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" PRICING BY ARBITRAGE UNDER ARBITRARY INFORMATION

SIMON H. BABBS _
First Chlcago NBD and University of Warwick
MICHAEL J. P. SELBY

Centre for Quantitative Finance, Imperial College, and University of Warwick

A substantial applications literature on pricing by arbitrage has effectively restricted information

to that arising solely from securities markets; return distributions are then governed solely by past
_prices. We reconsider pricing by agbitrage in markets rendered incomplete by arbitrary information,
which, moreover, may influence required returns. We show that contingent claims depending solely on
securities’ normalized price histories are priced by arbitrage if and only if all risk-adjusted probabxlmes
agree upon the law of primitive securities’ normalized prices. We show how existing diffusion-based
results can be preserved, and resolve an issue relating to Merton’s (1973) stochastic interest rate model.

KEY WORDS: contingent clalms analysis, mcomplcte markets, information filtration, pricing by
arbitrage .

1. INTRODUCTION

In applying their general theoretical framework to diffusion models, Harrison and Kreps
(1979, p. 388)! restricted the information ﬁltranon to that generated by the Brownian mo-
tions driving the local martingale components of returns. They then imposed an invertibility
condition to ensure that the full Brownian information could be recovered from normal-
ized securities price histories. Analogous information specifications have been the norm
in subsequent applications of arbitrage pricing. Such specifications imply that economic
agents neither know nor care about anything other than securities markets. This is patently
unrealistic and, moreover, fails to accommodate evidence that information outside secu-
rities market histories has a bearing on prospective returns (see, e.g., Fama 1991). This
raises the question: Can existing arbitrage-based results be preserved if restrictions on the

information filtration are dropped—rendering markets incomplete—and required returns
" depend on arbitrary information??

In Section 2, working with arbitrary adapted price processes, we consider claims whose
payoffs (after normalization by the value of some numéraire security) depend only on the
subfiltration generated by normalized securities prices. Note that, under the restricted in-
formation specifications common in previous analyses, only such contingent claims exist!

This paper is based on results obtamed in certain sections of Babbs and Selby (1993)
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1See also Kreps (IbSl p- 31) arid HarriSon and Pliska (1981, ppP- 244—250) Harrison and Pliska suggest
(p- 248) that their results on diffusion models could be generalized, allowing, inter alia, required returns to depend
on more information, but they do not justify this.

2The recognition that information not included in securities market histories must be allowed to influence
expected returns, and thus become mpounded in the market hlstory, precludes a trivial embedding argument.
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We show that these claims can be priced by arbitrage if and only if all equivalent martin-
gale measures agree on the risk-adjusted probability law of the normalized security price
processes.

In Section 3, we use this result to show how existing pricing results can be preserved in
popular diffusion-based arbitrage pricing models. In particular, European call options are
priced by arbitrage in Merton’s (1973) stochastic interest rate extension of the Black and
Scholes (1973) model—a result that eluded Harrison and Kreps (1979) (HK)

Proofs are relegated to the Appendix.

2. FULL PRICING BY ARBITRAGE

Presuppose an arbltrary filtered probablhty space (Q F AF::te [O T}, P), over a fixed
finite interval [0, T7, satlsfymg the “usnal condmons ” and with F = JFr. We assume that
n + 1 securities are traded, with adapted price processes (with any 1ntermed1ate cash flows
reinvested) Sp, .. ., Ss; of which at least Sp remains strictly positive. Adopting the zeroth
security as numéreure we define’the vector S* of normalized price processes, S¢ = Sk/So-

We leave more detailed specification aside, for all we require here is that any equilibrium
pricing operator for contingent claims (defined as Fr-measurable random variables) take
the form: V = So(0)E*[X/So(T)], where V is the value of the claim X, and E* denotes
expectations under an equivalent martingale measure (EMM) P* (i.e., a probability measure
equivalent to P, and under which S* becomes a martingale).

