FINANCIAL OPTIONS
RESEARCH CENTRE

University of Warwick

Implied Volatility Surfaces:
Uncovering Regularities for Options
On Financial Futures

Robert G Tompkins

September 1998

Financial Options Research Centre
Warwick Business School
University of Warwick

Coventry

CVv4 7AL

Phone: (01203) 524118

FORC Preprint: 98/93



IMPLIED VOLATILITY SURFACES:
UNCOVERING REGULARITIES FOR
OPTIONS ON FINANCIAL FUTURES

Robert G. Tompkins
Visiting Professor
Department of Finance
Vienna University of Technology* and
Permanent Visiting Professor
Department of Finance
Institute for Advanced Studies*
ABSTRACT

While it is now generally accepted that implied volatilities of European
options differ across strike prices and time, what has not been examined in the
literature is the characteristics of the strike price biases between different assets and
asset classes and the variability of these surfaces over time. This research examines
twelve options markets on financial futures (comprising three asset classes) and
compares the strike price biases both for the same markets and across all markets.

When implied volatility surfaces are standardised, their patterns are smooth,
well behaved and display the asymmetrical and convex patterns previously described
in the literature. Furthermore, there appears to be consistency in how the implied
volatility surfaces evolve over time for individual markets and we uncover
consistencies in the behaviours of implied volatility surfaces between markets. To test
the significance of these empirical regularities, we develop a model based upon a
polynomial expansion across strike price and time. The polynomial expansion
approach allows us to examine each effect separately and include time dependent
interactions. Coefficients from an OLS regression model allow direct comparisons.

Cross-sectional comparisons suggest that the first order strike price biases
(skewness) differs between asset classes. However, the first order strike price biases
display similar time dependencies within the same asset class. Regarding the second
order strike price effect (kurtosis), consistencies exist between the three financial asset
classes examined. These models are stable overtime and lose little explanatory power
outside of sample. This suggests the paradigm used by option participants to adjust
option prices away from Black-Scholes-Merton prices is consistent over time.
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1. INTRODUCTION

If the Black-Scholes-Merton model [Black and Scholes (1973) and Merton
(1973)] accurately describes conditions in actual options markets, then the volatilities
implied from the market price for options on the same underlying asset would be
constant regardless of the strike price of the option or its maturity. However, it is now
generally accepted that the implied volatilities differ across strike prices for the same
maturity and across diverse expiration periods.!

A recent trend in the empirical investigation of implied volatilities has been to
concentrate on understanding the behaviour of implied volatilities across strike prices
and time to expiration [see Jackwerth and Rubinstein (1996) and Dumas, Fleming
and Whaley (1996)]. This line of research assumes implicitly that these divergences
provide information about the dynamics of the options markets. Another approach
[Dupire (1992, 1994), Derman & Kani (1994) and Rubinstein (1994)] suggests that
the divergences of implied volatilities across strike prices may be providing
information about the expected dispersion process for underlying asset prices.

A separate line of research that has not yet been examined is whether these
implied volatility surfaces display consistencies for individual option markets and
whether consistencies in the implied volatility surfaces exist between markets. This
research will deal with these issues and do so for twelve financial markets drawn from
three asset classes: stock indices, fixed income and foreign exchange. Furthermore,
this analysis will be done for a longer period of analysis than has previously been

examined in the literature.

I The existence of the strike price effect has been pointed out extensively in the literature. Early
examples include: Black (1975), MacBeth and Merville (1979), Galai (1983,1987) and Rubinstein
(1985). Recent examples include: Xu and Taylor (1993) and Heynen, Kemna and Vorst (1994).



In this paper, we will demonstrate that if the implied volatilities are
standardised, it is possible to compare their behaviours over time. Furthermore, there
appears to be consistency in how the implied volatility surfaces evolve over time for
individual markets. We find that the implied volatility surfaces for all markets
examined are smooth and well behaved. This fact allows us to capture most of the
dynamics of the surfaces using a polynomial expansion. Statistical testing of models
based upon this polynomial expansion suggests that the dynamics of implied volatility
surfaces are stable over time. Furthermore, the coefficients of the models allow
comparisons of implied volatility surface dynamics between markets.

The paper is organised as follows. The second section will discuss the data
sources and the steps required preparing the data for further analysis. The third section
discusses the process of standardisation of implied volatilities and strike prices. In
section four, the results are presented for the twelve markets under examination. The
final sections of this paper (five and six) will assess the extent to which the implied
volatility structures for the twelve markets under investigation can be captured using a
simple polynomial functional form. This will be done using an ANCOVA approach
with the coefficients of the statistical model quantifying the strike price effects and
facilitating comparisons between markets. The final section provides conclusions and
suggested areas for further research.

2. DATA SOURCES

The options examined in this research are options on futures2. The underlying

markets include four fixed income futures contracts: US Treasury Bond Futures, UK

Gilt Futures, German Bundesanleihen Futures (Bunds), and Italian Government Bond

2 For the DAX options and FTSE options, these were actually on the cash index. However, these
products were European style options expiring on the same day as the Futures for these markets. Thus,
these options can be considered as de facto options on futures.



Futures (BTPs), four equity index futures: S&P 500 Futures, FTSE 100 Futures, DAX
Index Futures, and Nikkei Dow Futures, and four currency futures: US
Dollar/Deutsche Mark, US Dollar/British Pound, US Dollar/ Japanese Yen and US
Dollar/Swiss Franc.

