E[U]=— E[e 1 ~50)=YUB-Cr)| — 7% defines UB.
y>0,x

Computational Considerations

Whereas to compute the GSR for a general distribution simply involves a one-
dimensional search for the optimal scale in which to invest, the GSR which can be
obtained from a derivative or portfolio of derivatives depends on how the portfolio is
hedged. In the single asset static hedge situation we have to optimize over x, the
hedge quantity, and y, the quantity of the derivative bought or sold. The first order
conditions for the optimization are:

E[(ST—So) exp{—x(ST - Sp)—y Cr}1=0,
E[(Cp — LB)exp{~x(Sg - So) — y Cr}1=0.

If we first choose a value of y, then these equations can be solved sequentially. The
first equation involves a one-dimensional search for x. Since the first derivative is
available, it can be accelerated by the Newton-Raphson method. Given x and the

assumed value of y, the second equation provides the corresponding LB value as:

1= ECr exp{—x(ST —Sp) -y Cr}] .
E[exp{—x(S7 —So)—yCr}]

Finally, substituting back into the original maximization we obtain U* and GSR.

An Example

Figures 2 and 3 show the nature of these bounds for a single call option with a strike
price of 95 and one year to expiry. The assumptions made are that we live in a (risk
neutral) Black-Scholes world with a zero interest rate, and that the asset has volatility
equal to 0.15. The option is only hedged at the beginning and not dynamically
rebalanced. Figure 2 shows how the GSR depends on price of the option when the
asset price is 100. At any option price below 5 a pure arbitrage exists, and the GSR

curves up asymptotically towards this. The no-arbitrage upper bound is a long way



away at 100. Figure 3 shows valuation bounds for at variety of asset prices, and under
different assumptions. The two outer curves show prices which give a GSR of ¥ if
the option is bought or sold outright and not hedged at all. This is done simply by
restricting x = 0. The curves inside these show upper and lower bounds based on a
single static hedge to give a GSR of %4. The graph also shows the Black-Scholes
values (the centre curve) and the no-arbitrage lower bound (piece-wise linear). Note
that this is violated by the no-hedge lower bound but not by the one using a static
hedge.

Risk Premia

- The calculations illustrated above were made under the assumption that the risk
premium on the underlying asset is zero. This assumption is unnecessary. We can
use the following two-stage procedure. First optimize over x to obtain a benchmark
level of expected utility, Uj. For a given incremental GSR, the required U* value is

given as
u2
U*=Ugexp{- 1/2—2—T}
c

The proof of this result is straightforward.

Dynamic Hedging

The approach generalizes to dynamic hedging situations in incomplete markets.
As before we solve the choice problem for an investor who maximizes E[U(w)] with

U=—-e"
The investor buys y units of the contingent claim, and hedges dynamically with x units
of the underlying:
i
[T x,.dS, +y(Cp—Cp)
Maximize E[U]=— E[e Ul % 456y }]
X,y
Again the value of the expected utility provides a measure of the "goodness" of any
particular Cj. In principle x; and dS; may be vectors, corresponding to dynamic
hedging with several instruments. The lower bound, LB, and an upper bound, UB, are

still the prices at which we can respectively buy and hedge or sell and hedge so as to
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achieve a specified GSR or U* level. The only difference from the previous static
case is that we have a stochastic optimal control problem to solve. The nature of this
problem and its numerical complexity depends on the specific nature of the processes
involved and the reason for market incompleteness.

In the case of Black-Scholes assumptions but with rebalancing at discrete dates the
problem amounts to a dynamic programming formulation with only a single state
variable. This is quite easily solved, and it is clear that the approach described here
generalizes the Black-Scholes replication method. We will obtain upper and lower
bounds which tend towards the Black-Scholes limit as the revision dates become
closer together. There are a few other relevant processes which also lead to single
state variable dynamic programming formulations. One important case is the jump-
diffusion process, which will not provide a unique value as trading becomes

continuous.

Other situations may result in problems with two or more state variable. For example,
introducing stochastic volatility introduces a second state variable. Transactions costs
are a further significant cause of incompleteness. Work by Hodges and Neuberger,
1989, already introduced a formulation of this problem under negative exponential
utility and it is only a question of reinterpreting the results of that paper (and
subsequent developments to it) in the light of the framework presented here.

In computing numerical solutions a certain amount of care is required, as the
exponential form of the utility function makes it quite easy to get overflow or
underflow kinds of computational errors. Nevertheless, the formulation is
intrinsically robust in the sense that because our E[U] is bounded, the methodology is

not subject to generalized St. Petersburg paradoxes.

Finally, there are many models of hedging in incomplete markets where the
computation of exact optimal hedging strategies is too daunting to be feasible.
Nevertheless, the framework introduced here is helpful even in these situations.
Whatever heuristics may be employed to hedge with, the hedge performance can be
simulated and conservative valuation bounds can be calculated from the resulting
distributions. The better the heuristic you can come up with, the tighter the valuation
bound you are entitled to apply!
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5 Properties of the Measures

The bounds we can compute relative to a given GSR, have a close relationship to the
idea of "coherent risk measures" described in a recent paper by Artzener, Delbaen,
Eber and Heath, 1997. That paper advocates that for purposes such as calculating
margin requirements or Value at Risk for bank capital requirements there are various
desirable properties that we would like to have. They state these properties in an
axiomatic fashion and derive a characterization of risk measures which possess them.
In this section, we will describe how our bounds also qualify a risk measures which
satisfy all but one of their axioms. We argue that there is no need to satisfy the

remaining one, and we also look at the resulting characterization.