DEFINITION 2. 1. The (normalized) “securities market history,” {g, t € [0, T']} (briefly
{G:]) is the completlon of the subﬁltratmn generated by the normahzed securities pnce
processes S*.

After effectlvely restnctmg the mformatlon ﬁltratlon to {G;}, existing analyses are able to
price, by arbitrage considerations alone, all contingent claims (whose normalized payoffs
are then, of course, Gr-measurable). Call this ¢ ‘full pricing by arbitrage” Under arbztrary
information, markets will, in general, be incomplete; nevertheless, we find:

THEOREM 2.2. The following are equivalent, under an -arbitrary information filtration:

(a) all EMMs yiéld the same finite- dtmenswnal dzstrlbutlons for S*
(b) all EMMs coincide on QT,

(©) ﬁlll pncmg by arbttrage !

3. SECURITY PRICE DIFFUSION MODELS
The following definition embraces the pbpjilar diﬁusion—lba_sed derivati‘ves;priciﬁg models.

i

DEFINITION 3.1. A “security price diffusion” model is on€ in which the normalized
price dynarmcs can be expressed in the form: -

(3.1) St=Ac+) /0 o (S (w), u) dZ; (1)
) : j=1 oL
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where: each A; is a predictable finite variation process of locally integrable variation;
the argument list of each oj; signifies dependence upon the stated variables only; and
(Z,y,...,2Z,) is a vector standard Brownian motion under P.

We first analyze candidate risk-adjusted dynami,cs.of normalized prices:

PROPOSITION 3.2.  Suppose that there exists an “equivalent local martingale measure”
(ELMM) P*, (i.e., a probability measure equivalent to P, and under which S* becomes a
local martingale), and that E[d P*/d P | ] is locally square integrable under P.®> Then
we can rewrite (3.1) as:

(32) 5 =5t + Y [ on(s @, u 4z},
| =140
whé}e (Z3, ..., Z}) is a vector standard Brownian motion under P*.

Note that the form of (3.2) is independent of the choice of P*, and of the filtration employed.
These facts provide the keys for further analysis.

THEOREM 3.3. If the conditions of Proposition 3.2 hold, and (3.2 ) has a unique weak
solution* in which S* is a martingale, then:

(a) every ELMM is an EMM; and
(b) full pricing by arbitrage holds.

Because the usual information specification forces all contingent claims to depend solely
on the market history, it is natural to say that existing pricing results are preserved, if full
pricing by arbitrage holds under an arbitrary filtration. Theorem 3.3 immediately yields:

COROLLARY 3.4. Suppose that in the existing model, (3.2) has a unique weak solution
in which S* is a martingale. Then existing pricing results are preserved.

The requirement of a unique weak solution seems invariably to be met in existing models,
forming part of their analysis under a restricted filtration. The HK treatment of diffusion
models is a case in point: the requirement is explicitly assumed (p. 395).

One application of our results is to Merton’s (1973) stochastic interest rate extension of
the Black—Scholes model. In applying their general framework to the' diffusion case, HK
had effectively assumed that the information filtration was that generated by normalized
securities price processes. For Merton s model, this meant that the filtration could support
only a single Brownian motion,’ contradicting the fact that it clearly supports at least the

3Harrison and Kreps (1979) included a square mtegrablhty property in their definition of EMMs. We keep our
local property separate.

4See, for example, Karatzas and Shreve (1988, pp. 300-301). Because S* satisfies (3.2) on our original
probability space, it provides a.strong solution (see Karatzas and Shreve, pp. 284-286). Our focus on weak
solutions directs attention to the suﬁ‘ic:ent conditions for a unique weak solution, which are less onerous than for
a strong solution.