For all of the option markets, the analysis period extends back in time to either
the introduction of these contracts or to include all the publicly available data. For the

following underlying options, the following time periods of analysis were examined:

Underlying Asset Time Period of Analysis
Stock Index Options

S&P 500 Futures 25/03/1986 - 24/12/1996
FTSE Futures 02/01/1985 - 20/12/1996
Nikkei Dow Futures 25/09/1990 - 16/12/1996
DAX Futures 02/01/1992 - 20/12/1996
Fixed Income Options

Bund Futures 20/04/1989 - 21/11/1996
BTP Futures 11/10/1991 - 21/11/1996
Gilt Futures 13/03/1986 - 22/11/1996
US T-Bond Futures 02/01/1985 - 15/11/1996

Currency Options
Deutsche Mark /US Dollar  03/01/1985 - 09/12/1996
British Pound / US Dollar ~ 25/02/1985 - 09/12/1996
Japanese Yen/US Dollar  05/03/1986 - 09/12/1996
Swiss Franc / US Dollar 25/02/1985 - 09/12/1996

Since our aim is to examine the characteristics of implied volatility surfaces
over time, it is critical that the sample period of analysis extends as far back in time as
is possible. In most cases more than 10 years was available, which will allow us
enough observations to conduct meaningful analysis.3

The data for the options and futures contracts was obtained from the exchange

where these trade. The London International Financial Futures Exchange (LIFFE)

3 In total, the number of option prices examined for all twelve markets was 1,263.317. Given that we
also had the underlying futures prices for the same dates (and at the same time) as the options, we were
able to assure that both time series were consistent to each other. From this analysis, we were able to
clean both series and assure our analysis was minimally impacted by errors in data.



provided information on the BTPs, Bunds, Gilts and the FTSE 1004 The Chicago
Board of Trade provided data on the US T-Bond Futures and Options. The Deutsche
Terminbdrse (DTB) provided data on the DAX> futures and options and the Chicago
Mercantile Exchange provided the future and options data for the S&P 500, Nikkei
Dow, Deutsche Mark, British Pound, Swiss Franc and Japanese Yen. For most of
these markets, the data obtained included the closing prices of the options, the strike
prices, the price of the underlying futures and in some instances, the implied volatility
of the options estimated by the exchange.

Eight of the options under examination in this research were American style
options on Futures. These included the FTSE 100 (prior to 1992), S&P 500 and
Nikkei 225, the US T-Bond, and all the currency options. These options are paid for
up-front and are American style. To estimate the implied volatilities correctly, we
chose to use the Barone-Adesi and Whaley (1987) model. According to Clewlow and
Xu (1994), this model has been shown to be very accurate for option maturities
shorter than twelve months. As we will restrict our research to only those options with
three months or less to expiration, this model will be suitable for our purposes. For
this model, an interest rate parameter must be included in order to estimate the
implied volatilities. For all US Dollar based options, we used the US Treasury Bill
interest rate for that day whose maturity fell most closely to the actual expiration date

of the options. This data was obtained directly from the Federal Reserve Bank in

4 For the FTSE 100, options data was only available from 1992 from the LIFFE and only for the
European options. To extend the analysis, we obtained additional data from Professor Gordon
Gemmill, of City University Business School, who had compiled data for American options on the
FTSE 100 (from the financial press) from 1985 to 1992.

5 1t included all the tick by tick prices of the futures and options contracts during each trading day.
Given that the rest of the analysis was done on closing prices, we sorted the data by time of trade and
chose the options and futures prices within one hour of the close. For this, we would only select options
for analysis if a futures trade occurred within 3 minutes of the option trade, otherwise, we ignored the
option. In most instances, the options selected were within the last 30 minutes of the close and the
accompanying underlying futures contract traded within 1 minute of the option.



Washington D.C. These contracts that required the US Dollar interest rates included
all the currencies, the US T-Bond, the S&P 500 and the Nikkei 225 contracts.

The FTSE 100 option (after 1992) was a European style option with stock type
settlement (this means the premium was paid up-front). Since the options expire on
the same date as the FTSE 100 futures contract, these options can be considered de
facto options on futures and the implied volatilities can be determined using the Black
(1976) model. Most of the remaining options under examination in this research were
American style options on Futures. All these options are traded at the LIFFE. These
include the Bund, BTP and Gilt options. For these options the mechanics of
margining of both the underlying futures and options removed the possibility of early
exercise. For these options, it is possible to estimate the implied volatilities using the
Black (1976) model and interest rates can be ignored.

These approaches addressed all the markets under examination except the
DAX index options. For this contract, the option was based upon the cash index. This
was selected because the option on the DAX futures is extremely illiquid and the date
of settlement is exactly the same as the expiration of the futures. Thus, this contract is
also de facto an option on the futures. This option contract is European style and has
stock type settlement. This means that the appropriate model is the Black and Scholes
(1973) model with an interest rate input. No dividend yield is requi;ed because the
DAX index is a total return index where the dividends are assumed to be
automatically reinvested in the index. The interest rate input was the average weekly
3-month LIBOR for Deutsche Marks obtained from The Bank of England.

Finally, given that this research is empirical in nature it was of utmost
importance that the data we examined was carefully screened to remove errors. This

was achieved in a number of ways. Firstly, we compared the futures price series with



the options price series for the same days to identify obvious errors in recording either
price series. This comparison was achieved by comparing the put-call parity values of
the options with the underlying futures prices for every single date in our database
(and for all twelve markets). A screening procedure was imposed such that if futures
or options prices diverged by more than the normal bid/offer spread (of one tick), the
observations were flagged. Once this was done, each price was compared with the
original daily price sheets to confirm if a 'keypunch' error had occurred. We
discovered that only 1-2% of the data had such errors. Nevertheless, these errors were
of a sufficient magnitude that they did influence the results and therefore required
correction.

To avoid spurious results from option prices that appear to admit arbitrage, we
eliminated all options prices (and the accompanying implied volatilities) that were
traded at the minimum level at the relevant market or allowed a butterfly arbitrage.
Jackwerth and Rubinstein (1996) also used this approach. Furthermore, to address the
potential problem of nonsynchronous prices for the options and underlying futures,
only those implied volatilities from the available out-of-the-money option contracts
(not admitting arbitrage) were examined. Thus, we only examined put options with
strike prices below the current futures price and call options above.