First, our lower bound, LB, was derived on the principle that if we could buy at that
price we could achieve a specified GSR or U* level. If our U* level is chosen
sufficiently high enough, then LB becomes an appropriate candidate for a measure of
how bad our portfolio might become. In fact, for our choice of utility function, we
can demonstrate a probabilistic interpretation for U* which gives us a bound on the
quantile of the distribution. It is easily shown that

Pr{Cr < LB}<-U *

For other utility functions too, we could in principle obtain similar risk measures. To
do so, the lower bound would be defined by the equation:

Max E[U(wy+y(Cr—LB)] =U *
y>0

We can describe and demonstrate most of the properties advocated by Artzener et al,

1997, in terms of this slightly broader category of risk measures than those generated
by negative exponential utility:

"Linearity'': Blo C’] = o B[ C],and
B[B+ C]1=B+ B[C]

The meaning of these "linearity" properties, which hold for both upper and lower
bounds, B, is as follows. First that valuations can be scaled linearly. If we double all

the cash flows of the claim we double any valuation bound computed for it. This
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follows for our bounds as a simple consequence of the freedom to choose (linearly)
the quantity to buy or sell, and also to hedge with. Thus if y* solves the problem for
C, then y = y/a solves it for o.C, and it follows immediately that LB(c.C) = o LB(C).

The second property is that packaging with a riskless cash flow is transparent. Again,
the algebra to establish this is straight forward. Suppose

E[U(wg+y*(Cr—LB)] = U* ,then
E[U(wo+y*(B+Cr—B—LB )] =U*
showing that LB(B+C) = B + LB(C).

C< D = LB[C]< LB[D
Monotonicity: & ~ = LB[C] [D]
-C =

=D< UB[C] < UB[D]

This property is also established rather easily. Suppose that L is the lower bound of C
which is stochastically dominated by D, in some sense of stochastic dominance which
is satisfied by our utility function. Then the expected utility given by D at the y level
and bound L established for C is at least equal to U* and possibly higher. In other
words:

E[Uwy+yc*(Dp—L)] 2 U*.

Since marginal utility is positive it follows that LB[C] < LB[D].

Subadditivity: LB[C1+ LB[D] < LB[C + D]
UB[C + D1 < UB[C]+UB[D]

The idea here is that the bounds obtained from portfolios are tighter than the sums of
the bounds from their components. Although this is a simple and intuitive notion, the
proof is slightly longer than for the other properties. Suppose:

E[U(we)] = E[UMwg +yc *(Cp— LBg)] = U*, and
E[U(wp)] = E[U(wo+yp *(Dr—LBp)] = U*

We know that U is concave, so E[U(6cw¢ + 6pwp)] > U*,

for any 6, 6p >0 with 6.+ 6p=1.

The result can now be established by choosing 6= yp /( yc + yp ) and using the
monotonicity property.
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Characterization

Artzener et al draw attention to a feature of risk measures which satisfy their axioms,
that (in our notation)

LB[Cl= Inf Ep[C]
Pep
(In their case attention is confined to losses only, and the expectation is only over

losses, also since they considering "maximum loss scenarios" they have a supremum.)

This infimum over a set of probability measures also arises naturally in our analysis.
We have already seen that the first order condition for the quantity y provides the
equation:

_ElCrexp{-yCr}] .
Elexp{—yCr}]

As usual, the marginal utilities provide a transformation of the objective probability

LB

measure to a new "risk neutral" one. We can show that under our model the lower
bound is obtained as the infimum of Ep[C] over probability measures which take this
form and arise from situations where E[U] < U*. The intuition for this is that for low
levels of expected utility y is close to zero and LB is close to E[C]. We can only get
measures which take LB further into the tail of the distribution at higher values of both
y and E[U].

Use for Performance Evaluation

The fact that ex post distributions differ from ex ante ones means that no single
measure provides a completely satisfactory measure of performance, and the
Generalized Sharpe Ratio is not advocated here as a complete answer. Nevertheless, it
is immediately apparant that it avoids some of the inconsistencies which can occur
with the usual version. It is also robust to "gaming" in a continuous time world where
the price of risk [W/o is constant. In such a world an investor with negative
exponential utility will always bet the same amount on the market and will obtain a
Normal distribution of return. In this case the best attainable Generalized Sharpe
Ratio (ex ante) is equal to the conventional ex ante Sharpe Ratio.
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6 Summary and Conclusions

This paper has shown three things. First it has provided a generalization of the Sharpe
Ratio which gives coherent rankings of probability distributions which are consistent
with stochastic dominance rankings. Second, it has demonstrated how this new
measure provides an appropriate framework for deriving valuation bounds for
derivatives in incomplete markets. Finally, it has given some further characterizations

of these bounds and discussed their appropriateness as measures of risk (i.e. related to
Value at Risk concepts).

The Sharpe Ratio is much used in the context of performance measurement, and it is
therefore sensible to ask whether the Generalized Sharpe Ratio is equally applicable.
Certainly, it avoids the immediate problems which may arise when outcomes are
clearly come from non-normal distributions and comparison in a mean-variance
framework is inappropriate. However, it must be pointed out that the GSR is no
panacea. In most cases where large discrepancies from Normality are encountered
empirical work we have no guarantee that we have sampled the entire distribution;
even if we have a very large there may be no reason to expect the distribution to be
stationary. It therefore seems that the GSR is likely to be a much more powerful and

appropriate tool for the analysis of ex-ante distributions than for the analysis of ex-
post returns.
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