5This follows from the fact that the niormalized stock price can be rewritten in terms of a single Brownian
motion that has deterministic coefficients under any ELMM.
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two imperfectly correlated motions driving the stock and the bond. HK concluded that
their results “do not enable us to claim that, say, European call options can be priced by
arbitrage.” Merton’s model satisfies the conditions of Proposition 3.2 and Theorem 3.3.
Moreover, the European call option expiring when the bond matures is measurable under
the securities market history. By Theorem 3.3, therefore, it is priced by arbitrage—even
though markets are incomplete (there bemg only two securities, but at least two sources of
uncertainty). : ‘

APPENDIX

Proof of Theorem 2.2. (c) = (b) Suppose that the EMMs do not all coincide on Gr. Then
there exist A € Gr and EMMs P, Py, such that P;(A) # P»(A). Consider the contmgent
claim X = 1,50(T), where 14 denotes the indicator function of A. By construction, the
normalized payoff of X is Gr-measurable. The prices assigned to X under P;, j = 1,2,
are given (with obvious notation) by: V; = Sp (0)EP[14] = P;(A) (where EU) denotes
the expectation operator under F;), whxch differ according to the ‘choice of j. The result
follows by contradiction. _

(b) = (c) Suppose all EMMs coincide on Gr. Let X be a contingent claim whose
normalized payoff is Gr-measurable, and P* any EMM. The value of X under P* is:

(A.1) V = So(0)E*[X/So(T)],

where E* is the expectation operator for P*. Now, ex hypothesi, X/So(T') is Gr-measurable,
and all the EMMs coincide on Gr. Thus the right-hand side of (A.1) is independent of the
choice of P*. '

(b) = (a) is trivial.

(a) = (b) is an immediate application of the following lemma. O

TECHNICAL LEMMA. Let S* be any R*-valued process defined on a measurable space
(2, F). Suppose that P is a family of probability measures on (2, F) for which the finite-
dimensional distributions of S* coincide. Then the members of P coincide on {G,}, the
filtration generated by S™. '

Proof of Technical Lemma. Let J"** dehote the (ﬁ x k)-fold produc.t of 7, the collection
of subsets of R of the forms: &, (—oo, b], (a, b] (a, ), R, where a, b € R. Define D as
the collection of elements of Gr of the form:

(A2) _ e Q: (S @),.... S @) € I},

where t; < --- < t and J € J"*k. It is elementary to verify that D is a semi-algebra
(i.e., a family of subsets of &, containing 2, closed under finite intersections, and such that
D € D = Q\D is expressible as a finite disjoint union of membeérs of D). :
Ex hypothesi, the members of P coincide on D. Let u denote their common restnctlon
to D. Clearly u is countably additive and 1.(S2) = 1. Hence, by Caratheodory’s Extension
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Theorem, i has a unique extension to o (D), the sigma-algebra generated by D. So the
members of P agree on o (D). L
But, for any ¢, $*(z) is J(D)-measurable whence QT = J(D) The result follows. 0O

Proof of Proposition 3.2. By slight adaptatlon of Proposmons 4 and 5 of Schweizer
(1992),” we can write' Ay, in the form:

Ak sk(0)+Zf 00’,kdt

j=1

where 6y, ..., 0, are predicfable"‘market price of risk” processes', ‘and we can determine
that . " - ' .

dP*
5 _S{N(T). Z/ BdZ}

for some N € H},,. orthogonal to each Zj, where £{ } denotes the exponential semi-
martmgale '
We now apply Girsanov’s Theorem to deduce that,for j =1,...,n,

ZJ*E/.O 9jdu_+Zj

is a continuous 1oca1 martingale under P*. Moreover the predictable quédratic (co)variation
processes (Z[, Z;)* under P*, coincide with (Z;, Z;) under P, whence Z* is a vector
standard Brownian motion under P*. _ _ O

Proof of Theorem 3.3. Obviously, any EMM is an ELMM. If (3.2) has a unique weak
solution (i.e., determines the probability law of each S¢) then the finite-dimensional dis-
tributions of S* must coincide under all ELMMs. Combining these observations, S* has
the same law under all EMMs. If, then, $* is a martmgale under this law, we can use
Theorem 2.2 to obtain full pricing by arbltrage _ O
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