Finally, a non-trivial issue is the term to maturity of the options selected for
analysis. We observed from the collection of the option and futures prices that the
liquidity for both assets is not uniform over time. While options and futures could be
offered with up to nine months to expiration, these contracts rarely traded until they
became the nearest contracts to expiration. Furthermore, for the options markets, we
must have enough strike prices to be able to fit a meaningful polynomial model to

ascertain the shapes. Therefore, we selected both futures and options contracts that



were the nearest contracts to expiration and traded on the quarterly expiration
schedule of March, June, September and December maturities. This assured that we
had prices that represented actual trading by market participants. By restricting our
analysis solely to the nearby options and only on the same quarterly trading cycle as
the underlying futures, the options we examined tended to have a maximum maturity

of approximately 90 days to expiration.

3. STANDARDISED IMPLIED VOLATILITY SURFACES: METHODOLOGY

While a number of approaches have been proposed to standardise the implied
volatilities, the simplest approach is to create an index where the implied volatilities at
each strike price are expressed as the ratio to the implied volatility of the option
closest to the at-the-money level. Fung and Hsieh (1991), Tompkins (1994) and
Natenberg (1994) have all used this approach. All these approaches take the simple
ratio between the implied volatility at each strike price divided by the ATM implied
volatility and multiply the result by 100 (or express the result in percentages). This
transformation is required because the levels of volatility are not constant over time.
The logic behind this approach is that the relative relationships between the
volatilities and not the absolute levels are of interest.

The strike prices must also be standardised to allow comparisons to be drawn.
A simple approach suggested by Tompkins (1994) was to take the ratio of the strike
price to the underlying price. Jackwerth and Rubinstein (1996) used the same
approach. A similar approach was used by Fung and Hsieh (1991), the difference
being that they inverted this ratio. While this has practical advantages for market
participants (namely it is simple to reverse the equation to obtain actual strike prices),

the approach is somewhat misleading as the ratios are time-independent, while



options prices are not. A better approach, which is more consistent with the time-
dependency of option prices and is also consistent with the assumptions of the Black-
Scholes-Merton option pricing models is to use the approach suggested of Natenberg
(1994). In this approach the strike price is expressed as the natural logarithm of the
ratio of the strike price X of the option relative to the underlying futures price F,
divided by the square root of the tim¢ remaining until the expiration of the option.
This will express the strike prices as the relative percentage movement in the
underlying futures required to reach an exercise price. We have modified this
approach by modifying the denominator of the formula by multiplied the square root
of time by the level of the at-the-money implied volatility. This will be expressed as:

In(X,/F.)

ik Sl 2 1
o+T/365 0

where X is the strike price of the option, F is the underlying futures price and the
square root of time factor reflects the percentage in a year of the remaining time until
the expiration of the option. The sigma (o) is the at-the-money volatility. For this
analysis, we will assume that the relevant time is calendar days and will express time
as the percentage of calendar days remaining in the options life to the total trading
time in a year (which we assume is 365 days).

This transformation is consistent with the assumptions of the B-S-M model,
where the movement in the underlying asset is measured on a logarithmic scale. From
the first term in the Black-Scholes model [N(d1)], the relationship between the
exercise price of an option and the current underlying price is expressed as the
logarithm of the exercise price divided by the underlying price. At the same time,
GBM assumes that movement over time is governed by a square root relationship, so

that in the Black-Scholes model, the relative amount of movement (for the underlying



asset) to reach a strike price is fully expressed by the above formula 1. Finally, the
inclusion of the at-the-money volatility will allow us to express the strike prices in
standard deviation terms. This will allow us to compare the smile relationships

between and within markets more directly and consistently

4. STANDARDISED IMPLIED VOLATILITY SURFACES: RESULTS

To gain an overview of the smile estimation process and the implications for
this research, we determined the implied volatilities for the twelve markets under
investigation on a single date: May 7, 1996. Inverting the appropriate option-pricing
model for each market (including the other known variables) and solving for the free
parameter yielded the implied volatility. These implied volatility point estimates were
connected by linear interpolation to draw implied volatility patterns. These can be
seen in Figures 1, 2 and 3 for the stock index, fixed income and currency options.

For the options on the stock index futures (in Figure 1), the implied volatility
patterns generally display a convex shape and are skewed to the left. This implies that
the market prices of options with lower strike prices are higher than the theoretical
prices obtained from the option-pricing model using the at-the-money volatility. In
addition, the market prices of options with higher strike prices are lower than what
would be predicted based on the assumptions of the option-pricing model. This result
has been identified extensively in the literatureb. While for the S&P 500, FTSE 100
and DAX options the smile relationships are skewed to the lower strike prices, the
Nikkei displays a relatively more symmetrical shape for the September 1996 maturity.
Thus, all the stock index options display the skew behaviour previously identified in
the literature. Regarding the curvature of the implied volatility patterns, it is now clear

why this pattern has been referred to as a 'smile".
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For the options on the fixed income futures (in Figure 2), we also observe both
skewness and curvature effects. Unfortunately, we did not have multiple option
maturities to examine the effects of time on the implied volatility patterns. The only
market that allows us some comparison is the Gilt with two available maturities. This
is due to the fact that there is an even greater concentration of trading activity on the
options that are closest to maturity. Nevertheless, it appears from the Gilt options that
a similar pattern exists for those observed for the stock index options. The curvature
of the implied volatility patterns becomes more extreme the closer we are to
expiration of the option.

For the options on the foreign exchange futures (in Figure 3) we fortunately
have more option maturities to examine. This will allow us to gain some insights in
the effects of time on the implied volatility patterns. For all four markets, there does
not appear to be a systematic skewed relationship between strike prices and implied
volatilities. However, one can clearly see that as the options are closer to maturity,
there is much greater curvature. Furthermore, the levels of the implied volatilities
differ significantly across maturities.

Apart from the obvious conclusion that the smile patterns are not flat, this
method of presentation makes comparison between markets difficult. The scales for
both the strike prices and implied volatilities vary widely between the markets.
Comparison is easier if both the implied volatilities and strike prices are standardised
such that both the strike price and implied volatilities are expressed in the same
metric.

To accomplish this, we converted the levels of the implied volatilities into

index form. The denominator (in the ratio) is the at-the-money volatility. Given that it

6 See references in Footnote 5.
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is unlikely that the underlying futures price will be exactly equal to an available strike
price, we were required to estimate the level of the at-the-money volatility. After
examining various approaches to estimate this, we found that a simple linear
interpolation for the two implied volatilities of the strike prices that bracketed the
underlying asset price (one below and one above) had much less errors than other
methods suggested in the literature’. This transformation means that all the implied
volatilities are now expressed as an index with the numeraire equal to the at-the-
money implied volatility. The second standardisation was to index the strike prices to
the level of the underlying futures price. This standardisation was achieved using
formula 1. This allows all strike prices to be transformed into a standard deviation
measure allowing consistent comparison both overtime and cross-sectionally.

By standardising these two variables, a metric has now been constructed that
allows comparisons not only between markets but also for individual markets over
time. It is acknowledged that whenever some method of standardisation is employed,
a loss of information (detail) results. However, given our objective is to compare
relative smile behaviours both cross-sectionally and across time, we believe the loss
of information by standardising is more that made up by the ability to compare smile
dynamics within and between markets more directly. One potential problem is that the
level of the expected variance (as measured by the level of the at-the-money implied
volatility) is lost and might be important to the dynamics of the implied volatility
surfaces. This will be examiﬁed in the final portion of this paper.

Given that we restricted our analysis to the quarterly expiration schedule of

March, June, September and December maturities, we have only examined implied

7 The first approach used was to determine the quadratic functional form that fits the volatility smile.
This used a quadratic approach suggested by Shimko [see Shimko (1991,1993)]. We found two major
problems with this approach. The first is that for many days, we had barely enough degrees of freedom
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volatility surfaces with a maximum term to expiration of approximately 90 days. We
further pruned the data required for this analysis by restricting our analysis of the
implied volatility surfaces to eighteen time points from (the date nearest to) 90
calendar days to expiration to (the date nearest) 5 calendar days to expiration in 5-day
increments.

Finally, given the standardisation of the strike prices implied that they are
expressed in standard deviation terms, we had to choose a reasonable range including
the available options. From casual observation, we found that the options we
examined would not be excluded from the analysis over a range that was 4.5 standard
deviations away from the underlying asset price.

Using this approach, all the implied volatility surfaces were examined for the
twelve markets and covered the entire period of analysis. While it would be possible
to present each of the standardised smile patterns for each expiration cycle for each of
the twelve markets (and forty eight expiration periods), this would only allow for a
qualitative comparison. Our interest is to assess the general results of the standardised
implied volatility surfaces to provide insights into the form of the model that would
capture the general mannerisms.

To this end, an index of the implied volatility surfaces was constructed for
each market under investigation. This was achieved by pooling all the standardised
implied volatilities with the same period to expiration for each market. With these

(time to expiration) homogenous samples, the following regression was run:

VSI:a+[3,-M+ﬁ2-[ @

ln(XT/FT)T \ e
o~T/365

o7 /365

(options prices) to determine the quadratic form. Secondly, many of our markets (the US T-Bond
market in particular) were not well described by a quadratic function.

13



The results of this regression were repeated for each of the eighteen expiration
periods and examined for all twelve options markets. With the coefficients from this
quadratic regression a fitted line was produced for each expiration period and for each
market. These results are graphed in Figures 4 for the four stock index options, 5 for
the four fixed income options and 6 for the four foreign exchange options.?

In Figure 4, one can see that some consistent relationships seem to exist
among the four stock index options markets. The S&P 500 and the DAX options
display almost identical patterns with similar dynamics over time. Both markets start
with 90 days to expiration with a relatively linear left skewed shape. This shape
flattens somewhat as expiration is approached and the patterns display progressively
greater curvature. One can see that the FTSE and the Nikkei also display similar
dynamics. The implied volatility patterns are more convex at 90 days compared to the
other stock index options and this pattern becomes more convex as expiration is
approached.

In Figure 5, there are also consistencies among the four fixed income options
markets. The Bund, BTP and Gilt options display similar patterns over time. In some
ways, fhese shapes are reminiscent of those observed for the FTSE and Nikkei
surfaces. All markets start with 90 days to expiration with a relatively linear left
skewed shape with a slightly convex shape. As expiration is approached, the skew
flattens and the convexity increases. The odd market out is the US T-Bond, where
there is little evidence of a skew but the convexity can clearly be seen as increasing as

expiration approaches.

8 Later in this paper, we will demonstrate that to correctly understand the characteristics of implied
volatility surfaces a simple quadratic model of this form is inadequate. However, this goal here is to
generate implied volatility surfaces which will provide qualitative insights into the nature of the
complete model that will be developed later.
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In Figure 6, there appears to be even greater consistency among the four
foreign exchange options markets. All four markets display almost identical patterns
with similar dynamics over time. In many ways, there appears to be a constant shape
across time for all the four markets. The only time dependent variation that seems to
occur is that the convexity becomes more extreme as the time to expiration is reduced.

These graphical presentations suggest that smile patterns both for individual
markets, within asset classes and indeed among all markets display some similar
characteristics. What remains to be examined is the degree of similarity that exists

and whether these regularities are stable over time.

5. STATISTICAL COMPARISONS OF IMPLIED VOLATILITY SURFACES

Our approach is related to the work by Dumas, Fleming and Whaley (1996),
who tested a number of arbitrary models based upon a polynomial expansion across
strike price and time. They found that the model that best explained the dynarﬁics of
the implied volatility surface was an expansion to degree two. However, they rejected
the existence of a purely deterministic functional form of the implied volatility
surface.

In this research, we will extend the polynomial expansion to degree three and
include additional factors, which may influence the behaviours of volatility surfaces.
We will also test the finding of Rubinstein (1994) that the overall shapes of volatility
surfaces changed after the 1987 stock market crash. Furthermore, we will examine
hoW other individual market specific shocks may affect the shapes of implied

volatility surfaces for these markets.
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Consider a Taylor's series expansion to degree three.

Expanding the function ¢ = f(x,t) with Taylor’s expansion series

oo (i+j)
o=3—1 90 i 3.1)
2o+ ) ox'or

and stopping the expansion at the third degree (i + j < 3), we obtain

cr~a—o-x+a—ct+—l—azo-x2+l t
ox ot 2! 9x? 2! ot 2! 9xot
10°%¢ ; 19%¢c 5, 13 , 130 ,

—X A t————x"t+= =Xt
3! ox? 31 9f® 3! 9x>0t 3! 9xor>

d°c , 1 9%
+_

xt+
(3.2)

Given that we have nine derivatives in the expansion, we will construct nine
variables to capture these effects.

To capture the 1987 crash effect pointed out by Rubinstein (1994), we
constructed a dummy variable, which assumes a value of O prior to the crash and 1
thereafter. To assess the impacts on the strike price effect, this dummy variable will
be multiplied by the first and second order strike price variables from equation 3.2.
Similar dummy variables were constructed to capture idiosyncratic shocks for
individual markets. To determine when such a shock had occurred, we examined the
exponentially weighted unconditional volatility time series for the twelve markets of
interest. The two most extreme spikes in the unconditional volatility that occurred
over the period of analysis were chosen as shock events.

Finally, there is concern that important information has been removed from
the analysis by the process of standardising the strike prices and implied volatilities.
Thus, if the strike price bias is a function of the level of the implied volatility, this can
be tested by including the level of the at-the-money implied volatility in the model.

Once again, since our objective is to understand the strike price effects, combination

16



variables will be estimated which are the products of the first and second order strike
price effects in equation 3.2 with the level of the at-the-money implied volatility.
The final form of the model can be expressed as:

VSI = o+ STRIKE - (B, + B, - TIME + B, - TIME® + 3, - CRASH + B, - SHOCK1 + B - SHOCK2 + B, - ATMVOL)
+STRIKE® - (By + B, - TIME + B,, - TIME* + B,, - CRASH + f,, - SHOCK1+ B,, -SHOCK2 + B,, - ATMVOL)

+ Pys - STRIKE® + B, - CRASH + B,; - SHOCK1 + B,; - SHOCK2 + B,g - ATMVOL+ B,y - TIME + B, - TIME?

+ B, - TIME® + ¢

“4)

Equation 4 differs from equation 3.2 in a number of significant ways. The first
is that the implied volatility is now the standardised indexed form rather than the
absolute level. Secondly, additional variables have been added to test the impact of
market shocks on the implied volatility surface and finally, the level of the at-the-
money volatility has been included to assess how much information has been lost by
the standardisation procedure.

Given the model is a mixture of normal variables and dummy variables, an
analysis of covariance (ANCOVA) was utilised with the standardised implied
volatilities (VSI) as the independent variable. The computer programme used for the
analysis was STATISTICA for Windows (version 5.0). [See STATISTICA (1995)].

One potential criticism of this approach is that this has led a fairly complex
model with a large number of variables. Normally when evaluates an equation with so
many independent variables, there are too many parameters to identify satisfactorily.
We are fortunate here that the number of observations is extraordinarily high. In
addition, the results have high degrees of explanatory power (adjusted R squared). We
will demonstrate that these models retain this high degree of explanatory power
regardless of how the simple OLS approach is corrected for potential biases in the
regression and also remains high (and has consistent coefficients for the independent

variables of interest) for different periods of analysis. Therefore, for many regression

17



models over-fitting is endemic when the number of independent variables is large
relative to the number of observations or the models fail to predict outside of sample.
However, in this case, the use of our enormous database and the fact that the models
are stable for different periods of analysis suggest that this approach is not over-fitting

the data series.

6. RESULTS OF THE STATISTICAL ANALYSIS

Prior to the présentation of the results of the analysis, we will provide an
economic interpretation of the variables. The first order strike price variables can be
interpreted roughly as measuring the third moment of a statistical distribution
(skewness). The Beta coefficients from 3; to B7 capture these dynamics. If a skew
effect does exist and it is not time varying, only the first Beta would be significant. If
it is time varying, then B, and B3 should be significant. If any of the shocks caused a
change in the nature of the skew, then B4, Bs and Be will capture these effects. Finally,
the coefficient of B; will indicate an interaction between the expected level of future
variance (at-the-money implied volatility) and the first order strike price effect.

The second order strike price effect can be seen as related to the fourth
moment of the distribution (kurtosis). These dynamics can be understood by
examining the Beta coefficients from PBg to Bi4. Similarly to the analysis of the first
order strike price effects, if excess kurtosis effects exist and are not time varying, only
Bs would be significant. If these effects are time varying, then By and B0 would
indicate this. If any of the shocks caused a change in the nature of the implied
kurtosis, then this will be indicated by significant coefficients for B;;, B> and Bis.
Finally, B4 will allow us to examine the interaction between the expected level of

future variance (at-the-money implied volatility) and the implied kurtosis.
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The remaining variables exist for two primary purposes. The first is that the
previous variables will provide insights into the average slope relationships that exist
for the strike price effects. These variables will allow us to understand the dynamics
of the process. The second reason is that for a number of these variables we have a
prior expectation that they should be insignificant in the regression. These would
include the dummy variables that identify the occurrence of the 1987 stock market
crash and the individual market shocks. We would also expect that the level of the at-
the-money implied volatility would not be significant. This expectation is due to the
standardisation of the implied volatilities (indexing them to 100). If these variables
are significant, this may serve as a diagnostic for potential errors in variables.
Furthermore, the degree of significance will provide a guide to the severity of the
errors in variables problems.

It may very well be that further moments are required to understand the
implied dispersion process beyond skewness and kurtosis. For this reason, Bis will
indicate if this is the case or not (STRIKE®). We will choose to refer to this effect as
hetero-kurtosis.

The first approach was to run an ordinary least squares (OLS) step-wise
regression with dummy variables (ANCOVA). ¢ This was done separately for all
twelve markets and used all the available data. The results of these statistical
procedures can be seen in Tables 1, 2 and 3 for the three asset classes, stock index

futures, fixed income futures and foreign exchange futures.

9 This is to be expected as a number of the variables are highly correlated by design. For example,
many of the variables are products of other included variables and are by design highly correlated.
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In these tables, the coefficients of the regression are presented along with the
standard error of the estimates and the t-statistic.!9 For all variables that have a
significant t-statistic (at a 95% level), the results are presented in bold. For all results
that are in normal text, these were not significantly different from zero for the
independent variables or 100 for the intercept. In the instance that the variable was not
selected in the forward stepwise regression, this is represented by "-.--". We have also
included the number of observations included in the analysis, the adjusted R-squared
statistic and the Durbin-Watson statistic to measure possible problems with serial
correlations in the residuals.

In Table 1, we find that almost all of the included independent variables are
statistically significant for the four stock index options. Exceptions include the
variables that include SHOCKI1 for the S&P and FTSE and variables that include
CRASH for the DAX and Nikkei. This is hardly surprising since these variables were
not appropriate for these markets. For the S&P and FTSE, the CRASH and SHOCK
were the same event. For the DAX and Nikkei, the available observations were only
available after the CRASH.

The extremely high explanatory power of each of the models is somewhat
surprising. The adjusted R-squared statistic is between 0.9084 (for the Nikkei) to
0.9573 (for the S&P). These results suggest that the models are explaining almost all
the variance in the implied volatility surfaces. Nevertheless, we must be careful with
interpreting these results since the regressions might be biased and therefore the
statistics could be misleading. For example, the Durbin-Watson statistics suggest that

(for three of the four markets) some of the variance explained by the regressions is

10 The t-statistics for all the independent variables indicate whether the coefficient is statistically
significantly different than zero. For the intercept, the t-statistic indicates whether the coefficient
(alpha) is statistically significantly different than 100.
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due to serial correlations in the residuals. However, when the regressions were
corrected for serial correlations in the residuals using a weighted least squares
approach, the differences in the Beta coefficients for the independent variables was
slight (and in most cases insignificant).!! Given that this is the case, we shall interpret
the regression results in Tables 1, 2 and 3 knowing that alternative regression
approaches correcting for violations in regression assumptions will not substantially
alter our conclusions.

At this point, we will examine in detail the results of the regressions for the
stock index options markets and provide an economic interpretation. For the first
order strike price effects, we find that most of the first order strike price related
variables are consistently of the same sign and relative magnitude. However, the pure
strike price effect varies between the four markets. For the S&P, the coefficient is
positive. This suggests that controlling for all the other variables, the skew for this
market is positive. However, it is clear that the negative sign and magnitude of the
combination of the first order strike price effect with the crash is causing an overall
negative skew for the S&P. For the FTSE, DAX and Nikkei, the pure first order strike
price effect is negative. For the DAX and Nikkei, this is hardly surprising given that
both of these markets only had observations after the 1987 and 1989 stock market
crashes. This suggests that the crashes had impacts for all stock index options
markets. For the options markets observed both before and after these events the

effect is found in the coefficients for the STRIKE*CRASH variable (B4) and for the

STRIKE variable (3;) for those markets only observed after the crash.

Il Corrections were also done for Heteroscedasticity, Omission of Key Variables and the issue of
Multicollinearity were also examined. Furthermore, the regressions were run for separate samples of
the data to assess stability. All these tests demonstrated that the regression results remained similar and
that the overall model was robust.
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Caution must be exercised in the interpretation of the model; the overall strike
price effects are an aggregate of a number of variables. To gauge the overall first
order strike price effect, one must compare the STRIKE related variables for all
markets and include the STRIKE related variables associated with the dummy
variables for each market.

Apart from this difference, the interaction variables that combine STRIKE and
TIME have similar coefficients among all stock index options (both first order and
second order effect). The interpretation of these variables is that as the expiration of
the option is approached the negative skew begins to flatten. In some ways, it is
difficult to interpret the coefficients of these two variables between the markets. This
is because they are a combined effect. Nevertheless, the signs and magnitudes of the
effects are of a similar dimension.

Regarding the second order strike price effect, again many of the coefficients
for the stock index options (and the aggregated file) share the same sign and similar
magnitudes. For all the markets, the coefficient of the Beta for the pure kurtosis effect
(STRIKE?) is positive and of a similar magnitude. The first order impact of STRIKE?
with TIME is negative for all the models. Again, this suggests that the curvature of
the surfaces becomes more extreme as expiration is approached. When considering
the second order time effect on the curvature, the impacts were not consistent across
all the markets. Even so, the effect tends to be a positive one (for those markets where
the impact was significant).

An important result is the statistically significant relationship between the
expected kurtosis implied in the implied volatility patterns and the expected level of

variance. We find that a significantly negative coefficient for this variable

22



(STRIKE*ATMVOL) exists (B14). This suggests that the higher the level of the
expected variance, the flatter the curve of the implied volatility pattern.

Another significant result is that for all four stock index options and for the
overall aggregate of all stock index options, there are significant third order strike
price effects. The coefficient for STRIKE?® variable (Bis) is positive for all four
markets and roughly of the same order of magnitude. This variable can be seen as the
interaction of the first and second order strike price effects and this suggests that the
effect of excess kurtosis is asymmetrical. One interpretation of this result is that the
higher the strike price of the option, the greater the level of the excess kurtosis. We
will choose to coin this effect hetero-kurtosis.

This result has not previously appeared in the literature and may suggest that
additional higher order terms are required to model the dynamics of stock index
options implied volatility patterns correctly. Furthermore, even though the magnitude
of these coefficients is small, the t-statistics are among the highest in the models (and
can thus be interpreted as being among the most significant effects).

The other non-strike price related variables are for the most part insignificant
apart from the time-related variables. While the fact that these variables may suggest
that an error in variables problem may exist, subsequent regression models eliminated
these effects without significantly affecting the sign or relative size of the coefficients
for the other independent variables.!2

For the fixed income options markets, there is a similar degree of consistency
in the importance of the independent variables to each model. In Table 2, there are
five first order STRIKE-related independent variables ahd the coefficients of the

Betas are fairly consistent for all bond option markets. These include both the two

12 See footnote 9.



TIME interaction variables. As with the stock index options, these indicate that the
skewness has a negative relationship with TIME and a positive relationship with
TIME?. Again, the interpretation of this coefficient is that if a negative skew exists, it
will flatten as the expiration date of the option is approached. Another first order
strike price related variable that is consistent across all fixed income option markets
exists for the level of the at-the-money volatility (ATMVOL). The consistent
negative coefficient indicates that the higher the level of the expected variance, the
more the volatility pattern is skewed. Finally, it appears that market specific shocks
have an important impact on the nature of the first order strike price effect. For almost
all shocks (apart from the second shock for the US T-Bond), the impact was to
increase the negative skew of the implied volatility pattern.

As with the stock index options, there is a consistently positive kurtosis effect
measured by the coefficient for STRIKE?. There is also consistency in the first order
impact of TIME. This result suggests that the curvature of the implied volatility
patterns becomes more extreme as the options expiration date is approached. The only
exception exists for the BTP. However, the increased curvature effect comes from the
second order time factor, TIME?. Finally, the only other consistent independent
variable (for the second order strike price effect) is the relationship between the
curvature and the level of the at-the-money implied volatility. As with the stock
options markets, the significantly negative coefficient for this variable
(STRIKE**ATMVOL) suggests that the higher the level of the expected variance, the
flatter the curve of the implied volatility pattern.

As with the stock index options, we observe that higher strike price effect
moments are significant in modelling the implied volatility dynamics. The third order

strike price variable (STRIKE?) is positive and of a similar magnitude for all the fixed
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income options examined. Most of the other independent variables do not display the
same degree of consistency either in terms of the sign or the magnitude. This may
suggest that if an error in variables problem exists the effect is not systematic across
all the four markets.

For the foreign exchange options markets, we observe less consistency among
the four markets we examined, and there is less consistency compared with the results
of the previous two asset classes. In Table 3, we find that that overall first order strike
price effect is not consistent (or even significant for the four markets). It would appear
that skewness in not normally endemic for these assets. While the pure first order
effect (skew) does tend to be positive (in three of four markets), the effect for all
foreign exchange options is insignificant. There also does not seem to be any
consistency in the relationship between the first order strike price effect with either of
the two TIME interaction variables or for the level of the at-the-money volatility. The
only first order strike price effect somewhat consistent across the foreign exchange
markets is that the CRASH tended to cause a negative skew to appear in the implied
volatility patterns. However, this effect is slight. An opposite effect exists for the
occurrence of the second shock for each market. This tended to cause the first order
effect to be slightly more positive. One could claim that our interpretations of these
coefficients are misleading given that we have chosen the foreign currency as our
numeraire.!3

For the second order strike price effects, there is a great deal of consistency

both between the four currency options examined and with the two previous asset

I3 All these options (and the underlying futures) are expressed as the number of US Dollars
per unit of foreign currency. If these were expressed as the inverse, then the coefficients would reverse
sign. However, given that the coefficients are of different signs for the four markets and in many
instances insignificant, even with this transformation of the price series, the first order strike price

effect is not as important for foreign exchange as it is for the fixed income and stock index markets.
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classes. As with both the two previous asset classes, there is a consistently positive
kurtosis effect measured by the coefficient for STRIKE?Z There is also consistency in
the first and second order impacts of TIME. Again, this result suggests that the
curvature of the implied volatility patterns becomes more extreme as the options
expiration date is approached. Finally, the only other consistent independent variable
(for the second order strike price effect) is the relationship between the curvature and
the level of the at-the-money implied volatility. As with the other two asset classes,
the significantly negative coefficient for this variable (STRIKE**ATMVOL) suggests
that the higher the level of the expected variance, the flatter the curve of the implied
volatility pattern.

There also appears to be a higher order strike price effect required for
understanding the dynamics of foreign exchange implied volatilities. The third order
strike price variable, (STRIKE3), is also significant for all the four markets. However,
while for the previous two asset classes this relationship was positive, this relationship
is a negative one for all markets apart from the British Pound (which was barely
significant). Of the other independent variables, the only variable that is consistent
across all the four markets and overall is the ATMVOL variable.

Overall, it would appear that foreign exchange options are not as
homogeneous in the nature of the implied volatility process as stock index or fixed
income options. Nevertheless, the adjusted R-squared statistic suggests that the
majority of the variation in the implied volatility surfaces is being explained. Thus, it
could be said that while fewer variables are required to understand the nature of the
foreign exchange options implied volatility dynamics, the significant variables

provide relatively more explanatory power.
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From this analysis, we can compare the factors that describe the implied
volatility process across asset classes. It is clear that individual option markets have
idiosyncratic features that cause them to differ even within their own asset class.
Nevertheless, there does appear to be consistency within an asset class for those

independent variables that explain the implied volatility dynamics.

A key concern in any such regression analysis is that the high degree of
explanatory power is due to over-fitting within a sample period. To address this issue
a number of tests were done. The initial test was to the regressions with all contracts
included as dummy variables. This was done to assess if the regression results would
hold across time. If the strike price effects were significantly different over time, this
effect should be indicated by significant coefficients for the contract dummy variables
and important changes in the coefficients of the key variables in our regressions. What
we observed was that few of the contract dummy variables were statistically
significant and there appeared to be minor impacts on changes in the coefficients of
the key variables of interest to this research. Nevertheless, it is important to assess if
the overall conclusions we have drawn from the regression results would hold if the
regressions were run for sub-periods of the data set.

To test the stability of the regression equations, the observations for each of
the twelve markets was split into two sub-periods. These periods were divided
roughly into halves. With these divided sets of observations, we re-ran the OLS
regression solely for the first period of the data set and then used these results to
predict the standardised implied volatilities in the second period. The form of the

regression model appears in equation 5.

VSI =0+ B-VSI' +¢ Q)
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Where VSI is the standardised implied volatility outside of sample and VST is the
ﬁredicted standardised implied volatility using the results from the regression
(equation 4) using the first half of the data sample.
To assess the effectiveness of the predictions, we ran a simple OLS regression and
were interested in the R squared, and the coefficients of the regression equation. The
results of this test can be seen in Table 4 for all twelve markets.

We observe that in most cases, the predicted standardised implied volatilities
are well explained by the models solely determined using the first portion of the

options data set. Thus, the results do not appear to be period specific.!4

7. CONCLUSIONS AND IMPLICATIONS

In this paper, we examined the implied volatility surfaces for twelve option
markets. The underlying assets were financial futures representing a cross section of
Stock indices, Fixed Income and Currency markets.

A standardisation method was developed that allowed for the comparison of
implied volatility patterns over time. These patterns were drawn over time to yield
volatility surfaces. From a comparison of all the figures, it appears that consistencies
exist for the options in the same asset class. For example, the stock index options all
display a similar first order and second order strike price effect. For all the fixed
income options, the shapes are almost identical. This also appears to be the case for
the currency options. Given that the implied volatility surfaces for all twelve markets
are smooth and well behaved, a functional form was tested for these surfaces based

upon a polynomial expansion to degree three on the strike price and time.

14 Regressions were also run for both periods and compared to the regression results for the entire
period. It was found that most of the Beta coefficients were of a similar sign and order of magnitude for
all three periods of analysis. Results available from the Author upon request.
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To examine quantitatively whether the implied volatility surfaces were
consistent over time for individual markets and to compare the surfaces between
markets, a model was developed explained the majority of the variance in the implied
volatility surfaces for the twelve option markets under investigation. Thus, we
conclude implied volatility surfaces can be explained well by a relatively simple
model and that the effectiveness of this model is fairly stable overtime.

While the first order strike price effect (skewness) is idiosyncratic, it appears
that the second order strike price effect for all markets is similar both in absolute
effect and time dependency. All markets experience more implied kurtosis as the
expiration of the option is approached. In addition, the strike price effects (both first
and second order) for all markets are inversely related to the level of the expected
variance. An increase in the at-the-money volatility serves to increase a negative skew
in the implied volatility pattern and decreases the curvature of the implied kurtosis in
the pattern.

These findings suggest that market participants are using a similar algorithm
over-time to adjust option prices away from Black-Scholes-Merton values. What
remains for further research is to understand what this algorithm is. In previous work,
which examined the objective dispersion processes for financial assets, Scott (1994)
and Bates (1996) have found that these markets are best described by models which
include both stochastic volatility and jump processes. One could interpret the first
order and second order strike price effects we have identified in this paper as
reflecting both these factors.

The existence of a consistent negative (skewed) first-order strike price effect
might suggest that market participants are concerned about negative jumps. There are

a number of possible explanations for this. The most obvious is that the 1987 stock
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market crash led participants to include a risk premium of such a negative jump. This
research confirms the finding by Rubinstein (1994). Thus, it would be appropriate to
expect jumps in order to understand this effect.

Furthermore, extensive evidence has appeared in the literature that the implied
volatilities are stochastic. Thus, it is consistent that an understanding of the dynamics
of implied volatilities requires a stochastic volatility model. One possible area of
future research is to examine the link between models for the objective dispersion
process and the risk neutral process associated with options prices. Given that both
stochastic volatility and jump processes may require risk premia to exist, another area

of research would be to examine the nature of this risk premia.
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Underlying Asset Alpha

S&P 500 Futures 17.8859
FTSE Futures -29.9282

Nikkei 225 Futures -0.4213
DAX Futures 5.2918

Bund Futures 18.0858
BTP Futures 3.7422
Gilt Futures 6.6633

US T-Bond Futures 33.6890
Deutsche Mark /US $ 14.1239
British Pound / US $ 16.1462
Japanese Yen/ US $ 26.6671
Swiss Franc/ US $ 24.1125

Beta

0.8304
1.3397
0.9884
0.9631

0.8556
0.9727
0.9735
0.7131

0.8615
0.8525
0.7812
0.7826

R Squared

0.9655
0.8870
0.9199
0.9369

0.7563
0.8930
0.7384
0.6851

0.8331
0.8905
0.8182
0.7906

# Observations

7622
5180
1534
1840

4671
5031
6739
7918

7183
3353
8941
7744

Table 4 Regression Results for the Predicted Standardised Implied Volatilities in the
Second Period of the Options Data Set using the First Period Model



